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ABSTRACT 
 
SIMBOL-X is a high energy new generation telescope covering by a single instrument a continuous energy range 
starting at classical X-rays and extending to hard X-rays, i.e. from 0.5 to 80 keV. It is using in this field a focalizing 
payload which until now was used for energy below 10 keV only, via the construction of a telescope distributed on two 
satellites flying in formation. SIMBOL-X permits a gain of two orders of magnitude in sensibility and spatial resolution 
in comparison to state of the art hard X-rays instruments. 
 
The mirror satellite will be in free flight on a high elliptical orbit and will target the object to observe very precisely, 
thus focusing the hard X-ray emission thanks to this mirror module. 
 
At the focal point area which is situated 20 meters behind the mirror satellite, the detector satellite maintains its position 
on a forced orbit thanks to a radio link with the mirror satellite and a lateral displacement sensor using a beam emitted 
onboard the mirror satellite. This configuration is said “formation flying”. 
 
The location of the detector satellite shall be very finely tuned as it carries the focal plane of this distributed telescope. 
 
To provide science measurements, the Simbol-X orbit has been chosen High elliptic (HEO), which means elliptical 
orbit with a high perigee altitude. Preliminary studies where made with an orbit with an altitude of the perigee of 
44000km and altitude of the apogee of 253000km. The orbit was seven days ground track repeated in order to maintain 
a perigee pass over the Malindi ground station to download scientific telemetry. But as studies went on, difficulties in 
mass budget, link budget, perigee maintenance and formation flying maintenance were raised. This was mainly due to 
the vicinity of the Moon and its disturbing effect on the satellites’ orbits. Alternative orbits have been proposed in order 
to demonstrate the feasibility of the mission. 
 
The problematic of bringing the two satellites from their injection orbit to their operational orbit 20 m apart from each 
other and then maintain this configuration is very challenging. It requires theoretical development of the relative motion 
between two satellites in high eccentric orbit with large differential disturbance on the two bodies. 
 
This paper will present the mission analysis for the Simbol-X satellites with the complex problematic of doing 
formation flying in high elliptic orbit. 
 
 
ACRONYMNS AND NOTATIONS 
 

CAM Collision Avoidance Manoeuvre 
DSC Detector Satellite 
HEO High Elliptic Orbit 
IAR Integer Ambiguity Resolution 
ISD Inter Satellite Distance 
ISL Inter Satellite Link 

LOS Line Of Sight 
MSC Mirror Satellite 

RAAN Right Ascension of Ascending Node 
�V Velocity increment 
� Argument of perigee 
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1 MISSION OVERVIEW 

The Mirror satellite, carrying the mirror of the 
telescope, flies on its natural orbit. The Detector 
satellite, carrying the focal plane assembly, 
controls its position with respect to the Mirror 
satellite. The Line Of Sight of the telescope is 
the line joining the center of the detector to the 
center of the mirror. It corresponds to the 
observation direction, which shall be within a 
cone of semi-aperture of 20 degrees that can 
rotate in a plane perpendicular to the 
satellites/Sun axis. 

Definition of the LOS w.r.t. the Sun direction 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evolution over the year of the SIMBOL-X observable zone 

 

This pointing allows 1000 targets during the 2.5 years of nominal mission, and 500 additional targets during mission 
extension (2 more years). The pointing is similar to the one of XMM and Integral. 
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2 CHOICE OF THE OPERATIONAL ORBIT 

2.1 CONSTRAINTS 

A major constraint is that science can only be made at an altitude higher than 73000 km. It is the estimated minimum 
value for the altitude in order not to be disturbed by the Van Allen outer radiation belt. The availability for science is a 
function of the altitude of the perigee and apogee of the orbit. 

Then, the hydrazine budget to maintain the formation grows significantly when the altitude of the satellites is less than 
15000 km. One solution would be to break the formation at each orbit when approaching the perigee, but this solution 
was rejected, because of the complexity of the organisation of the operations associated, and of the collision avoidance 
issues. Thus, the perigee altitude should be above 15000 km: the simulations show that the 1-year budget for formation 
flying is 2.5 m/s for a 20000 km perigee altitude, 3 m/s for a 15000 km perigee altitude, and more thant 4 m/s for a 
10000 km perigee altitude. 1 m/s represents more or less 1.5 kg of cold gas. 

Another requirement is that the orbit should be phased with the Malindi ground station (Longitude 40.19°W, Latitude 
2.99°S) for TM/TC convenience.  The studies made show that the TM/TC coverage is satisfying if the difference 
between the perigee longitude and the longitude of the ground station does not exceed 30 degrees, even if the perigee 
latitude grows up to 40 degrees. We will see later the impact of this constraint on the station-keeping strategy. 

Then, the perigee and apogee have obviously maximum values depending mainly on the following characteristics: the 
launcher capacity in terms of mass is of course limited. The SOYUZ capacity for the chosen transfer orbit is around 
2300 kg. Thus, the perigee altitude is to be chosen between 15000 km and 20000 km. There is also a limitation on the 
platforms total �V capacity for LEOP manoeuvres, station-keeping and end-of-life manoeuvres. For a perigee altitude 
raising at 15000 km, the �V LEOP budget is between 275 and 302 m/s. For 20000 km, the �V LEOP budget is 
between 347 and 380 m/s. 

And finally, the link budget is significantly improved by a decrease of the perigee altitude. 

2.2 ORBITAL PARAMETERS 

To ensure the maximum availability for science, the orbit is chosen high elliptic (HEO). Then, in order to maximise the 
availability for science (the objective was 90%), the orbit initially chosen had a repeat cycle of 7 sideral days, but this 
kind of orbits are not compatible with link and mass budget. This is the reason why the altitude of the perigee has been 
decreased compared to the initial values given in the abstract, and the repeat cycle is now 4 sideral days. 

The main advantages of the 4-day orbit are: The maximum perigee altitude, which will be reached after 5 years of free 
evolution of the orbit, is close to 36000 km, whereas it is close to 70000 km for a 7-day orbit. An altitude of 36000 km 
is compatible with the link budget. Then, for a 4-day orbit, the minimum perigee altitude  is 15000 km, which is 
compatible with the cold gas budget for formation flying. Another advantage is that the perigee pass over Malindi is 
very stable –with the hypothesis taken in the previous paragraph- through the lifetime of the satellites: only a few 
correction manoeuvres during the mission are necessary. On each orbit, there are 3 passes over the ground station: the 
first one, around the perigee pass, lasts about 29 hours for a 10 degrees minimum elevation. 

Representation of the 4-day orbit with the 73000 km altitude limit for science 
 and the visibilities from a given ground station 

Indeed, the altitude of the satellites is 
crossing the geostationnary altitude, so 
the satellites catches up the Earth 
rotation, and a visibility duration 
lasting more than a day is obtained. 
There are also two other passes lasting 
both about 11 hours, just before and 
after the apogee pass. During the 
operational phase, and out of 
contingency cases, communications 
are established once at each Malindi 
pass, that is to say 3 times per orbit, 
for 2.5 hours on average (4.5 hours on 
average for the perigee pass). Ranging 
and correlation between onboard time 
and universal time are performed 
during each communication session. 
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Another characteristics of this orbit is that we have of course a much lower hydrazine cost for station acquisition and 
maintenance, and a gain of performance of the launcher since the target orbit is of lower energy. The principal 
drawback of the 4-day orbit for SIMBOL-X mission is that the cycling ratio, i.e. the time spent at an altitude higher than 
73000km, which is directly linked to the availability for science, is 3.3 days per orbit, which represents 83%, instead of 
90% with the initial 7-day orbit. 
 
This reduction of the availability for science has been accepted by the scientific community participating in the 
SIMBOL-X project. So the chosen orbit has an initial perigee altitude of 20000 km, and an initial apogee altitude of 
179738 km, in order to obtain a 4-sideral day period. Thus, the semi-major axis is 106247 km, and the initial 
eccentricity is 0.7517281. The initial inclination is induced by the inclination of the launch pad: between 5.2 and 7.2 
degrees. 

 

2.3 ORBIT ORIENTATION 

For HEO orbits, the orientation of the apsidal line remains nearly constant, even if  the argument of perigee and the 
right ascension of the ascending node are not constant. Indeed, the main perturbation on the apsidal line orientation is 
the J2 perturbation but for HEO, the regression of the line of nodes is very small. 

The choice of the orbit orientation will actually have an influence on the eclipse periods and on the evolution of the 
perigee and apogee altitudes. We can choose the appropriate orientation to take advantage of the combined effect of the 
Sun, Moon and Earth attraction. With the apogee toward the sun, the perturbations will lead to an increase of the 
perigee altitude and a decrease of the apogee altitude. Any other orientation of the apsidal line may lead to a decrease of 
the altitude of the perigee, which could be dramatic when the satellites are on their transfer orbit. Thus, the orbit at the 
beginning of the mission is chosen with the line of nodes perpendicular to the Earth-Sun direction at vernal equinox 
(which means RAAN = 90 deg, constant value all over the year in a Keplerian motion) and the apsidal line is in the 
same direction, the perigee being the same point than the ascending node (which means argument of perigee = 0 deg, 
constant value all over the year in a Keplerian motion). 

 

Impact of the orbit orientation (RAAN=90 deg; �=0 deg; low inclination) on the eclipse periods 

 

2.4 INFLUENCE OF THE MOON 

The Moon orbit is located in a plane with an inclination of 5 degrees w.r.t. the ecliptic. The Moon is rotating around the 
Earth at the mean altitude of 384 400 kilometres. Its eccentricity is 0.0549. The apogee altitude is 405 503 km and the 
perigee altitude is 363 296 km. The orbital period of the Moon is 27.32 days.  
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The Moon effect is more important at the apogee of the orbit, where the satellite is at the closest point to the Moon. The 
constraint is to maintain the perigee altitude, especially on the transfer orbit, because the perigee alttitude is relatively 
low (300 km), which means maintaining the velocity at the apogee. The worst effect on the altitude of the perigee is 
when the velocity at the apogee decreases. The problem of the minimisation of the Moon effect is not easy to solve: an 
analytical model is not accurate, and the optimisation has to be made with a numerical model. Nevertheless, the 
influence of the Moon on the maintenance budget is negligible compared to the impact on the station acquisition. 
However, a good conjunction for the station acquisition budget means a good conjunction for the station keeping 
budget. 
 

2.5 LONG TERM EVOLUTION OF THE ORBIT 

The main perturbations on the orbit are the attraction of the Earth, the Moon, the Sun and the solar radiation pressure. 
The other perturbations can be neglected.  

2.5.1  Natural evolution of the orbit parameters 

The nominal mission is set to 2.5 years, and the additional program has a duration of another 2 years, so the evolution of 
the orbital parameters is studied for a duration of 5 years. Since no constraint on these parameters is given by the 
mission, their natural evolution during this extended lifetime is studied. During this period of time, the inclination and 
the other angular parameters of the orbit will have a high variation. In particular, the inclination will increase up to 40 
degrees.  

During the first 3 years of the mission, the perigee will increase, and the apogee will decrease. The sinusoidal effect of 
six month period is due to the Sun. A14-day periodic effect due to the Moon can also be observed. For a five-year 
mission, the perigee altitude will increase up to 35000 km and the apogee altitude will decrease down to 164000 km, 
but the semi-major axis remains nearly constant. 

 

 

Influence of the gravitational potential of the Sun and Moon 
on the long-term natural evolution of the perigee altitude 

 
 

Earth, Sun & Moon 

Earth & Sun 

Earth only 
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Influence of the gravitational potential of the Sun and Moon 
on the long-term natural evolution of the apogee altitude 

 

The previous plots show the evolution of the apogee and perigee altitudes, assuming the operational life begins in 2016. 
However, for any other date for the beginning of the operational life, we notice the same long term evolution for all the 
orbital parameters and with nearly the same magnitude. Only short period terms differ because there are dependent of 
the launch date, since they are linked to the position of the Moon at the time of the launch. 

Since we are dealing with 2 satellites -the MSC and the DSC-, there might be some differences in the long-term free  
(i.e. without manoeuvre) evolution of their orbital parameters. The main perturbing forces are the attraction of the Sun 
and the Moon. These forces are derived from a potential, so they are independent of the characteristics of the satellites. 
The other perturbing force that must be taken into account is the solar radiation pressure. If we consider that the two 
satellites have the same ratio for Surface / Mass, the evolution is the same for the MSC and for the DSC. If this ratio is 
different, the evolution will be slightly different as we will see later, but the global pattern of the orbital parameters 
evolution will be the same for the two satellites. 

We have considered here the free evolution of the satellites, but we have to keep in mind that station keeping will be 
necessary to fulfil the requirement of downloading data at the perigee over Malindi ground station. This will be 
developped in chapter �5. 

2.5.2 Sun Eclipses duration 

The orbit at the beginning of the mission is chosen with the line of nodes perpendicular to the Earth-Sun direction at 
vernal equinox, and the apsidal line is in the same direction. As a consequence , the eclipses take place in the station-
keeping part of the orbit (i.e. close to the perigee), so they do not perturbate the mission. There are two periods of Sun 
eclipse per years: one in spring and one in winter. The maximum duration of the total eclipse is 190 min, but penumbra 
can have duration of 270 min. The natural evolution of the RAAN will increase the duration of the eclipses during the 
mission. 

Earth, Sun & Moon 

Earth & Sun 

Earth only 
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3 LAUNCH 

3.1 LAUNCH CHARACTERISTICS 

The satellites are launched stacked by Soyuz from the Kourou launch pad in French Guyana. The launch pad is located 
at 52.8° W, 5.2°N. The satellites are then separated from each other when injected on a transfer orbit. The ground 
manages the operations to have them reach their final scientific orbit thanks to their own propulsion subsystem, as well 
as the closing manoeuvres to bring them at the nominal distance from each other. Assuming that no inclination 
correction will be performed, the launcher performance for a 300km x 180000km separation orbit is about 2330 kg, 
which fits the Simbol-X satellites mass budget. 
 

3.2 LAUNCH WINDOW CONSTRAINTS 

 
For a launch onto a Highly Eccentric Orbit, the injection orbit must be such that its perigee does not re-entry into the 
Earth's atmosphere during the first orbits. Such dipping motion of the perigee height is due to luni-solar (Moon and 
Sun) perturbations and depends on the orientation of the orbit at launch time and on the Moon position. The following 
parameters are fundamental for the evolution of the orbit: the right ascension of the ascending node, the position of the 
Moon on its orbit and the launch day in the year for the initial effect of the Sun. The argument of the perigee will also 
have an impact. The right ascension of the ascending node and the argument of the perigee have been chosen 
previously, taking system constraints into account. 
 
For platform constraint, the first apogees after separation must not be in eclipse. For a launch in spring or autumn, the 
eclipses are located just before or after the perigee of the orbit, so this constraint has no impact on the launch window. 
The inertial orientation of the orbit is achieved by choosing the launch time in the day, depending on the launch pad and 
on the launch duration. These parameters are not yet determined. If the Moon is in the vicinity of the transfer orbit or of 
the apogee of an intermediate orbit, it can disturb the transfer orbit or change the intermediate orbit. Variations in the 
perigee of an intermediate orbit can have serious impacts: a decrease could cause an atmospheric re-entry: this 
corresponds to a 2- to 3-day period every month. As the Moon effect is important on the perigee it is preferable to 
launch in a period such that the Moon effect will increase the perigee and during which there is no risk of Sun eclipse 
by the Moon. 
 

4 ORBIT RAISING STRATEGY 

4.1 LEOP SCENARIO 

The satellites are separated one from the other at the time of injection on the transfer orbit. The on-orbit position of both 
satellites is the same at the instant of separation, but the semi-major axes are slightly different because of the small �V 
(order of magnitude: 1 m/s) produced by the launcher between the 2 satellites at separation. A phasing strategy has been 
studied (cf �4.2), and also a coordinated strategy (nominal strategy, cf �4.3). 
 

4.2 PHASING STRATEGY 

The aim of the study is to determine the total ∆V for SIMBOL-X orbit raising including the manoeuvres necessary to 
phase the two vehicles. Preliminary results are given as examples for a given launch date. The simplified phasing 
strategy proposed does not depend on this date but a new run of the corresponding software has simply to be performed 
for each different launch date. 
 
As we will see below, the phasing conditions used in this work are not SIMBOL-X ones. In fact, we use here the same 
conditions as in a Lambert’s problem (equality of the orbital parameters or equivalently, equality of the positions and 
velocities) instead of SIMBOL-X conditions related to the distance between the satellites.  
 
We assume here that the manoeuvres are impulsive and we compute the parameters of these manoeuvres, i.e. the date of 
application, modulus and direction, in order to reach the desired final values of the perigee and apogee altitudes for the 
two vehicles, taking into account perturbing forces: the terrestrial potential, the influence of the Moon and the Sun, the 
Solar pressure, the drag force.  No correction of the inclination is performed. Another objective of the study is to meet 
simplified phasing conditions: the orbital parameters of the two vehicles must be the same after the last manoeuvre, 
taking into account again perturbing forces in the computation. 
 
In order to fulfill the above conditions, the following strategy is used: 
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In a first phase, the DSC is put on an intermediate orbit with the same apogee altitude than the initial transfer orbit but 
with a perigee altitude equal to 2000 km. This is for avoiding re-entry in the atmosphere before the end of the phasing. 
So, we have to determine the amplitude, direction and date of the manoeuvre ∆V1 in order to reach the desired orbital 
parameters (perigee and apogee altitudes) at a given target date, while minimizing the amplitude of the manoeuvre ∆V1. 
Note that the solution values depend on this target date because final parameters are osculating ones and because 
perturbing forces are taken into account. 
 
In a second phase, the MSC is put on the final orbit using a near apogee manoeuvre as in the first phase. Then, we have 
two mathematical programming problems to solve for phases 1 and 2, each one with three unknowns and two 
constraints. The cost function is simply ∆V1 for the first phase (respectively ∆V2 for the second one) and the two 
constraints force each satellite to reach the desired final perigee and apogee altitudes at the corresponding given target 
date. These problems are solved by means of mathematical programming software called NLPQL1, the tool used for 
extrapolation being here PSIMU. Let us notice that we have to provide NLPQL1 with the partial derivatives of the 
constraints with respect to the unknown parameters. Due to the numerical computation of the constraints by means of 
PSIMU, a finite difference scheme is used for computing these partial derivatives. 
 
As a third phase, rhe DSC performs two phasing manoeuvres to satisfy the simplified phasing conditions. To determine 
the parameters of these two manoeuvres, we begin by computing the solutions of a succession of Lambert’s problems. 
 
Let us compute the Keplerian synodic period of these two orbits, denoted by Ts: 

  
if

fi
S TT

TT
T

−
=  

 
Then, for each date on a time interval between a grid between ∆V2 and ∆t2 + Ts, and for each duration of the phasing 
less or equal to the period of the intermediate orbit of the DSC, we compute the solution of a Lambert’s problem with 
less than one revolution. Thus, for each date and each duration, we obtain the parameters of the two Keplerian phasing 
manoeuvres. Then, we simply choose the initial date and the duration of the phasing that make the sum of norms for the 
two ∆Vs minimum. These values, together with the characteristics of the computed Keplerian manoeuvres are used as 
an initial guess for a NLPQL1 optimization that has to take into account the perturbing forces. Thus, NLPQL1 has to 
solve a mathematical programming problem with eight unknowns and six constraints using again a finite difference 
scheme for computing the partial derivatives of the constraints with respect to the unknowns. 
 
 

 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Preliminary strategy obtained for t0 = 01/01/2012 

 
The main problem of this phasing strategy is that the satellites are most of the time on orbits with different periods. The 
consequence is that the orbital planes have different evolutions (nodal drift and drift in inclination), and, depending on 
the date considered, an important correction of the out-of-plane parameters could be necessary, which could be 
expensive in terms of hydrazine consumption. Making-up for this angular difference will also increase the station 
acquisition duration.   
 
For these reasons, a coordinated strategy has been chosen as the nominal one. 

Mirror 
DV2 = 285.33 m/s 
Direction w2 = -30.64° 
Anomaly = 188.6° 
Maybe split in 2 

Detector 
DV4 = 288.8 m/s 
w4 = - 79.8 deg 
d4 = 8.5 deg 

Detector 
DV3 = 6.74 m/s 
w3 = - 34.6 deg 
d3 = 2.9 deg 
 

Detector 
DV1 = 55.8 m/s 
Anomaly= 167.6° 
Direction w1=39.4° 
Maybe larger 
for calibration 
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4.3 COORDINATED STRATEGY 

4.3.1 Characteristics of the nominal strategy 

 
The main advantages of the coordinated strategy are that the nominal duration of the LEOP is reduced, together with the 
hydrazine consumption, and the drift of the orbital planes remains very limited. The main drawbacks of such a strategy 
are that the anticollision has to be managed carefully, and that back-up strategies have to be studied: for each 
manoeuvre, there is a back-up phasing strategy to prepare, with a specific set of initial conditions. The nominal strategy 
is to increase the perigee altitudes of both satellites using almost simultaneous manoeuvres (4 to 5 manoeuvres for each 
satellite, for a total LEOP duration of 20 days). The manoeuvre execution is programmed during the pass that takes 
place just before the apogee. The next pass, which takes place the day after the apogee, is used as a back-up window in 
case of non execution of the nominal manoeuvre on one of the satellites. 

4.3.2 Back-up strategies 

 
In case of failure on one of the satellites, i.e. non execution of the manoeuvre at the scheduled orbit, neither during the 
pass just before the apogee pass, nor during the one following the apogee pass, a back-up strategy is used. It consists of 
a phasing rendez-vous: the healthy satellite is quickly brought on the operational orbit, and a rendez-vous is performed 
with the other one after isolation and recovery of the anomaly, using the healthy satellite as a target. This strategy has an 
over-cost in terms of duration of the LEOP. The worst case is close to 45 days, to be confirmed by coming studies. 
There is also an associated over-cost in terms of hydrazine consumption, related to the orbital plane relative drift, which 
depends on the date. Indeed, in case of anomaly during station acquisition, the satellite which is on a lower altitude 
moves faster (in terms of mean anomaly) and then it becomes necessary to wait until the slowest satellite has made a 
complete turn and reached again a position just behind the fastest satellite to raise its semi-major axis and stop this drift. 
This difference in semi-major axis will create a node error function of the drift duration that must be corrected. That 
implies using more hydrazine that in the nominal case. 
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Node error between the 2 satellites as a function of the drift duration 

 
The worst case is when a satellite 
remains on the transfer orbit and the 
other has reached the operational 
orbit. Then the semi-major axis and 
inclination difference between the 
two satellites will create a nodal 
drift. Moreover, as the perturbations 
are different between the injection 
orbit and the final orbit, a drift in 
inclination will also be created. 
Assuming that the inclination in the 
HEO has a secular drift of about 9.3 
degrees in 200 days whereas the 
inclination   of the   satellite   in  the 

transfer orbit is nearly constant we will have a drift in inclination during this period and a nodal drift. Then, an 
additional manoeuvre to correct inclination and node will be necessary. To correct those two parameters, two 
manoeuvres will be necessary. This strategy is costless than a coupled manoeuvre at the orbital position of 45 degrees. 
The inclination should be corrected at the apogee, which on SIMBOL-X orbit corresponds to the descending node. 
The node error should be corrected at the orbital position of 90 degrees , i.e. 1 day before or after. To limit the drift, 
the two manoeuvres should be performed as quickly as possible: the orbit determination and manoeuvre telecommand 
should be calculated and sent within 1 day around the apogee. 
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Manoeuvre amplitude necessary to correct the drift 

 
 
For instance, if a satellite has reached the HEO and the other waits 3 weeks before manoeuvring , two additional 
manoeuvres (than the apogee manoeuvres) will then be needed to correct the inclination and Ω with an over 
consumption of 13 m/s more than in the nominal case. 
 
 
 

5 STATION KEEPING 

The only requirement is to maintain the orbit phased with the MALINDI ground station. If the orbit is not maintained, 
the large variation of the eccentricity and of the inclination creates a drift in longitude of the perigee of the orbit. The 
variation on the RAAN is nearly compensated by the variations of the argument of perigee. The drift in longitude of the 
perigee is shown below, for a launch in 01/01/2016. Since it depends on the Moon position, the drift would be different 
for a different launch date. 
 

Perigee Longitude natural drift 

 
Thus, the perigee should be 
maintained to compensate for 
the mid-term perturbations. 
Otherwise the longitude of the 
perigee will drift and will no 
longer be phased with the 
ground station. 
 
Long periods of time with no 
manoeuvre can be obtained by 
choosing the right semi-major 
axis at the beginning of the 
mission. This is obtained by a 
bias on the final semi-major 
axis (w.r.t. to the theoretical 
one). Then the change in orbital 
period will compensate the 
Moon influence. 
 

The effect of the perigee maintenance manoeuvre will produce a drift in longitude of the satellite. The frequency of the 
manoeuvres depends on the margin allocated around the ground station longitude. But the �V budget for maintenance 
is independent from this margin and only depends on the orbit. A strategy that consists in doing a semi-major axis raise 
at the perigee can be applied: at the perigee, the velocity is : VPER = 5145 m/s and at the apogee: VAPO = 729 m/s. With a 

manoeuvre in the velocity direction we obtain (from Gauss equation): 
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Due to the high velocity at the perigee we can correct a large magnitude of Semi-major axis during the mission without 
much consumption. With a few manoeuvres during the mission we can achieve the maintenance of the perigee passage 
to -/+30 degrees around the Malindi ground station. Depending on the launch period and on the initial position of the 
Moon, the number of manoeuvres will be different: a bad conjunction will lead to 6 to 9 manoeuvres for a 3 year 
mission (one every 6.5 months). Then a total ∆a = 800 km will be necessary (∆V = 2.75 m/s). The number of 
manoeuvres may be less important depending on the epoch (and then of the conjunction between the Moon and the 
satellite position). Moreover, by choosing the appropriate semi-major axis and perigee longitude at the beginning of the 
mission, in most cases, only 3 to 4 manoeuvres will be necessary. 
 
For example, for a mission beginning on the 01/01/2016, we obtain the following pattern, only 3 manoeuvres are 
necessary to maintain the perigee longitude within the specifications: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Strategy for perigee longitude maintenance (from 01/01/2016) 
 

6 FORMATION FLYING 

6.1 CHARACTERISTICS 

6.1.1  Formation acquisition steps 

Satellite modes are being defined to describe the different steps of the formation acquisition, in the beginning of life, or 
in case of formation flying interruption. In the Free Flying mode, the satellites are controlled independently, the Inter 
Satellite Distance is 30 km or more, and there is no inter-satellite link. In the Secured Free Flying mode, the ISD is 
monitored through the radio frequency link. A Collision Avoidance Manoeuvre is automatically calculated onboard if 
necessary. Attitude manoeuvres are also performed for Integer Ambiguity resolution. During these first phases, rendez-
vous manœuvres are computed on ground, in order to reduce the ISD down to 500 meters. The manoeuvres are 
performed close to the apogee, using classical orbit determination information coupled with RF metrology information, 
which precision is about 1 meter. In the Formation Acquisition mode, the fine RF metrology (1 degree, 1 cm) is 
available after IAR. The formation is automatically controlled by the onboard Guidance, Navigation and Control 
subsystem, using the hydrazine thrusters as actuators. Only the ground-satellite link with the DSC is used: the MSC 
TM/TC is performed through the Inter Satellite Link. In the Coarse Formation mode, the ISD is reduced down to 20 
meters. The necessary translation manoeuvres are computed from ground. And finally, the Fine Formation mode is the 
science mode. The formation is controlled via the optic sensor, and the cold gas thrusters. The definition of the phases is 
in progress. More detailed information on each sub-phase, and the associated manoeuvre strategy should be available 
soon. 
 

6.1.2  Formation flying principles 

The MSC is in free flight, whereas the DSC maintains its position on a forced orbit relative to the MSC. The relative 
position control and the attitude control are performed by cold gas thrusters on the whole orbit. The system is in the 
Fine Formation Mode. 
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6.2 SIMULATIONS & ANALYTICAL METHODS 

We need to analyse the free evolution of the relative orbit of each satellite. A local orbital reference frame tied to the 
target is used.  Since the orbits are eccentric, the classical Clohessy-Wiltshire system of equations cannot be used. 
Lawden equations can be used. But the main drawback of Lawden’s equations is that they do not stand for the effect of 
perturbations. Indeed, in the SIMBOL-X case, the perturbations due to the differential solar pressure affecting each 
satellite can not be neglected. A method is being studied, which takes advantage of different representations of relative 
motions, the Cartesian coordinates and the differences of orbital elements [1], [2], [3]. The results for a particular case -
the non-perturbed linear motion- are already available, and the work to take into account the solar pressure is in 
progress. Assuming that the ratio between the drag coefficients (Cp.S/m) of the satellites is 2.3, the simulations show 
clearly the impact of the solar pressure on the relative motion of the satellites. 
 
Trajectory control is needed for the DSC to compensate for the perturbing forces. The first force that shall be taken into 
account is the differential solar pressure, which depends on the angle between the sun and the orbital plan, and on the 
delta of  Surface/Mass ratio between both satellites. This perturbing force increases when the delta of Surface/Mass 
ratio increases. The other force that we have to deal with is the gravity gradient. It depends on the orientation of the 
formation (LOS) w.r.t. the orbital plane; on the altitude of the formation. The gravity gradient increases when the 
altitude of the formation decreases. It also depends on the distance between the satellites. The gravity gradient increases 
when the ISD increases. 
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Example of relative motion of the DSC in the MSC local orbital reference frame 
(the distances are expressed in meters) 

 
 
The inter-satellite direction is driven by scientific requirements: it can be in plane or out-of-plane. Thus, the initial 
conditions of the study can be very different.The work on the formation flying issues is in progress. We hope to have 
interesting results to present in the coming months and years. 
 
 
 
 

X axis (target velocity) 

Z axis (downward direction) 
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