REPLICA-BASED CRACK INSPECTION

John A. Newman, Stephen W. Smith, and R.S. Piascik
NASA Langley Research Center, Hampton, Virginia

Scott A. Willard
Lockheed Martin Space Operations, Hampton Virginia

David S. Dawicke
AS&M, Hampton, Virginia
INTRODUCTION

• Cracks found in Space Shuttle Main Engine LH$_2$ feedline flowliners (2002)
 – Ranged from 0.1 inch to 0.6 inch long
 – Weld repaired, polished, and recertified for flight
 – NDE: no cracks >0.075 inches long exist

• Revisited in 2004
 – Unable to show flight rationale with a crack 0.075 inches long
FLOWLINER DESCRIPTION

Orbiter aft

Engine cavity

LH₂ feedline

Flowliners
FLOWLINER DESCRIPTION

- LH$_2$ consumption
 - 385,000 gallons
 - 8.5 minutes
 - Each engine consumes 15,000 gal/min
 - Flow induced stress cycles in kHz range
 - Millions of stress cycles per flight
PROBLEM

- Analysis: unsafe conditions may occur for multiple cracks > 0.005 inch long
- Improved eddy current unable to detect 0.005-inch-long cracks
- Need an NDE method able to find cracks down to 0.005 inch long
PROPOSED SOLUTION

• Use surface replicas as an NDE method
• Surface replicas used for decades to monitor small cracks (<0.005 inch)
• Recently-developed silicone-based replicas better suited for inspection
EXPERIMENTAL PLAN

• Feasibility study:
 – Generate fatigue cracks in laboratory specimens
 – Compare crack lengths from
 • Silicone-based replicas (zero load)
 • Acetate-tape replicas (maximum load)
 • Destructive exam (zero load)

• Determine reliability of silicone-based replicas relative to acetate-tape replicas
FATIGUE TESTING

• Specimens used to simulate flowliner slot geometry and stress state
 – $P_{\text{max}} = 3.4$ kips, $R = 0.1$

• Testing interrupted periodically for slot surface replication
 – Acetate-tape replicas
 – Silicone-based replicas
REPLICA ANALYSIS

- Replica preparation
 - Sectioned in 4 pieces
 - Grounded on metallic slide
 - Coated with metallic material
- Examined in an SEM
- Initial scan at 50-100X
 - Surface finish, scratches, etc.
- Crack scan at 400-700X
EXPERIMENTAL RESULTS

- Crack found after 50,000 cycles
 - Surface crack
 - 0.008 inches long
CRACK LENGTH COMPARISON

Acetate replica (loaded) – 163 µm

Silicone replica (no load) – 199 µm

Specimen (no load) – 194 µm
EXPERIMENTAL RESULTS

• 3 cracks found after 50,000 cycles
 – 2 surface cracks
 – 1 corner crack

Crack #1 – 0.012”
Crack #2 – 0.004”
Crack #3 – 0.001”
CRACK LENGTH COMPARISON
(Crack #1)

Acetate replica (loaded) – 280 µm
Silicone replica (no load) – 343 µm
Specimen (no load) – 350 µm
CRACK LENGTH COMPARISON
(Crack #2)

Acetate replica (loaded) – 81 μm
Silicone replica (no load) – 104 μm
Specimen (no load) – 110 μm
CRACK LENGTH COMPARISON
(Crack #3)

Acetate replica (loaded) – 20 µm
Silicone replica (no load) – 26 µm
Specimen (no load) – 27 µm
CRACK DETECTION AFTER POLISHING

• Flowliner slots were polished after cracks detected in 2002
• One orbiter has not flown since flowliner slot polishing
• Concern about post-polishing crack detection
 – Crack mouth potentially filled with material
POLISHED CRACK DETECTION

Initial crack

After polishing

After polishing + 1 load cycle
SURFACE FINISH QUALITY

- Pit-like damage from punching not completely removed by polishing
- At least 7 fatigue cracks initiated by 50,000 cycles
- Quality of surface finish is important

200 µm
OTHER TYPES OF DAMAGE

- Pit damage
- Tool mark
- Abrasion and scratches
- Tool marks/dents
REPRODUCIBILITY

- Concern: Repeated replication may fill crack mouth
- Repeated replicas taken on several cracked specimens
 - Example: 0.006-inch-long surface crack
- No degradation in crack detection
APPLICATION

• Replica-based inspection method approved for use on flight hardware
• Found 55 cracks in 3 orbiters
 – Ranging from 0.004 to 0.040 inches
• Confirmed repair by second round of replicas
Replica-based crack inspection may be well-suited for other applications:
- Improved crack detection could make damage tolerance life management practical for additional components:
 - Rotorcraft?
 - Propellers?
 - HCF engine components?
PROS AND CONS

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Much better resolution than traditional NDE</td>
<td>• More labor intensive than traditional NDE</td>
</tr>
<tr>
<td>• Little training required to make replicas</td>
<td>• Limited to surface flaws</td>
</tr>
<tr>
<td>• Limited equipment needed in field</td>
<td>• Dependent on surface condition</td>
</tr>
<tr>
<td></td>
<td>• Limited to small areas</td>
</tr>
<tr>
<td></td>
<td>• No immediate feedback</td>
</tr>
</tbody>
</table>
SUMMARY

• Analysis of silicone-based replicas
 – Find cracks below 0.005 inches
 – Find pits/defects down to 0.001 inches

• Method approved for use on flight hardware
 – Found 55 cracks in 3 orbiters (684 slots)
 – Identified unacceptable levels of damage
 – Repair confirmed by second round of replicas