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Abstract 
 
Research in wireless sensor network technology has 
exploded in the last decade. Promises of complex and 
ubiquitous control of the physical environment by 
these networks open avenues for new kinds of science 
and business. Due to the small size and low cost of 
sensor devices, visionaries promise systems enabled 
by deployment of massive numbers of sensors working 
in concert. Although the reduction in size has been 
phenomenal it results in severe limitations on the 
computing, communicating, and power capabilities of 
these devices. Under these constraints, research 
efforts have concentrated on developing techniques 
for performing relatively simple tasks with minimal 
energy expense assuming some form of centralized 
control. Unfortunately, centralized control does not 
scale to massive size networks and execution of 
simple tasks in sparsely populated networks will not 
lead to the sophisticated applications predicted. These 
must be enabled by new techniques dependent on 
local and autonomous cooperation between sensors to 
effect global functions. As a step in that direction, in 
this work we detail a technique whereby a large 
population of sensors can attain a global goal using 
only local information and by making only local 
decisions without any form of centralized control. 
 
 
1. Introduction 
 

The dream of ubiquitous machinery was born of 
the Industrial Revolution: that machinery could 
eventually be developed to service man's needs, 
particularly replacing man’s direct participation in 
physical work for provision of food, clothing, 

housing, and other necessities. The realization of this 
dream has progressed for several centuries but has 
taken a revolutionary leap through the invention of 
electronic computers, which facilitate more 
automation of machines. Futurists have long predicted 
that machines would eventually communicate and 
cooperate with each other to accomplish 
extraordinarily complex tasks without human 
intervention [20]. 
 

While futurists long dreamed of machines working 
with other machines, a giant step towards realization 
of this dream may be credited to a DARPA sponsored 
program, SmartDust, originated in the late 1990’s 
[11,26]. The title of the program creatively described 
its goal: to make machines with self-contained 
sensing, computing, transmitting, and powering 
capabilities so small and inexpensive that they could 
be released into the environment in massive numbers.  
Following their work, we define a sensor network as 
follows: A sensor network is a deployment of massive 
numbers of small, inexpensive, self-powered devices 
that can sense, compute, and communicate with other 
devices for the purpose of gathering local information 
to make global decisions about a physical 
environment. 
 

The National Research Council's (NRC) 
Committee on Networked Systems of Embedded 
Computers published a report [14] defining the 
concept of the embedded network, EmNet, as a 
network of heterogeneous computing devices 
pervasively embedded in the environment of interest. 
Since that time, the term wireless sensor network 
(sensor network, for short) has evolved to describe 
such systems and research abounds in academic and 
commercial environments. Improvements in Micro 
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Electro-Mechanical Systems (MEMS) technology is 
producing, at rapidly decreasing cost, smaller and 
smaller self-powered devices that can sense, compute, 
calculate, and communicate [26,28]. These devices 
have come to be called sensor motes [27] and serve as 
nodes in a sensor network. As these new motes are 
severely energy constrained, they cannot transmit 
long distances. Much current research is in how to 
form and execute multi-hop networks to send 
information to and from the network motes where no 
single mote need transmit any farther than to nearby 
motes. 
 

As technology improves, computing and 
communicating capabilities are expected to improve 
at an accelerating rate and new techniques for 
supplying energy will significantly reduce the low 
power constraint [1,20]. Increased capabilities will be 
possible and futurists predict that societies of 
machines will evolve to be autonomous, cooperative, 
fault-tolerant, self-regulating, and self-healing [20]. 
Rather than adapting conventional techniques of 
centralized computer control, new techniques 
dependent on local cooperation among network nodes 
will lead to self-sustaining communities of machines 
with emergent behavior that autonomously operate 
and adapt to changes in the environment. This 
evolution so parallels the development of life on Earth 
that living systems provide models for system design. 
 

Due to the limited resources of available motes, 
most current implementations of sensor networks are 
composed of a small number of motes that collect 
simple sensory values and report these values to a 
central computer [5,13]. In Section 2, we describe 
several current implementations and compare their 
similarities. These conventional techniques are 
insufficient to fulfill the full potential of sensor 
networks. Centralized control of the sensor network, 
by definition, will not scale to large numbers of 
motes. As the size of the network increases, more and 
more demand is placed on the central controller and, 
in a multi-hop network, motes nearest the central 
controller will be bottlenecked passing messages to 
and from other motes further away. If the sensor 
network is to interact with the environment in ways 
predicted, it must effect the environment as well as 
sense information about it. We believe to reach its full 
potential, the sensor network must behave as a 
community of organisms, where individual motes 
function based on local information, making local 
decisions that combine across the sensor network to 
impact global functions. In Section 3, we describe 
how living systems may serve as models for 
communities of motes in a sensor network and 

describe how cellular automata may be used to 
simulate a sensor network. In Section 4, we describe 
how a simple global function, the calculation of an 
average value of randomly distributed values among 
motes in a sensor network, can be accomplished by 
the communal cooperation of motes where they are 
limited to local information and act only on their local 
environment. In Section 5, we conclude with a 
comparison of current implementations and our 
methods.  
 
2. Current Sensor Network 
Implementations 
 

In the past few years we have witnessed the 
deployment of sensor networks in support of a 
growing array of applications ranging from smart 
kindergarten [17,19,23], to smart learning 
environments [8], to habitat monitoring [18,24], to 
environment monitoring [6,7,13], to greenhouse and 
vineyard experiments [5,10], to helping the elderly 
and the disabled [8], among others. These prototypes 
provide solid evidence of the usefulness of sensor 
networks and suggest that the future will be populated 
by pervasive sensor networks that will redefine the 
way we live and work [1,4]. It is, thus, to be expected 
that in the near future, in addition to the examples 
above, a myriad of other applications including 
battlefield command and control, disaster 
management and emergency response, will involve 
sensor networks as a key mission-critical component. 
 

A closer examination of current implementations 
of sensor networks reveals both successes and 
limitations. In the spring of 2002, researchers at 
University of California, Berkeley (UCB), 
collaborated with the College of the Atlantic in Bar 
Harbor to install a sensor network on Great Duck 
Island, Maine. The initial application was to monitor 
the microclimates of nesting burrows of the Leach's 
Storm Petrel, and, by disseminating the data 
worldwide, to enable researchers anywhere to non-
intrusively monitor this sensitive wildlife habitat 
[18,24]. The sensor motes were placed in the habitat 
and formed a multi-hop network to pass messages in 
an energy efficient manner back to a laptop acting as 
a sink. The data was intermediately stored at the sink 
and eventually passed by satellite to servers in 
Berkeley, CA, where it was distributed via the 
Internet to any interested viewer. The sensors 
measured temperature, humidity, barometric pressure, 
and mid-range infrared by periodically sensing and 
relaying the sensed data to the sink. The largest 
deployment had 190 nodes with the most distant 



 3

placement approximately 1000 feet from the nearest 
sink. 
 

Other implementations demonstrate similar 
capabilities. In the SmartDust demonstration at the 
Marine Corps Air/Ground Combat Center, 
Twentynine Palms, CA [29], six sensor motes were 
dropped from a Unmanned Aerial Vehicle (UAV) 
along a road. These motes self organized by 
synchronizing their clocks and forming a multi-hop 
network. They magnetically detected vehicles passing 
and reported the time of the passing. Using 
information collected from all motes, velocity of 
passing vehicles was computed. 
 

In August 2001, researchers from UCB and the 
Intel Berkeley Research Lab demonstrated a self-
organizing sensor network to those attending the 
kickoff keynote of the Intel Developers Forum. 
Several students each brought on stage a wireless 
sensor mote, activating it independently. As the motes 
were initiated, their icons appeared on a display with 
lines connecting all motes that could “hear” each 
other and highlighted lines depicting a multi-hop 
routing structure over which sensor data could be 
transmitted to a central collector, a PC. In a second, 
large-scale demonstration of the networking 
capability, the quarter-sized motes were hidden under 
800 chairs in the presentation hall and simultaneously 
initiated forming what was described as, “… the 
biggest ad hoc network ever to be demonstrated” [12]. 
 

The FireBug system [5,6] is a network of GPS-
enabled, wireless thermal sensors motes, 
communicating through a control layer for processing 
sensor data, and a command center for interactive 
monitoring and control of the sensor network. The 
FireBug network self-organizes into clusters where 
cluster leader motes act as sinks, receiving sample 
data from cluster members and brokering commands 
to these members. The controller is a personal 
computer running the Apache web server interfaced 
with MySQL using PHP. The FireBug Command 
Center allows user interaction for controlling the 
FireBug network and displays real time changes in the 
network. 
 

These current sensor network implementations 
represent pioneering work that demonstrates the 
enormous promise of the sensor network concept. 
They share a number of similarities. Most of the 
motes used are similar in capability to those used in 
the UCB-Intel large-scale demonstration [12]: a 4 
MHz microprocessor with 16 KB of flash instruction 
memory, 512 bytes of SRAM, a 256 KB EEPROM 

for secondary storage, and a 10 Kbps radio 
transmitter. Each network has homogeneous motes 
although the motes may be multifunctional having 
multiple sensing capabilities and serving other 
functions such as routers, cluster leaders, etc. PCs 
serve as sinks for interfacing with the world outside 
the sensor network. However, all are passive, sensing 
systems (i.e., no effectors) observing the environment 
and reporting these observations to a central authority 
where decisions will be made often by human 
observers. 
 

However, sensors for measuring the parameters in 
these implementations and the ability to feed their 
measurements into a computer are not new. What was 
novel about these approaches is the small size of the 
sensors and their wireless networking connection. 
This allowed easy and inexpensive installation of 
these motes directly into the environment. Using 
wireless communication, motes do not require an 
expensive communication infrastructure and expense 
does not increase exponentially with the number of 
motes as in wired networks (i.e., more motes would 
need more wire). Most importantly, both the small 
size of the motes and the wireless network enabled an 
installation that was unobtrusive compared with what 
was previously possible. An obstructive installation 
required by larger equipment may interfere with the 
ecosystem in a biological application.  In other 
applications, the introduction of wiring infrastructure 
can delay projects due to intrusions into other 
infrastructure (i.e. may require additional approval or 
may interfere with design), and therefore be 
unacceptable.  
 

Current sensor networks are modeled after 
conventional computing networks under centralized 
control and involve a small number of motes 
(between 6 and 800). It is, therefore, not clear that 
they provide a credible approximation of the massive 
deployment envisioned by the proponents of sensor 
networks [1,4,11,26]. Moreover, in these designs, the 
mote’s behavior is predetermined and a central 
authority otherwise manages its collected results. 
Motes appear to be working together, though only in 
simple ways: multi-hop networks are formed and 
clocks are synchronized.  
 

An examination of the method used for clock 
synchronization in the Twentynine Palms 
demonstration [29] reveals that it closely models the 
behavior of biological singletons such as bacteria. 
Each mote periodically broadcasts its current time. 
Each mote that receives the broadcast updates its time 
if the broadcast value is greater than its own. Though 
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effective, are the motes really working together? Or 
are they singletons following simple rules: they 
periodically broadcast their time and they listen for 
the broadcast of packets containing time values. Do 
they know or care that other motes exist? From the 
individual application of these simple rules, a simple 
behavior for the group emerges: their times are 
synchronized. However, neither the individual or 
group behavior can be described as cognitive. 
 

We believe that in order to scale to massive 
deployment, sensor networks benefit from lessons 
learned from the way biological ecosystems are 
organized, with motes acting as organisms interacting 
locally with the environment in a way that produces 
global effects that facilitate a functional and 
sustainable sensor network. Along this line of 
thought, our work centers on three fundamental 
characteristics of future sensor networks that are not 
demonstrated by the described implementations: 
1. We are developing techniques that do not 

bottleneck by dramatically increasing the number 
of motes in a sensor network. 

2. We demonstrate motes that do more than sense a 
value and report that value. Our motes are 
designed to be asynchronously autonomous, 
learning from their environment to make better 
decisions. 

3. We design sensor networks that do not require 
centralized control.  

 
3. A Bio-mimetic Model for a Sensor 
Network 
 

Sensor motes can be considered cells of tissue (for 
homogeneous motes) or organs (for heterogeneous 
motes) in a multi-cellular organism or they may be 
considered organisms within a community. In either 
case, they are endowed with genetic material: an 
initial state and rules by which they interact with the 
environment. Both state conditions and the rules may 
or may not change as the mote interacts with the 
environment. Additionally, the mote may “remember” 
its interaction with the environment by storing 
information in memory. Memory and the use of 
memory to change state or rules are considered 
learning. Changing state conditions or rules based on 
learning demonstrate some level of cognition. 
 

Our goal is to demonstrate how learning and 
cognition can benefit the functionality of a sensor 
network. In particular, we are interested in using these 
attributes to enable local decisions from local 
information that effect a global result. Limiting 

decisions to localities is important for two reasons in 
sensor networks: 

 
• Scalability: If all motes must be contacted 

and/or instructed for a function, then the 
communication and data management 
overhead grow substantially with the number 
of motes in the deployment. Thus, larger 
deployments become increasingly costly and 
problematic. 

 
• Autonomy and intelligence: local decisions 

allow distributed control. Distributed control 
through local decisions provides a natural 
redundancy affording fault tolerance (i.e., if 
some motes fail, others will continue to 
make decisions). As each mote is operating 
autonomously, they may learn differently 
and respond differently just as organisms do. 
Some may be more successful than others 
allowing evolution to operate. 

 
Current implementations of sensor networks 

represent singleton organisms (e.g. bacteria) operating 
with no knowledge of others in the community: they 
sense and report. They do not know why they are 
doing this, they do not know what others are doing, 
and they do not know the effect their actions have on 
the community. Our research is in demonstrating 
progressively “higher” life forms for sensor networks. 
Initially, motes in our designs go beyond singleton 
behavior: they have memory, are aware of their 
neighbors, and make local decisions. Our goal is to 
design increasingly capable motes that will cooperate 
with one another as a society with each mote 
operating in its own interest, yet contributing 
positively to the community. 
 
 
 
 
 
 
 
 

Figure 1: Illustrating the neighborhood of a cell 
 

We use cellular automata to simulate sensor 
networks operating as organisms in an ecosystem. A 
cellular automaton represents, in most ways, a 
distribution of sensor motes throughout a geographic 
region. As illustrated in Figure 1, each internal cell is 
surrounded by 8 neighbor cells. Border cells have 3 or 
5 neighbors. Neighbor cells represent those sensor 
motes that can receive a transmission from a cell. 

Neighbor 
Mote

Selected Mote

Non-Neighbor 
Mote

Cellular Automaton 
Sensor Network

Selected Cell 

Neighbor Cell
Non-Neighbor 
Cell 

Comment [CSD1]: The text  “Neighbor Mote” 
and “Non-Neighbor Mote” on the right part of the 
figure are overlapped  
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Thus, the regularity of the grid represents a logical 
indication of physical proximity. Selectively, 
neighbors may not be limited to the eight adjacent 
cells. Increasing the number of cells that can receive 
transmissions from the selected cell is specified by the 
neighbor radius. A radius of 2 would include the 8 
adjacent cells plus the 16 cells adjacent to these 
neighbors. The only limitation of this model is that 
the number of neighbors is fixed for a given radius, 
but this can be changed by disabling some of the 
neighbors. 
 
4. Aggregating Sensed Data: Average 
Calculation 
 

There are, essentially, two ways in which data 
sensed by the motes can be aggregated. In a centrally-
controlled network, data aggregation is a two-stage 
process: in the first stage the motes forward the data 
collected to the sink. Some of the data is fused en 
route but the final responsibility for aggregation rests 
with the sink. In the second stage, the aggregated 
result is broadcast back to the network. Though 
straightforward, this method does not scale well. By 
contrast, in a truly distributed system, as is the case in 
an autonomous sensor network, the motes cannot rely 
on the sink to perform the aggregation. Instead, the 
aggregation must be performed in-situ by the sensors 
themselves. To illustrate, suppose a distributed system 
has capabilities to both sample the temperature of its 
immediate environment and to set that temperature. 
The goal is for each mote to maintain the average 
temperature throughout the domain. As the 
temperatures in localities drift, this average value 
must be recalculated and localities reset to the 
average. 
 
More generally, it is often the case that a community 
must reach a consensus, that is, an agreement on a 
common state when individuals are in different states 
from some domain of states. An example of a 
consensus problem is clock synchronization. 
Synchronization is a straightforward task in a 
centralized-control system: here the central entity 
dictates the common time. The situation is vastly 
different in a distributed system.  Even if we assume 
[15,25] that at initialization, all clocks in a network of 
distributed systems may be set to a common value, 
over time, due to clock drift, the motes in the network 
will no longer have a common value. The system 
must have a procedure to periodically return to a 
consensus on a common clock setting for each mote. 
While a number of solutions to the aggregation and 
synchronization problem have been proposed in the 
literature [1,2,3,8,15,16,21,22] they were either 

designed for sensor networks of small size or have a 
centralized flavor. 
 

One of the key contributions of this work is to 
show that fully distributed data aggregation can be 
performed in a scalable fashion in massively deployed 
sensor networks. A cautionary note is in order, 
however. For real applications such as the above, the 
goal is not to have the common value equal across the 
system. Especially because the values are constantly 
changing, it is acceptable for the value at each node to 
be within a given tolerance of the desired common 
value. For such applications as clock synchronization, 
this tolerance must be quite low, but for applications 
such as the temperature alignment, a larger tolerance 
may be acceptable [1,3]. 
 

As our cellular automaton is defined such that each 
cell can only transmit to its immediate neighbor, on 
average, data collected by each cell must pass 
approximately half the span of the grid. A suggested 
approach to conserve mote energy is for the sink to 
broadcast a return message to all motes. But this 
method does not scale well as the power of the sink’s 
transmission would have to grow with the size of the 
sensor network distribution. Thus, we assume return 
messages must be sent back through the multi-hop 
network and the cost in hops on average increases 
with the span of the grid. Figure 2 depicts this 
expansion for grids up to 1000 x 1000.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Illustrating the complexity growth for 
centralized averaging 

 
However, this is not the worst problem with the 

centralized approach. It was recently noticed by 
Wadaa et al. [25] as well as by other workers that in a 
centrally controlled sensor network, the cells closer to 
the sink must serve as routers for many mote-to-sink 
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paths, depleting their energy budget much faster than 
other motes in the network. Indeed, Wadaa et al. [25] 
have noted that by the time the motes close to the sink 
have expended all their energy some other motes in 
the sensor network still have about 80-90% of their 
original energy budget. This uneven energy depletion 
effectively creates an energy hole around the sink, 
severely curtailing network longevity. Figure 3 
illustrates the uneven energy depletion problem. In 
our cellular automation, the cell closest to the sink 
must relay messages to and from every cell in the grid 
and their energy budget will decrease rapidly relative 
to cells further away. The longevity of the network is 
then dependent on the rapidly depleting budget of the 
cells closest to the sink. Indeed, in Figure 3, all black 
cells must pass messages through a single cell in the 
top row. 
 

Our objective is for the sensor network to calculate 
an average value across the network without any 
mote, or any central authority, ever knowing all the 
data values. Suppose motes are randomly distributed 
and that each collects a value relevant to some 
characteristic of its locale. An average value must be 
calculated for the entire network and this average 
value must be assigned to each mote. The challenge is 
to attain this goal with all cells requesting/dictating 
information only from/to their neighbors.  
 

We now give an informal description of our 
algorithm. Assume that the data value collected by 
each mote is converted to a real number - a color - in 
the range [0, 255]. Upon deployment, the motes are 
endowed with genetic material (see [15,25] for 
details): a status (active or inactive) and a 
transmission time within a specified time period. 
 
 
 
 
 
 
 

Figure 3. Illustrating the energy-hole problem 
 

When the algorithm begins, each mote starts its 
own clock. The transmission time assigned is some 
time step within the time period (e.g., one mote may 
transmit at step 3, another at step 18, but all motes 
will transmit some time during the time period. 
Because the transmission time for each mote is a 
random number, there is no guarantee that two or 
more motes will ever transmit at the same time. If two 
motes are at a neighbor radius greater than 3, they 
may execute the algorithm simultaneously, as the 

results of their calculations are independent of each 
other. If the radius is less than 3, the result of 
calculations is order-dependent. In this case, 
simultaneous transmissions will cause collisions, thus 
a MAC layer protocol is assumed to decide cellular 
execution order. To simulate this control, all motes 
(i.e. cells) selected at the same transmission time are 
executed in random order. The order is randomized 
anew with each time step. The transmission time is 
fixed at deployment (being part of the genetic 
material), but the execution order in each time step is 
a “function of the environment” and may change each 
time step.  
 

Setting the time period to a value larger than the 
size of the total number of cells increases the 
probability that each cell will transmit independently. 
This provides for the most repeatable simulation as a 
given color distribution with a given transmission 
time assignment will execute exactly the same each 
time, provided none transmits simultaneously. This 
does increase the execution time of the simulation, as 
only one cell is selected each transmission time. 
Reducing the time period speeds the simulation but 
introduces more randomness for each time step. 
Setting the time period to 1 guarantees that all cells 
will be selected in that time step, though in new 
random order for each period. The results are very 
similar regardless of the length of the time period; 
specifying a longer time period just requires more 
time during which nothing happens. Even with MAC 
layer negotiations, by this method each cell is acting 
asynchronously and autonomously. Because the time 
and cost of reaching a global decision is a function of 
color distribution, transmission time assignment, and 
execution order in each time step, we ran multiple 
executions varying all three parameters and averaged 
the results. 
 

When a cell reaches its transmission time within 
the time period, it is selected for action. If its status is 
inactive, it does nothing. Otherwise, if its activity 
status is active, it begins a series of transactions. A 
transaction is either a request for information from a 
neighbor (e.g, what is your color?) or a specification 
given to a neighbor (e.g., set your color to 134). 
Transactions are significant because they require 
radio transmissions, typically the most costly activity 
of a mote. If each neighbor’s color is equal to the 
color of the selected cell, it sets its status to inactive 
and will not participate again when selected until it is 
reactivated. An inactive status is significant in that no 
transactions occur when a selected cell is inactive. If 
any neighbor’s color is not equal to the selected cell’s 
color, the selected cell computes the average for the 

Sink
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neighborhood and sets itself and all neighbors to this 
value. During this process, if any neighbor is inactive, 
it is reactivated as it now has a color different from 
some of its neighbors. The simulation continues until 
all cells are set to inactive. Thus, the simulation ends 
using only local information; no global control is 
required. The algorithm can be proven to converge in 
a finite number of time periods (details are omitted 
here), and as can be seen from simulation results, it 
actually converges quickly. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Initial distribution of colors for color 
averaging 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Distribution of colors after the first time 

period 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6: Distribution of colors after 10 time 

periods 
 
Figure 4 depicts an initial distribution in a cellular 

automaton with a 30 x 50 grid of cells showing a 

random distribution of colors. Figure 5 depicts the 
color change after the first time period (i.e. all cells 
have been selected once). Notice that after a few 
iterations the cells are much closer to the same color. 
Figure 6 illustrates the color change after 10 periods. 
Soon thereafter, the color differences are 
indistinguishable to the naked eye. 
 

Inactive cells are identified by the color red. 
Interesting color patterns are displayed as the 
simulation nears completion: the number of red cells 
varies but increases until all are red. 
 

The converged average is always equal to the 
average of the original distribution calculated prior to 
starting the algorithm An interesting and valuable 
attribute of this algorithm is that the average color at 
each time step is always equal to the initial calculated 
average. Re-examining the process reveals the reasons 
for this state of affairs. A group of nine cells of 
different colors contributes to the average of the total 
grid. When these cells are averaged and set to the 
same average value for the group, they contribute 
exactly the same to the average of the entire grid as 
they did with differing values. 
 

Figure 7 compares the increase in transactions for 
both the centralized and decentralized approaches. As 
shown above, the centralized approach increases 
exponentially while the decentralized approach, 
though initially more costly than the centralized 
approach, shows a slope asymptotically approaching 
zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Number of transactions required for 

centralized and decentralized methods 
 

A greater advantage of our decentralized approach 
is in the distribution of energy expenditure. The 
“funnel effect” of multi-hop routing required for the 
centralized approach described above will deplete 
cells required for routing much faster as their distance 
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to the sink decreases. In our decentralized approach, 
the workload is not only evenly distributed, but the 
workload required of an individual mote actually 
decreases as the grid size increases, as shown in 
Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Illustrating the minimum, average, and 
maximum number of cell selections in decentralized 

approach  
 

As stated, some applications will require a close 
agreement of common value, while others may 
tolerate a much larger divergence. We call the latter 
case one of “good enough computing” and show that, 
in such cases, a distributed consensus on a common 
value range can occur quickly with relatively few 
transactions. As an example, a 200 x 200 grid begins 
with a color distribution depicted in Figure 9. All 256 
colors are represented in a fairly even distribution 
with a standard deviation of 73.74, 49.6% of colors 
above the tolerance, and 49.95% of colors below the 
tolerance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Initial even distribution of colors 
 

However, as shown by the visual display of the 
simulation, the algorithm comes close to the solution 
very quickly. The simulation takes 271 time steps to 

come to a solution where all cells are within the 
specified tolerance of 0.5. Figure 10 shows that the 
distribution after only 1 time step (i.e., each cell has 
been selected once). The number of colors 
represented has been reduced to 55. The standard 
deviation has reduced to 6.26. While the majority of 
colors are still outside of the tolerance, the average 
offset below the tolerance is only 4.9 and the average 
offset above the tolerance is only 4.7 
 

Finally, Figure 11 shows that, like the total 
transactions required for a solution, solutions with a 
large percentage of cells within the tolerance also 
have a slope that asymptotically approaches zero as 
the grid size increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Color Distribution after one time step 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Transactions required for partial 
solutions 

 
5. Concluding Remarks 
 

The full potential of sensor networks for new kinds 
of science and business is not being met by current 

Total Cells .Vs Selections per Cell

0

200

400

600

800

1000

1200

1400

1600

0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05

Total Cells

Se
le

ct
io

ns
 p

er
 C

el
l

Maximum
Average
Minimum

Color Vs. Number of Cells for 300X300 Grid

0

50

100

150

200

250

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Color

Nu
m

be
r o

f C
el

ls

Color Vs. Number of Cells for 300X300 Grid

0

500

1000

1500

2000

2500

3000

79 97 10
1

10
4

10
6

10
8

11
0

11
2

11
4

11
6

11
8

12
0

12
2

12
4

12
6

12
8

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

Color

N
um

be
r 

of
 C

el
ls

Total Cells .Vs Transactions within Tolerance

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

0.E+00 5.E+04 1.E+05 2.E+05 2.E+05 3.E+05 3.E+05 4.E+05 4.E+05

Total Cells

Tr
an

sa
ct

io
ns

99% within tolerance
95% within tolerance
68% within tolerance
99% within tolerance*2
95% within tolerance*2
68% within tolerance*2

Comment [CSD3]: Missing a “t” here

Comment [CSD4]: Missing a “,” here 



 9

practical implementations. Most implementations use 
relatively small sensor motes in a multi-hop, wireless 
network. The small size and relatively inexpensive 
cost of the motes together with wireless networking 
allow networks to be installed quickly at low cost 
with little intrusion in the infrastructure of existing 
structures or the ecosystem of living organisms. 
However, these implementations use a small number 
(< 100) of motes operating under centralized control. 
All do little more than collect a few data and transmit 
this data back to the central controller. Few if any, 
decisions are made by the motes. 
 

Most of the techniques being developed for sensor 
networks work for this environment, but may not 
scale to massive number of cooperating motes. 
Transactions required for centralized control, by 
definition, scale at an exponential rate. If every mote 
must by queried and/or instructed by a central 
authority, then, as the size of the network scales 
exponentially, so must the number of required 
transactions. 
 

We see the full potential of sensor networks only 
reached when there are massive numbers of 
heterogeneous motes acting asynchronously and 
autonomously, yet cooperating in a way that their 
local actions, based on local information, combine to 
effect a functional and sustainable network interacting 
with the environment. This is how living systems 
have evolved so successfully. Individual organisms 
operate by a combination of innate rules (i.e. genetics) 
and learned behavior in a local niche. The 
combination of the actions of the individual 
organisms results in a multifunctional, sustainable 
ecosystem. 
 

We also believe such a sustainable, functional 
“ecosystem” of sensor networks does not require 
enough computation to be 100% correct all of the 
time. Living systems do not require this for 
functionality or sustainability. As an example, it 
would be desirable for human societies to maintain a 
zero murder rate. Yet, few human societies have ever 
maintained for long periods of time the total absence 
of murder. Is it possible for a human society to have 
zero murders indefinitely? Yes, it is possible, but the 
resources and the interruption to normal functions 
required to achieve such a goal are unacceptable. So, 
societies operate with a “tolerable” level of murder 
among them. When the murder rate increases to an 
“intolerable” level, public outcry results in changes 
that reduce that level. But it rarely reaches zero for 
long periods of time. Yet the society functions and 
sustains. 

 
We have demonstrated a function completed by a 

communal sensor network: autonomous motes 
functioning asynchronously cooperative to achieve a 
common goal. The function is carried out without 
centralized control and without any mote needing to 
know all information known within the society. We 
have also shown that the goal can be closely 
approached with few costs in time and resources, 
while a final answer may be too costly. We argue that 
future systems should be designed, wherever possible 
for such “good enough” computing. 
 

We will continue our efforts to evolve more 
sophisticated functionality in large sensor networks 
with the common goals of: 

• No requirement for centralized control. 
• Scalability to massive sized sensor networks. 
• Design for “good enough” computing. 
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