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Abstract

For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter
system, multiple gravity assists by moons could be used in conjunction with ballistic
capture to drastically decrease fuel usage. In this paper, we outline a procedure to
obtain a family of zero-fuel multi-moon orbiter trajectories, using a family of Keplerian
maps derived by the first author previously. The maps capture well the dynamics
of the full equations of motion; the phase space contains a connected chaotic zone
where intersections between unstable resonant orbit manifolds provide the template
for lanes of fast migration between orbits of different semimajor axes. Patched three
body approach is used and the four body problem is broken down into two three-body
problems, and the search space is considerably reduced by the use of properties of
the Keplerian maps. We also introduce the notion of ‘Switching Region’ where the
perturbations due to the two perturbing moons are of comparable strength, and which
separates the domains of applicability of the corresponding two Keplerian maps.

1 Introduction

For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system,
multiple gravity assists by moons could be used in conjunction with ballistic capture to
drastically decrease fuel usage.1–3 These phenomena have been explained by applying tech-
niques from dynamical systems theory to systems of n bodies considered three at a time.4–8

One can design trajectories with a predetermined future and past, in terms of transfer from
one Hill’s region to another. One of the examples we have considered is an extension of
the Europa Orbiter mission9–11 to include an orbit around Ganymede.12 More recently, we
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have considered a mission in which a single spacecraft orbits three of Jupiter’s planet-size
moons—Callisto, Ganymede and Europa—one after the other, using very little fuel.1 Us-
ing this approach, which has been dubbed the “Multi-Moon Orbiter” (MMO), a scientific
spacecraft can orbit several moons for any desired duration, instead of flybys lasting only
seconds. Our approach should work well with existing techniques, enhancing interplanetary
trajectory design capabilities for aggressive missions in planet-moon environments.

The main concern of this study is not to construct flight-ready end-to-end trajectories,
but rather to use simpler methods to determine families of multi-moon orbiter trajectories.
Such information can supply, for example, the fuel consumption versus time of flight trade-off
for a MMO mission. The fuel requirements in terms of the sum of all velocity changes (∆V )
are greatly reduced by including multiple gravity assist (GA) maneuvers with the jovian
moons. For instance, by using multiple GAs, we have found tours with a deterministic ∆V
as low as ∼20 m/s as compared to ∼1500 m/s using previous methods.9,10 In fact, this
extremely low ∆V is on the order of statistical navigation errors. By using small impulsive
maneuvers totaling only 22 m/s, a spacecraft initially injected into a jovian orbit can be
directed into an inclined, elliptical capture orbit around Europa. Enroute, the spacecraft
orbits both Callisto and Ganymede for long duration using a ballistic capture and escape
methodology developed previously.12 This way of designing missions is called the patched
three-body approximation (P3BA) and will be elaborated upon further in this paper.

We introduce the “switching region,” the P3BA analogue to the “sphere of influence.”
Numerical results are given for the problem of finding a trajectory from an initial region of
phase space (escape orbits from moon A) to a target region (orbits captured by moon B)
using no control. This can be modified to accommodate small or large controls.

We use a family of symplectic twist maps to approximate a particle’s motion in the planar
circular restricted three-body problem, derived in recent work13. The maps capture well the
dynamics of the full equations of motion; the phase space contains a connected chaotic zone
where intersections between unstable resonant orbit manifolds provide the template for lanes
of fast migration between orbits of different semimajor axes.

2 The Keplerian or periapsis Poincaré map

Each map, which we call the periapsis Poincaré map (or Keplerian map), is an update
map for the angle of periapse ω in the rotating frame and Keplerian energy K, (ωn, Kn) 7→
(ωn+1, Kn+1). The map has the form(

ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2

Kn + µf(ωn; CJ , K̄)

)
(1)

i.e., a map of the cylinder A = S1 × R onto itself.
The map models a spacecraft on a near-Keplerian orbit about a central body of unit

mass, where the spacecraft is perturbed by a smaller body of mass µ. The interaction of the
spacecraft with the perturber is modeled as an impulsive kick at periapsis passage, encap-
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sulated in the kick function f , see Figure 1(a), where (µ, CJ , K̄) are considered bifurcation
parameters.

The map captures well the dynamics of the full equations of motion; namely, the phase
space, shown in Figure 1(b), is densely covered by chains of stable resonant islands, in
between which is a connected chaotic zone. The more physically intuitive semimajor axis
a is plotted for the vertical axis instead of Keplerian energy K, where a = −1/(2K). The
kick function obtained from the map shows that the biggest kicks are recieved for a very
narrow range of periapse values. If the periapse occurs slightly ahead of the perturber, the
particle is gets a negative ‘a’ kick, and if the periapse is slightly behind the perturber, the
kick is positive. Using similar methods as above, we can construct an apoapse kick map for
the case when the spacecraft is in the interior realm, i.e. when its semi-major axis is less
than that of the perturber. In case of an apoapse kick map, to recieve the positive ‘a’ kick,
the apoapse needs to be slightly ahead of the perturber (or the periapse needs to be slightly
less than π). Similarly, for a negative ‘a’ kick, the apoapse needs to be slightly behind the
perturber (or the periapse needs to be slightly more than −π).
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Figure 1: (a) The energy kick function f vs. ω for typical values of the parameters. (b) The connected
chaotic sea in the phase space of the Keplerian map. The semimajor axis a[= −1/(2K)] vs. the angle of
periapsis ω is shown for parameters µ = 5.667 × 10−5, CJ = 2.995, ā = −1/(2K̄) = 1.35 appropriate for
a spacecraft in the Jupiter-Callisto system. The initial conditions were taken initially in the chaotic sea
and followed for 104 iterates, thus producing the ‘swiss cheese’ appearance where holes corresponding to
stable resonant islands reside. (c) Upper panel: a phase space trajectory where the initial point is marked
with a triangle and the final point with a square. Lower panel: the configuration space projections in an
inertial frame for this trajectory. Jupiter and Callisto are shown at their initial positions, and Callisto’s
orbit is dashed. The uncontrolled spacecraft migration is from larger to smaller semimajor axes, keeping the
periapsis direction roughly constant in inertial space. Both the spacecraft and Callisto orbit Jupiter in a
counter-clockwise sense.

The engineering application envisioned for the map is to the design of low energy tra-
jectories, specifically between moons in the Jupiter moon system. Multiple gravity assists
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are a key physical mechanism which could be exploited in future scientific missions (1).
For example, a trajectory sent from Earth to the Jovian system, just grazing the orbit of
the outermost icy moon Callisto, can migrate using little or no fuel from orbits with large
apoapses to smaller ones. This is shown in Figure 1(c) in both the phase space and the
inertial configuration space. From orbits slightly larger than Callisto’s, the spacecraft can
be captured into an orbit around the moon. The set of all capture orbits is a solid cylindrical
tube in the phase space, as shown in Figure 2(a) (for details of the tube computation, see,
e.g.,6). Followed backward in time this solid tube intersects transversally our Keplerian map,
interpreted as a Poincaré surface-of-section. The resulting elliptical region, Figure 2(b), is
an exit from jovicentric orbits exterior to Callisto. It is the first backward Poincaré cut of
the solid tube of capture orbits

The advantage of considering an analytical two-dimensional map as opposed to full nu-
merical integration of the restricted three-body equations of motion is that we can apply all
the theoretical and computational machinery applicable to phase space transport in sym-
plectic twist maps14. For example, previous work on twist maps can be applied, revealing
the existence of lanes of fast migration between orbits of different semimajor axes. These
lanes can be used by a spacecraft sent from Earth to the Jovian system. A spacecraft whose
trajectory just grazes the orbit of the outermost icy moon Callisto can migrate using little
or no fuel from orbits with large apoapses to smaller ones.

3 A method for determining inter-moon transfers

In order to make the search through the space of inter-moon transfers computationally
tractable, one needs to use simplified models. The forward-backward method in the restricted
three-body problem phase space is used.12,15 The influence of only one moon at a time is
considered. First, we review the P3BA and the dynamics in the circular restricted three-body
problem.

The Patched Three-Body Approximation (P3BA)

The P3BA discussed by Ross et al.1 considers the motion of a particle (or spacecraft, if
controls are permitted) in the field of n bodies, considered two at a time, e.g., Jupiter and
its ith moon, Mi. When the trajectory of a spacecraft comes close to the orbit of Mi, the
perturbation of the spacecraft’s motion away from purely Keplerian motion about Jupiter is
dominated by Mi. In this situation, we say that the spacecraft’s motion is well modeled by
the Jupiter-Mi-spacecraft restricted three-body problem. Within the three-body problem,
we can take advantage of phase space structures such as tubes of capture and escape, as well
as lobes associated with movement between orbital resonances. Both tubes and lobes, and
the dynamics associate with them, are important for the design of a MMO trajectory.

The design of a MMO of the jovian system is guided by three main ideas.1,12

1. The motion of the spacecraft in the gravitational field of the three bodies Jupiter,
Ganymede, and Europa is approximated by two segments of purely three body motion
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Figure 2: (a) A spacecraft P inside a tube of gravitational capture orbits will find itself going from an orbit
about Jupiter to an orbit about a moon. The spacecraft is initially inside a tube whose boundary is the
stable invariant manifold of a periodic orbit about L2. The three-dimensional tube, made up of individual
trajectories, is shown as projected onto configuration space. Also shown is the final intersection of the tube
with Σe, a Poincaré map at periapsis in the exterior realm. (b) The numerically computed location of an
exit on Σe, with the same map parameters as before. Spacecraft which reach the exit will subsequently
enter the phase space realm around the perturbing moon. The vertical axis is the Keplerian energy K of the
instantaneous conic orbit about Jupiter.

in the circular, restricted three-body model. The trajectory segment in the first three
body system, Jupiter-Ganymede-spacecraft, is appropriately patched to the segment
in the Jupiter-Europa-spacecraft three-body system.

2. For each segment of purely three body motion, the invariant manifolds tubes of L1 and
L2 bound orbits (including periodic orbits) leading toward or away from temporary
capture around a moon, are used to construct an orbit with the desired behaviors.
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Portions of these tubes are “carried” by the lobes mediating movement between orbital
resonances. Directed movement between orbital resonances is what allows a spacecraft
to achieve large changes in its orbit. When the spacecraft’s motion, as modeled in
one three-body system, reaches an orbit whereby it can switch to another three-body
system, we switch or “patch” the three-body model to the new system.

3. This initial guess solution is then refined to obtain a trajectory in a more accurate
four-body model. Evidence suggests that these initial guesses are very good,1 even in
the full n-body model and considering the orbital eccentricity of the moons.16

Tube Dynamics: Ballistic Capture and Escape

The tubes referred to above are cylindrical stable and unstable invariant manifolds associated
to bounded orbits around L1 and L2. They are the phase space structures that mediate
motion to and from the smaller primary body, e.g., mediating spacecraft motion to and
from Europa in the Jupiter-Europa-spacecraft system. They also mediate motion between
primary bodies for separate three-body systems, e.g., spacecraft motion between Europa and
Ganymede in the Jupiter-Europa-spacecraft and the Jupiter-Ganymede-spacecraft systems.
Details are discussed extensively in Koon et al.6,7 and Gómez et al.17

Inter-Moon Transfer and Switching Region

During the inter-moon transfer—where one wants to leave a moon and transfer to another
moon, closer in to Jupiter—we consider the transfer in two portions, shown schematically
in Figure 3, with M1 as the outer moon and M2 as the inner moon. In the first portion, the
transfer determination problem becomes one of finding an appropriate solution of the Jupiter-
M1-spacecraft problem which jumps between orbital resonances with M1, i.e., performing
resonant GA’s to decrease the perijove.1 M1’s perturbation is only significant over a small
portion of the spacecraft trajectory near apojove (A in Figure 3(a)). The effect of M1 is to
impart an impulse to the spacecraft, equivalent to a ∆V in the absence of M1.

The perijove is decreased until it has a value close to M2’s orbit, in fact, close to the orbit
of M2’s L2. We can then assume that a GA can be achieved with M2 with an appropriate
geometry such that M2 becomes the dominant perturber and all subsequent GA’s will be with
M2 only. When a particular resonance is reached, the spacecraft can then be ballistically
captured by the inner moon.6We note that a similar phenomenon has been observed in
previous studies of Earth to lunar transfer trajectories.15,18

The arc of the spacecraft’s trajectory at which the spacecraft’s perturbation switches from
being dominated by moon M1 to being dominated by M2 is called the “switching orbit.”
A rocket burn maneuver need not be necessary to effect this switch. The set of possible
switching orbits is the “switching region” of the P3BA. It is the analogue of the “sphere of
influence” concept used in the patched-conic approximation, which guides a mission designer
regarding when to switch the central body for the model of the spacecraft’s Keplerian motion.
The task of searching for trajectories that go from near-Ganymede to near-Europa Jovicentric
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Figure 3: Inter-moon transfer via resonant gravity assists. (a) The orbits of two Jovian moons
are shown as circles. Upon exiting the outer moon’s (M1’s) sphere-of-influence, the spacecraft proceeds
under third body effects onto an elliptical orbit about Jupiter. The spacecraft gets a gravity assist from
the outer moon when it passes through apojove (denoted A). The several flybys exhibit roughly the same
spacecraft/moon geometry because the spacecraft orbit is in near-resonance with the moon’s orbital period
and therefore must encounter the moon at about the same point in its orbit each time. Once the spacecraft
orbit comes close to grazing the orbit of the inner moon, M2 (in fact, grazing the orbit of M2’s L2 point),
the inner moon becomes the dominant perturber. The spacecraft orbit where this occurs is denoted E. (b)
The spacecraft now receives gravity assists from M2 at perijove (P ), where the near-resonance condition also
applies. The spacecraft is then ballistically captured by M2.

orbits can be simplified using the Keplerian Maps for the two three body systems. Given the
size of the periodic orbit around L1 of Jupiter-Ganymede-Particle(J-G-P) system, we can
find the three-body energy of the same. Similarly, given a target periodic orbit around L2
of the Jupiter-Europa-Particle(J-E-P) system, we can find its three-body energy. The small
neighbourhood around the point where J-G-P and J-E-P contour lines interect for a given
set of energies, represents the switching region. Figure 4 shows the various regions. The
search for probable trajectories is done as follows:

1). We choose a point in the switching region, call it P(a0,e0) and time t=0. Without loss
of generality, we assume the particle is currently at apojove. To uniquely define a trajectory
in the four body system, we need to specify the periapse angle w.r.t the Jupiter-Ganymede
line,wg and w.r.t the Jupiter-Europa line,we, at time t=0.

2). The chosen point will be the result of significant kick from Ganymede towards Europa.
Recall from the previous section that this implies that the previous apoapse should have
occurred with the periapse slightly more than −π w.r.t J-G line. Also, we want to be
able to escape the switching region and go deep into the J-E-P region within the next few
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iterations. Again, this implies that the next periapse should occur with periapse sligthly
greater than zero w.r.t J-E line, which will lead to a negative ‘a’ kick. These two conditions
are used to narrow down the values of the two unknowns, wg and we. Then, using the full
four-body equations we can find a set of values of these 2 unknowns that lead to entry into
switching region from J-G-P region and exit from the switching region to J-E-P region, in
a few iterations. This set is labelled Sw. Recall that the path of the particle in this region
is called the “switching orbit”. The first forward iterate at periapse into the J-E-P region
is labelled as P1f and the first back iterate at apoapse into the J-G-P region is labelled as
P1b.

3). Now we need to search for the conditions from the set Sw that will lead to a successive
decrease in the semi-major axis when iterated forward, and will lead to increase in the semi-
major axis value when iterated back. Now this task of iterating in the J-E-P and J-G-P
regions, can be efficiently handled by the Keplerian maps. For each 2-tuple (wg,we) and
a point P(a0,e0) in the switching region, we iterate forward the corresponding point P1f

using the Periapse map which is valid only in the J-E-P region, and iterate backward the
corresponding point P1b using the Apoapse map, which is valid only in the J-G-P region.

4). Once we have found out which values among the set Sw will result in an Jovicentric
orbit from near-Ganymede to near-Europa, we use the full four-body equations to refine
and tweak the intial guess. Also, we can cycle through various nearby (a,e) values in the
switching region to get appropriate trajectories.

Figure 4: Schematic trajectory in a-e plane showing various regions. Various apoapses/periapses are
marked ’x’

Numerical results

Figure 5(a) shows the time history of the semi-major axis for a trajectory obtained by the
method described above. Figure 5(b) shows the same trajectory plotted in the ‘a-e’ plane.
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Note that for most part, it lies on the three-body-energy contours of one of the two three-
body systems. Figures 5(c) and (d) show the ’Jacobi Constant’ time history for the J-G-P
and J-E-P system, respectively.

Its important to note here that the trajectory doesn’t seem to be time optimal, since
it spends a long time in certain resonances before moving on to other resonances. Lobe
dynamics is the underlying mechanism by which transport across different resonances takes
place, and we can use it to devise appropriate control strategies which can reduce the time
of flight significantly.

Resonant Structure of Phase Space, Lobe Dynamics and Use of Control

Solutions to the four-body problem which lead to the behavior shown schematically in Figure
3 have been found numerically and the phenomena partially explained in terms of the P3BA.1

The switching region between neighboring pairs of moons can only be accessed by traversing
several subregions of the three-body problem phase space, known as “resonance regions,”
where the resonance is between the spacecraft orbital period and the dominant moon’s orbit
period around Jupiter, respectively.Early investigation into the phase space of the restricted
three-body problem using Poincaré sections has revealed a phase space consisting overlapping
resonance regions.15,19 This means that movement amongst resonances is possible.

Lobe dynamics provides a general theoretical framework, based on invariant manifold
ideas from dynamical systems theory, for discovering, describing and quantifying the trans-
port “alleyways” connecting resonances.20 A resonance region and the lobes of phase space
associated with movement around it are shown in Figure 6 on a Poincaré section in quasi-
action-angle coordinates. The lobes are defined using the stable and unstable manifolds
associated to unstable resonant orbits. Starting in one of the lobes above the resonance, an
initial condition can get transported to below the resonance, and vice versa. This corresponds
decrease or increase in the spacecraft’s semimajor axis for zero fuel cost.

Lobe dynamics tells us the most important spacecraft trajectories, i.e., the uncontrolled
trajectories which traverse the resonance regions in the shortest time and serves as the
underlying mechanism for uncontrolled spacecraft trajectories, such as the one shown in
Figure 7(a). An initial condition in the upper right hand side of Figure 7(a) moves through
the phase space as shown, jumping between resonance regions under the natural dynamics
of the three-body problem, i.e., at zero fuel cost. Figure 7(b) shows a schematic of the
corresponding trajectory in inertial space.

Essentially, the lobes act as templates, guiding pieces of the tube across resonance regions.
We can numerically determine the fastest trajectory from an initial region of phase space
(e.g., orbits which have just escaped from moon M2) to a target region (e.g., orbits which
will soon be captured by a neighboring moon M2). Using small control inputs at appropriate
points (the search being guided by Lobe dynamics computations), we can reduce the time
taken for the inter-moon transfers drastically. Quite possibly, this task would be made easier
by the use of the maps mentioned in this paper and will be taken up in the future. The
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(c) (d)

Figure 5: Trajectory found using the Patched Three Body Approximation. a). Semi-major axis time
history b). Trajectory in ’a-e’ plane. c)Jacobi Constant for J-G-P system d). Jacobi Constant for J-E-P
system

problem could be defined by a family of controlled Keplerian maps F : A× U → U

F

((
ωn

Kn

)
, un

)
=

(
ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2

Kn + µf(ωn) + αun

)
(2)

where un ∈ U = [−umax, umax], umax � 1, and the parametric dependence of f is understood.
The term α = α(CJ , K̄) is approximated as constant. Physically, the control could be
modeled as a small impulsive thrust maneuver performed at periapsis n changing the speed
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Figure 6: Schematic of a resonance region and the lobes responsible for transport near that region. Also
shown are the stable elliptical islands that are disconnected from the chaotic sea.

by un. This changes Kn by an energy αun in addition to the natural dynamics term µf(ωn).
This yields the ∆V vs. TOF trade-off for the inter-moon transfer between Ganymede and
Europa. The important fact that Keplerian map captures the topology of the trajectories
will allow more freedom to optimization schemes. Optimization at the level of discrete map
has the capability of finding topologically new trajectories. The study of control in this
framework may also shed light on the mechanism by which some minor bodies get handed
off between planets21–23.

4 Discussion and conclusions

We have outlined a method to determine fuel optimal trajectories using multiple-gravity
assists. Our main aim has been to describe a method that can be used to efficiently search
the phase space for such trajectories. Using Picard’s method of successive approximations,
we derive a family of two-dimensional symplectic twist maps to approximate a particle’s
motion in the planar circular restricted three-body problem with Jacobi constant near 3.The
maps model a particle on a near-Keplerian orbit about a central body of unit mass, where
the spacecraft is perturbed by a smaller body of mass µ. The interaction of the particle with
the perturber is modeled as an impulsive kick at periapsis(or apoapse) passage, encapsulated
in a kick function f . The maps are identified as an approximation of a Poincaré return map
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Figure 7: Jumping between resonance regions leads to large orbit changes at zero cost. An
initial condition in the upper right hand side of (a) moves through the phase space as shown, jumping
between resonance regions. In (b), a schematic of the corresponding trajectory of a spacecraft P in inertial
space is shown. Jupiter (J) and one of its moons (M) are also shown schematically.

of the full equations of motion where the surface of section is taken at periapsis(apoapsis),
mapping each periapsis(apoapsis) passage to the next in terms of the azimuthal separation
of the particle and perturber ω and the Keplerian orbital energy of the particle about the
central body. The map captures well the dynamics of the full equations of motion; namely,
the phase space is densely covered by chains of stable resonant islands, in between which
is a connected chaotic zone. The chaotic zone, far from being structureless, contains lanes
of fast migration between orbits of different semimajor axes. The advantage of having an
analytical two-dimensional map over full numerical integration is that we can apply all the
machinery of the theory of transport in symplectic twist maps. We apply our Keplerian map
to the identification of transfer trajectories applicable to spacecraft transfers in a planet-
moon system. The use of subtle gravitational effects described by the map may be feasible
for future missions to explore the outer planet moon systems where the timescale of orbits
is measured in days instead of years and low-energy trajectories may be considered for inter-
moon transfers. Physically, particles in the regime we study undergo multiple gravity assists
of a different kind than the hyperbolic flybys of, say, the Voyager mission. The gravity assists
we study are for particles on orbits with semimajor axes greater than the perturber’s and
whose periapsis passages occur close to but beyond the sphere of influence of the perturbing
body. The effect of gravity assists is largest for particles whose passages occur slightly behind
(resp. in front of) the perturbing body, resulting in a larger (resp. smaller) semimajor axis.
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This makes the apoapsis distance grow (resp. shrink) while keeping the periapsis distance
relatively unchanged.

Low-thrust trajectories will be increasingly used in future space missions, e.g., outer
planet moon tours. The trajectories required for these missions are complex and challeng-
ing to design. Strong multi-body effects combined with low-thrust control of capture and
escape orbits around moons make trajectory generation difficult, to say nothing of optimiza-
tion. Individual complete trajectories require a great deal of time to construct. To speed
up the early design phases, we intend to combine the tools mentioned here for low-order
estimates of low-thrust trajectories in order to obtain approximate propellant and time of
flight requirements.
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