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Abstract. The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced 

Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in 

visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern 

Hemispheres. Observations were taken intermittently from January to March, and 

continuously from April thorough October, 2003. We assessed the data quality of ILAS-II 

version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric 

Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol 

Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, 

aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III 

within ±10%, and with those from POAM III within ±15%. From 20 to 26 km, ILAS-II 

aerosol extinction coefficients were smaller than extinction coefficients from the other 

sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 

km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern 

Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias 

increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol 

extinction coefficients from January to May in the Southern Hemisphere (defined as the 

“non-Polar Stratospheric Cloud (PSC) season”) yielded qualitatively similar results. From 

June to October (defined as the “PSC season”), aerosol extinction coefficients from ILAS-II 

were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; 
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however, ILAS-II and POAM III aerosol data were within ±15% of each other from 12 to 17 

km. 

1. Introduction 

Stratospheric aerosols greatly impact on stratospheric chemistry, including 

destruction of ozone. In polar regions, Polar Stratospheric Clouds (PSCs), which form under 

cold conditions in winter and early spring, lead to severe ozone depletion by providing the 

surface required for heterogeneous reactions that convert inactive chlorine into active chlorine 

[e.g., Solomon, 1999]. Moreover, PSCs irreversibly remove nitric acid from the gas phase 

through sedimentation (denitrification), and that removal could facilitate springtime ozone 

depletion [e.g., Drdla and Schoeberl, 2003]. Observation of stratospheric aerosols, 

particularly PSCs, is thus crucial for the understanding of ozone destruction processes. Many 

stratospheric aerosol measurements have been performed with lidar and Optical Particle 

Counter (OPC) [e.g., Hofmann and Deshler, 1991; Adriani et al., 1995]. Space-borne sensors 

that provide observations over a large area have also monitored stratospheric aerosols. The 

Stratospheric Aerosol Measurement (SAM) II is a solar occultation sensor on board a 

polar-orbiting satellite. It continuously observed stratospheric aerosols and PSCs over high 

latitudes for about 15 years starting in October 1978 [e.g., McCormick et al., 1982; Poole and 

Pitts, 1994]. Subsequently, several other solar occultation sensors, including the Polar Ozone 
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and Aerosol Measurement (POAM) II (09/1993-11/1996) [Randall et al., 1996; Randall et al., 

2000; Fromm et al., 1997; Fromm et al., 1999], the Improved Limb Atmospheric 

Spectrometer (ILAS) (11/1996-06/1997) [Hayashida et al., 2000; Saitoh et al., 2002], and 

POAM III (04/1998-present) [Randall et al., 2001; Bevilacqua et al., 2002] have obtained 

stratospheric aerosol and PSC data for latitudes similar to those covered by SAM II. In 

addition, the Stratospheric Aerosol and Gas Experiment (SAGE) II, a solar occultation sensor 

on board an inclined-orbiting satellite that can make more extensive observations from 

low/mid latitudes to high latitudes, began regular observations of stratospheric aerosols in 

October 1984 and is still in operation [e.g., Hitchman et al., 1994; Thomason et al., 1997]. 

SAGE III, which is the successor of SAGE II on board a polar-orbiting satellite, has measured 

stratospheric aerosols since February 2002 at high latitudes in the Northern Hemisphere and 

at mid latitudes in the Southern Hemisphere [Thomason and Taha, 2003]. 

ILAS-II is the successor to ILAS, and was launched on board the Advanced Earth 

Observing Satellite (ADEOS) II (polar-orbiting satellite) on 14 December 2002 [Sasano et al., 

2001]. It made about 150 preoperational observations from January to March, and measured 

continuously for about 7 months from 2 April through 24 October 2003, at which time 

ADEOS-II satellite failed. ILAS-II is designed to observe profiles of stratospheric minor 

gases such as O3, HNO3, NO2, N2O, CH4, and H2O, as well as profiles of aerosol extinction 

coefficient (AEC) by stratospheric aerosols and PSCs at high latitudes of both hemispheres 
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(53.9-71.1º N and 63.6-88.0º S). ILAS-II carried three infrared spectrometers (ch.1: 

6.21-11.76 μm, ch.2: 3.00-5.70 μm, ch.3: 12.78-12.85 μm), one visible spectrometer (ch.4: 

753-784 nm), and a sun-edge sensor [Nakajima et al., 2005]. AEC is retrieved from eight 

window spectral data around 780 nm of the visible spectrometer and at 3.0, 3.8, 5.1, 7.1, 8.3, 

10.6, and 11.8 μm of the infrared spectrometers. In this study, we assessed the data quality of 

ILAS-II AEC at 780 nm processed with the version 1.4 retrieval algorithm. 

Data quality was assessed over the Northern Hemisphere by comparing ILAS-II AEC 

data with SAGE II, SAGE III, and POAM III data. Over the Southern Hemisphere, ILAS-II 

data were examined in two separate groups. One group included data from June through 

October, when PSCs are frequently observed (hereafter referred as the “PSC season”). The 

second group included data from January through May, when PSCs do not occur (“non-PSC 

season”). ILAS-II AEC data from the non-PSC season were compared to SAGE II and POAM 

III AEC data. In addition, an OPC and a Laser Particle Counter (LPC) observed aerosol data 

over Syowa Station on 22 February 2003. These data were converted into AEC at 780 nm and 

compared to nearby and same-day ILAS-II AEC data. During the PSC season, it is difficult to 

assess aerosol data quality from comparisons with other nearby measurements because of the 

inhomogeneity of PSCs. Nevertheless, we made statistical comparisons between ILAS-II and 

POAM III PSC data because many ILAS-II and POAM III PSC measurements were made in 

very close vicinity. 



 6

Section 2 in this paper describes ILAS-II measurements and AEC retrieval at 780 nm. 

Section 3 characterizes the dataset used in the comparisons. Comparison results are presented 

in Section 4 and summarized in Section 5. 

2. ILAS-II aerosol extinction retrieval and characteristics 

 ILAS-II measures solar radiance in the exosphere (direct sunlight) and radiance 

attenuated as sunlight travels through the atmosphere as a function of tangent height. Sunlight 

incident from the entrance slit of the visible spectrometer is dispersed by the spectrometer 

grating, and then observed with a 1024-element metal-oxide-semiconductor (MOS) 

photodiode array with spectral resolution of ~0.06 nm. The entrance slit size corresponds to 

an instantaneous field of view (IFOV) of 1-km in the vertical and 2-km in the horizontal at the 

tangent point. Nakajima et al. [2005] detailed the ILAS-II hardware characteristics. 

 The visible spectrometer of ILAS-II measures temperature and pressure by obtaining 

the absorption spectrum by oxygen molecules (O2 A-band). Simultaneously, AEC is retrieved 

for wavelengths around 780 nm, outside the O2 A-band. The ILAS-II algorithm to retrieve 

AEC from the spectral data obtained with the visible spectrometer is similar to the algorithm 

used for ILAS data that was described by Hayashida et al. [2000] and Yokota et al. [2002]. 

ILAS-II can also measure solar luminosity of the whole solar disk in the exosphere (solar scan 

data acquisition) [Nakajima et al., 2005]. Thus, sunspot and limb darkening effects on the 
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AEC data can be estimated from the measured solar luminosity in the ILAS-II retrieval, while 

a theoretical luminosity is used in the ILAS retrieval. Yokota et al. [2005] discussed the 

improvements of ILAS-II AEC retrieval over ILAS retrieval. 

ILAS AEC data include “internal error” that comprises random noise in the observed 

solar signals, error in the estimate of direct sunlight during atmospheric transmission (100% 

level), and error in the estimate of ozone absorption in the Wulf band [Hayashida et al., 2000; 

Yokota et al., 2002]. On the other hand, internal error defined and provided in the ILAS-II 

version 1.4 product is estimated on the basis of measurement repeatability. In addition, error 

in the estimate of Rayleigh scattering by atmospheric molecules is estimated from 

uncertainties in UKMO temperature data that we assume. This error is provided as “external 

error” in the ILAS-II product, as in the case of the ILAS product. Root-Sum-Square (RSS) of 

the internal and external errors is defined as the “total error”. 

Measurement repeatability is defined as the “closeness of the agreement between the 

results of successive measurements of the same measurand” [BIPM et al., 1993]. 

Measurement repeatability was calculated empirically in the ILAS-II version 1.4 retrieval as 

follows. Mean ( x rep) and 1σ standard deviation (σrep) of ILAS-II AEC data were calculated 

for every 100 occultation events (OE) at each altitude level in each hemisphere. The smallest 

relative standard deviations, defined as εrep=σrep/ x rep, was selected for each altitude level and 
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defined as the measurement repeatability of the altitude level. In this way, the εrep value 

calculated for the period when variability in AEC was smallest during ILAS-II operations is 

selected as the measurement repeatability; therefore, measurement repeatability can be 

regarded as the precision of ILAS-II AEC measurements. Precision was 5-15% at 12-26 km in 

the Northern Hemisphere and 6-20 % at 12-23 km in the Southern Hemisphere [Figure xx, 

Yokota et al., 2005]; precision was smaller than 10% between 15-25 km in the Northern 

Hemisphere and between 15-21 km in the Southern Hemisphere. 

At almost all altitudes, the magnitude of the measurement repeatability over the 

Southern Hemisphere was larger than the magnitude over the Northern Hemisphere (e.g., five 

times larger at 25 km). ILAS-II made observations for less than an entire year, only for seven 

months from April to October. The values of measurement repeatability over the Southern 

Hemisphere were estimated from data obtained in April or in October when the atmosphere is 

sometimes perturbed. In contrast, the values of measurement repeatability over the Northern 

Hemisphere were estimated from data acquired primarily in the summer (July- October), a 

more quiescent time of year. The values of measurement repeatability over the Southern 

Hemisphere reflect larger variability in atmospheric aerosol compared to the Northern 

Hemisphere because of the seasons sampled. 

Uncertainty attributable to sunspots is not included in either internal or external 
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errors of the ILAS-II version 1.4 product. Sunspot effects on the AEC data can be estimated 

from the measured solar luminosity in the ILAS-II retrievals [Yokota et al., 2005], but the 

effects cannot always be corrected in the current version due to a hardware problem on 

ILAS-II [Nakajima et al., 2005]. Sunspots affect at least about one-sixth of all the ILAS-II 

AEC data judging from the observed solar luminosity data. In the current version, most of 

those AEC data still include sunspot effects above ~30 km in the Northern Hemisphere and 

above ~25 km in the Southern Hemisphere. Therefore, this study focused on AEC data below 

30 km in the Northern Hemisphere and below 25 km in the Southern Hemisphere. 

3. Data for comparison 

Figure 1 shows latitudinal coverage of ILAS-II (black dots), POAM III (light gray 

circles), SAGE II (thick gray line), and SAGE III (solar occultation measurements only; thin 

gray line) during ILAS-II operations from January to October 2003. POAM III observations 

occurred at similar latitudes and times as ILAS-II in both hemispheres. Coincident pairs of 

ILAS-II and POAM III observations were chosen when the distance between the two 

measurement locations was less than 150 km and the time difference was less than 1 hour in 

the Northern Hemisphere or for the non-PSC season in the Southern Hemisphere. A more 

stringent criterion for coincident PSC pairs was applied during the PSC season in the 

Southern Hemisphere because of the spatial inhomogeneity of PSCs. Here, a maximum 
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distance of 50 km and a maximum time difference of 1 hour were applied for the selection.  

Comparisons in the Northern Hemisphere only used AEC data after 25 April, because the 

polar vortex as defined by Nash et al. [1996] persisted at ILAS-II measurement latitudes 

before 25 April. Large gradients in stratospheric aerosol concentration exist at the boundary of 

the polar vortex [Thomason and Poole, 1993]. There were 245 coincident pairs after 25 April 

in the Northern Hemisphere and 198 coincident pairs in the non-PSC season in the Southern 

Hemisphere. During the PSC-season in the Southern Hemisphere, 163 coincident PSC 

profiles were identified. 

SAGE II and SAGE III made observations at greater distances from ILAS-II 

measurements than POAM III did. Thus, the distance constraint between the two 

measurement locations was 300 km, although the same 1-hour maximum time difference was 

used. These criteria yielded sufficient numbers of coincident pairs in the Northern 

Hemisphere. For the Southern Hemisphere, however, the criteria yielded only a few 

coincident pairs. Thus, looser criteria were applied. Coincident pairs in the Southern 

Hemisphere were required to be within 500 km of each other, with a time difference of at 

most 12 hours. These looser criteria allowed multiple SAGE II observations to match a single 

ILAS-II data point. In that case, all observations were accepted as individual pairs. 

Consequently, 8, 8, and 18 coincident profiles were selected between SAGE II and ILAS-II in 

April, July, and September, respectively, over the Northern Hemisphere. Eight profiles were 
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selected in February over the Southern Hemisphere. The number of coincident profiles 

between SAGE III and ILAS-II were 5, 46, and 36 in April, August, and September, 

respectively, in the Northern Hemisphere. Table 1 summarizes all comparison criteria. 

SAGE II does not observe AEC at 780 nm, so that those data could not be directly 

compared to ILAS-II AEC data. SAGE II AEC data at 525 nm and 1019 nm were interpolated 

to AEC at 780 nm by assuming that the logarithm of AEC is roughly proportional to the 

logarithm of wavelength in the lower stratosphere, as in Burton et al. [1999]. This study uses 

SAGE II version 6.2 AEC data, although the version 6.2 AEC data have not yet been 

validated. It has been already established that the previous versions of 5.93 [e.g., Osborn et al., 

1989; Ackerman et al., 1989; Russell and McCormick, 1989] and 6.0 [Hervig and Deshler, 

2002] AEC data have no clear bias at the two relevant wavelengths. Here, the version 6.2 data 

were compared to the validated version 5.93 data. They agreed to within the RSS of both 

reported errors. The difference was within ~10% from 18 to 30 km, although the version 6.2 

AEC data were on average smaller than the version 5.93 data below 18 km. Better agreement 

was also seen in comparisons between the version 6.2 and 6.0 AEC data. SAGE II version 6.2 

AEC data interpolated to 780 nm should have no systematic bias. 

SAGE III AEC data at 756 nm and 869 nm were interpolated to AEC at 780 nm 

using methods similar to those applied to SAGE II AEC data. SAGE III version 3.0 data were 
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used in this study, and AEC data in that version, which are nearly identical to the version 2.0 

data, have a positive bias at all altitudes at 756 nm and a negative bias above 24 km at 869 nm 

[Thomason and Taha, 2003]. Here, the bias in SAGE III AEC data interpolated to 780 nm was 

estimated by comparing the interpolated values to SAGE II AEC data interpolated to 780 nm. 

April and September SAGE II and SAGE III measurements yielded 32 coincident pairs in the 

Northern Hemisphere when a distance maximum of 300 km and a time difference maximum 

of 1 hour were applied as criteria for the data from April to October 2003. The relative 

difference, DSAGE3-SAGE2 (%), is: 

II SAGE
)II SAGEIII SAGE(×100

  ≡(%)D 2SAGE-3SAGE . 

DSAGE3-SAGE2 was calculated for all 32 coincident pairs. Figure 2a shows profiles of the mean 

( D SAGE3-SAGE2, black line) and 1σ standard deviation (gray line). Figure 2a shows close 

agreement between SAGE III and SAGE II AEC data during ILAS-II operations, although 

SAGE III AEC was slightly larger at almost all altitude levels. 

POAM III measures AEC at 780 nm, so that a direct comparison can be made with 

ILAS-II AEC data. POAM III AEC data (version 4.0) at 780 nm used in this study have not 

been validated through inter-comparisons with other measurements. Here, POAM III AEC 

data at 780 nm were also compared with SAGE II AEC data interpolated to 780 nm. 

Comparison criteria in the Northern Hemisphere were a distance maximum of 300 km and a 
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time difference maximum of 1 hour, yielding 21 total coincident pairs in April, July, and 

September 2003. Comparison criteria in the Southern Hemisphere were a distance maximum 

of 500 km and a time difference maximum of 12 hours, which yielded 34 coincident pairs in 

February. The relative difference between SAGE II and POAM III, DPOAM3-SAGE2 (%), was 

calculated for all coincident pairs as: 

II SAGE
)II SAGEIII POAM(×100

  ≡(%)D 2SAGE-3POAM . 

Figure 2b shows the mean and 1σ standard deviation of DPOAM3-SAGE2 for the Northern 

Hemisphere; Figure 2c the same for the Southern Hemisphere. POAM III AEC data agreed 

with SAGE II AEC data in the Northern Hemisphere to within 1σ standard deviation, 

although POAM III AEC was 14-22% larger on an average than SAGE II AEC from 22 to 24 

km. In contrast, differences between POAM III and SAGE II AEC data from 13 to 23 km in 

the Southern Hemisphere deviated from the 0% line even considering 1σ standard deviation; 

POAM III AEC clearly showed a 13-30% systematic positive bias relative to SAGE II AEC. 

Measurements of balloon-borne OPC and LPC were taken at Syowa Station (69º S, 

40º E, star in Figure 1) by the 43rd and 44th Japan Antarctic Research Expedition (JARE) on 

22 February in 2003 during the ILAS-II preoperational period. AEC values estimated from the 

size distribution measurements were compared to nearby ILAS-II AEC data. Syowa Station is 

about 599 km from the nearest ILAS-II measurement location (74.0º S, 36.6º E) on the same 
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day. Comparisons to data from in situ measurements like OPC and LPC are meaningful even 

for just one comparison, because the measurement principle differs from that of satellite 

sensors. A particle counter counts the number of particles and measures their sizes by 

detecting light scattered by particles that are exposed to incident light. The OPC and LPC use 

a halogen lamp and a He-Ne laser, respectively, as a light source. The OPC (LPC) measures 

particles with radii from 0.15 to 3.5 μm (from 0.056 to 0.25 μm). By assuming refractive 

indices for sulfate aerosols, a bimodal lognormal distribution function was fit to the measured 

cumulative number concentrations for each particle size range, and AEC at 780 nm was then 

derived from the particle size distribution by performing Mie scattering calculations. Here, the 

refractive indices (1.439-1.452) were estimated following Steele and Hamill [1981]. 

Simultaneously observed temperature and pressure data were used, and a mixing ratio of 

water vapor of 4 ppmv and a sulfate content of an aerosol droplet of 1.0×10-15 g were assumed. 

Error in the OPC/LPC data was defined as the RSS of the systematic measurement error and 

statistical random error of the counting. The systematic measurement error, which includes 

uncertainty in the flow rate, was around ±5% for all altitude levels. Uncertainty in a count C is 

± C  [e.g., Willeke and Liu, 1976]. The relative counting error (1/ C ) in this study was 

calculated for each particle size range and each level. RSS of the calculated counting errors 

was then defined as the statistical counting error and ranged from 0.4% to 44%. 

4. Results 
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4.1. Northern Hemisphere 

Figure 3 compares ILAS-II AEC data to SAGE II AEC data. The left panel shows 

mean profiles of 34 pairs of coincident ILAS-II (thick black line) and SAGE II (thick gray 

line) AEC data. Black (gray) dashed lines show 1σ standard deviation profiles for ILAS-II 

(SAGE II). Triangles illustrate the difference between the mean profiles of ILAS-II and 

SAGE II. Black (gray) triangles correspond to negative (positive) values of ILAS-II minus 

SAGE II AEC. The right panel shows profiles of the mean relative percent difference (thick 

black line) and 1σ standard deviation (thin black lines). Here, the relative percent difference, 

D (%), is: 

)sensorsother +II-ILAS(×
2
1

)sensorsother II-ILAS(×100
  ≡D . 

RSS of the total error of individual ILAS-II AEC data and the reported error of the coincident 

SAGE II AEC data (defined as “combined error”) was divided by the mean of both AEC data 

(equal to the denominator of the above D expression) to define a relative error. Gray dashed 

lines in the right panel indicate the mean of the relative errors. At altitude levels between 12 

and 19 km, ILAS-II AEC was within around ±10% of SAGE II AEC; the difference was 

within the range of the combined error. In contrast, D  (mean of D) values of ILAS-II and 

SAGE II from 20 to 26 km ranged from -10 to -34%, which were far from the 0% line even 

when 1σ standard deviation (6-29%) was considered. Furthermore, the values exceeded the 
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range of the combined error (7-18%). The magnitude of the D  values at these altitude levels 

arose from absolute AEC differences as small as 0.7-1.8×10-5 km-1 (triangles in the left panel 

of Figure 3). 

ILAS-II and SAGE III AEC data are compared in Figure 4. As above, D was 

calculated for each of the ILAS-II and SAGE III coincident pairs. Comparisons between 

ILAS-II and SAGE III are similar to comparisons between ILAS-II and SAGE II shown in 

Figure 3. Below 20 km, ILAS-II and SAGE III AEC data were also within around ±10% of 

each other, and that difference was within the range of the combined error. From 20 to 26 km, 

ILAS-II AEC values were smaller than SAGE III AEC values; D  and 1σ standard deviation 

ranged from -12±8 to -45±26%, exceeding the combined errors (7-21%). However, the 

magnitude of the absolute AEC difference was as small as 1.1-2.2×10-5 km-1. 

Figure 5 compares ILAS-II and POAM III AEC data. From 11 to 19 km, ILAS-II and 

POAM III AEC differences were within around ±15%. The difference was almost within the 

range of the combined error. ILAS-II AEC data from 20 to 24 km were small compared to 

POAM III AEC data. D  and 1σ standard deviation ranged from -17±12 to -37±25%, 

exceeding the combined errors (8-16%). At these altitudes, the magnitude of the D  and the 

absolute AEC difference (1.9-3.5×10-5 km-1) between ILAS-II and POAM III were slightly 

larger than those between ILAS-II and SAGE II and those between ILAS-II and SAGE III at 
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the same altitudes. 

4.2. Southern Hemisphere 

4.2.1. Non-PSC season 

Figure 6 compares between ILAS-II and SAGE II AEC data in February. ILAS-II 

AEC was larger than SAGE II AEC from 10 to 16 km. Four of the eight coincident cases 

showed good agreement at these altitudes. However, the ILAS-II data in the other four cases 

were truncated at higher altitudes, around 12-13 km, and the AEC data were unusually large, 

resulting in poor agreement with SAGE II data. These two features in the comparison yielded 

large standard deviations from 10 to 16 km, as shown in Figure 6. The difference was 

therefore not significant. From 17 to 19 km, ILAS-II and SAGE II were within ±10% of each 

other. From 20 to 25 km, ILAS-II AEC was smaller than SAGE II AEC. D  and 1σ standard 

deviation ranged from -12±12 to -66±23%, exceeding the combined errors (9-24%). These 

results are similar to those in the Northern Hemisphere. The D  values from 20 to 25 km 

matched the absolute AEC difference of 1.4-2.2×10-5 km-1, which was slightly larger than the 

absolute difference in the Northern Hemisphere (0.7-1.8×10-5 km-1). 

Figure 7 shows comparisons between ILAS-II and POAM III AEC in the non-PSC 

season (January-May). They agreed to within ±5% from 11 to 14 km, but ILAS-II AEC was 

smaller than POAM III AEC at and above 15 km. D  and 1σ standard deviation between 15 
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and 24 km ranged from -13±9 to -94±51%. These values exceeded the combined errors 

(7-41%) and corresponded to the absolute AEC difference of 2.5-5.5×10-5 km-1 that was larger 

than the absolute difference between ILAS-II and SAGE II in the non-PSC season. 

Figure 8 shows comparison between ILAS-II and OPC/LPC data. The left panel 

shows profiles of ILAS-II AEC and total error as indicated by thick and thin black lines, and 

profiles of AEC and error both calculated from the OPC/LPC data indicated by thick and thin 

gray lines. Relative percent differences (D) between the ILAS-II AEC and the OPC/LPC AEC 

and the relative value of RSS of both errors are shown in the right panel. Good agreement 

within the error bars occurred between the two profiles at most altitude levels. The differences 

were within ±15% between 13 and 18 km, although the ILAS-II AEC was smaller than the 

OPC/LPC AEC at all levels above 15 km. 

4.2.2. PSC-season 

 Figure 9 shows comparisons between ILAS-II and POAM III AEC data during the 

PSC season (June-October). The left panel shows that both AEC data in the PSC season were 

one-half to one order of magnitude larger than those during the non-PSC season. In addition, 

both 1σ standard deviations during the PSC season were also larger than those in the non-PSC 

season, because the height at which PSCs occurred from June to October varied depending on 

temperature profiles coupled with the movement of cold region. As shown in the right panel, 
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ILAS-II AEC data were smaller than POAM III AEC data from 18 to 24 km; D  ranged from 

-16 to -112%, exceeding the range of the combined error (10~57%). This characteristic is 

similar to the results for the non-PSC season in both hemispheres. However, ILAS-II and 

POAM III AEC data were within ±15% of each other from 12 to 17 km in the PSC season 

even when PSCs were present. 

5. Discussion and Summary 

 We assessed the data quality of ILAS-II AEC at 780 nm processed with the version 

1.4 retrieval algorithm. The focus of this study was AEC data below 30 km in the Northern 

Hemisphere and below 25 km in the Southern Hemisphere. Above those altitude levels, at 

least about one-sixth of all ILAS-II AEC data are affected by sunspots, and most of those data 

still include sunspot effects because of shortcomings in the sunspot correction in the current 

version. Care should therefore be taken when using the version 1.4 AEC data above these 

altitudes. The precision of ILAS-II AEC data as estimated from measurement repeatability 

was 5-15% at 12-26 km in the Northern Hemisphere and 6-20 % at 12-23 km in the Southern 

Hemisphere. 

 Comparisons of ILAS-II AEC data at 780 nm in the Northern Hemisphere were made 

with SAGE II and SAGE III AEC data, both of which were interpolated to 780 nm, and with 

POAM III AEC data at 780 nm. ILAS-II AEC data above 19 km were systematically smaller 
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than AEC data of the other three sensors. Comparisons with SAGE II AEC data, which have 

no clear bias [e.g., Russell and McCormick, 1989; Hervig and Deshler, 2002], revealed the 

mean relative percent difference ( D ) of -10 to -34% between 20 and 26 km (Figure 3). 

Magnitudes of D  between ILAS-II and SAGE III AEC data ranged from -12% at 20 km to 

-45% at 26 km (Figure 4), and magnitudes between ILAS-II and POAM III AEC data ranged 

from -17% at 20 km to -37% at 24 km (Figure 5). These values were slightly larger than those 

between ILAS-II and SAGE II AEC data, because SAGE III and POAM III AEC data were 

slightly larger on average than SAGE II AEC data (Figure 2a and 2b). Below 20 km, ILAS-II 

AEC agreed well with AEC from all three sensors. The differences between ILAS-II AEC 

data and SAGE II and SAGE III AEC data were within around ±10%. The difference between 

ILAS-II AEC and POAM III AEC data was within around ±15%. 

 ILAS-II and SAGE II AEC data comparisons for February in the Southern 

Hemisphere suggest that ILAS-II has a negative bias ranging from -12 to -66% as altitude 

increases from 20 to 25 km. Their agreement was closer, within ±10%, from 17 to 19 km. 

During the non-PSC season in the Southern Hemisphere (January-May), ILAS-II AEC was 

systematically smaller than POAM III AEC at all levels above 15 km. The difference ranged 

from -13 to -94%, which was larger than the difference between ILAS-II and SAGE II. 

However, in contrast to the Northern Hemisphere, POAM III AEC data have a distinct 

positive bias (13-30%) relative to SAGE II AEC data in the Southern Hemisphere (Figure 2c). 
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The bias can explain why ILAS-II AEC data have a larger negative bias against POAM III 

AEC data during the non-PSC season in the Southern Hemisphere (Figure 7). 

Aerosol data obtained with an OPC and LPC over Syowa Station on 22 February 

were compared to nearby ILAS-II AEC data. Error of the OPC/LPC data was estimated to be 

5-44%; however, this is probably an underestimate, because the systematic error of the 

measurement and the statistical error of the counting were used as an alternative to the error 

of the OPC/LPC AEC data. A more proper error estimate would use a Monte Carlo simulation 

to infer the impact of the measurement uncertainties on the lognormal parameters and the 

derived parameters such as aerosol extinction coefficient, as done by Deshler et al. [1993]. 

The ILAS-II and the OPC/LPC data do agree to within their error bars if the insufficient error 

estimate is considered. The difference was within ±15% from 13 to 18 km, although ILAS-II 

AEC was smaller than the OPC/LPC AEC at all levels above 15 km. 

During the PSC season in the Southern Hemisphere (June-October), ILAS-II and 

POAM III made many close simultaneous PSC measurements. The two sensors often 

obtained PSC profiles with similar vertically-layered structures. Comparisons in the PSC 

season showed that ILAS-II AEC data agreed with POAM III AEC data to within ±15% from 

12 to 17 km despite the high frequency of PSC, although ILAS-II AEC was smaller than 

POAM III AEC at and above 18 km, which is similar to the results in the non-PSC season. 
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Tangent height registration errors can induce errors in retrieved AEC data. 

Uncertainties in tangent height registration were less than 100 m for SAGE II version 6.2 

retrieval, around 100 m for SAGE III version 3.0 retrieval [Wang et al., 2002; J. Zawadny, 

personal communication, 2005], and 250 m for POAM III version 4.0 retrieval [Lumpe et al., 

2002; J. Lumpe, personal communication, 2005]. Uncertainty in the tangent height 

registration for ILAS-II version 1.4 retrieval was a systematic error of ±180 m and random 

error of ±30 m [Tanaka et al., 2005]. A sensitivity study using ILAS-II data suggested that 

height assignments 100 m higher than in the current retrieval caused a ~5-25% increase in 

AEC below 25 km, and vice versa. Uncertainties in tangent height registration as noted here 

are one possible cause for AEC differences between ILAS-II and the other three satellite 

sensors. 

Table 2 and 3 summarize the comparisons of AEC data between ILAS-II and other 

satellite sensors over the Northern Hemisphere and the Southern Hemisphere, respectively. 

Over the Northern Hemisphere, the magnitudes of relative differences in AEC between 

ILAS-II and the other three sensors, SAGE II, SAGE III, and POAM III, were similar. The 

difference characteristics in the vertical were also similar. Below 20 km, ILAS-II AEC data 

have the same reliability as the other three sensors. Above 20 km, ILAS-II AEC data are valid 

for scientific studies if the negative bias relative to the other three sensors presented in Table 2 

is considered. Over the Southern Hemisphere, characteristics of ILAS-II AEC data as 
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summarized in Table 3 should be considered in the scientific use of ILAS-II AEC data 

coupled with SAGE II and/or POAM III AEC data for both the non-PSC season and the PSC 

season. 
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Tables. 

 NH non-PSC season in SH PSC season in SH 

POAM III 150 km, 1 hour (245) 150 km, 1 hour (198) 50 km, 1 hour (163) 

SAGE II 300 km, 1 hour (34) 500 km, 12 hour (8*) – 

SAGE III 300 km, 1 hour (87) – – 

 

Table 1. Distance and time difference criteria for selecting coincident pairs in the 

comparisons of ILAS-II to SAGE II, SAGE III, and POAM III. The numbers of selected pairs 
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are also shown in parentheses. *More than one coincident profile is accepted for one ILAS-II 

profile as the individual pairs. NH, Northern Hemisphere; SH, Southern Hemisphere. 

Alt. SAGE II SAGE III POAM III 

11-19 km ±10% ±10% ±15% 

20-26 km -10%/-34% -12%/-45% -17%/-37%* 

 

Table 2. The mean percent difference ( D ) between ILAS-II and SAGE II, SAGE III, or 

POAM III in the Northern Hemisphere. 

±10% -10%/-40% 
SAGE II 

17-19 km 20-23 km 

±5% -10%/-40% 
POAM III (non-PSC) 

11-14 km 15-20 km 

±15% -15%/-60% 
POAM III (PSC) 

12-17 km 18-20 km 

 

Table 3. The mean percent difference ( D ) between ILAS-II and SAGE II or POAM III in the 

Southern Hemisphere. 

Figure Captions. 

Figure 1. Time series of the latitudinal coverage of ILAS-II (black dots), POAM III (light 

gray circles), SAGE II (thick gray line), and SAGE III (solar occultation mode only; thin gray 

line) during ILAS-II operations from January to October in 2003. The star denotes the 

position of Syowa Station (69º S, 40º E), where the OPC/LPC measurement was conducted on 
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22 February. 

Figure 2. (a) Profiles of the mean difference (black line) between SAGE II (version 6.2) and 

SAGE III (version 3.0) AEC data ( D SAGE3-SAGE2) in the Northern Hemisphere both 

interpolated to 780 nm and 1σ standard deviation (gray lines). Here, the logarithms of SAGE 

II AEC at 525 nm and 1019 nm and SAGE III AEC at 756 nm and 869 nm are linearly 

interpolated with the logarithms of the wavelengths, yielding the AEC at 780 nm. (b) Profiles 

of the mean difference between SAGE II and POAM III (version 4.0) AEC data at 780 nm 

( D POAM3-SAGE2) in the Northern Hemisphere and 1σ standard deviation. (c) Profiles of the 

mean difference between SAGE II and POAM III AEC data at 780 nm ( D POAM3-SAGE2) in the 

Southern Hemisphere and 1σ standard deviation. Criteria for coincident pairs are a distance 

from a SAGE II measurement location of no more than 300 km and a measurement time 

difference of no more than 1 hour for the Northern Hemisphere, and a distance of no more 

than 500 km and a time difference of no more than 12 hours for the Southern Hemisphere. 

Figure 3. Comparison between ILAS-II AEC and SAGE II AEC (interpolated to 780 nm) in 

the Northern Hemisphere. A maximum distance of 300 km and a time difference of no more 

than 1 hour yielded 34 coincident pairs after 25 April. 

Left Panel. Profiles of the mean of ILAS-II (black line) and SAGE II (gray line) AEC used in 

the comparison. Dashed lines are the 1σ standard deviation profiles. Triangles show the 
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difference between ILAS-II and SAGE II AEC mean values. Black (gray) triangles 

correspond to negative (positive) values of ILAS-II minus SAGE II AEC. 

Right Panel. The mean of relative percent difference (D) computed for all coincident ILAS-II 

and SAGE II AEC data (thick black line) and 1σ standard deviation (thin black lines). See text 

for the definition of D. Gray dashed lines indicate the relative error defined as the RSS of both 

reported errors of ILAS-II and SAGE II divided by the mean of ILAS-II and SAGE II AEC 

(equal to the denominator of the D expression). 

Figure 4. As in Figure 3, but for 87 coincident ILAS-II and SAGE III (interpolated to 780 

nm) pairs in the Northern Hemisphere. The criteria for coincident pairs between ILAS-II and 

SAGE III are the same as the case between ILAS-II and SAGE II. 

Figure 5. As in Figure 3, but for 245 coincident ILAS-II and POAM III pairs in the Northern 

Hemisphere. Coincident pairs were selected when a distance of no more than 150 km and a 

time difference of no more than 1 hour were applied for AEC data after 25 April. 

Figure 6. As in Figure 3, but for comparison of eight coincident pairs in the Southern 

Hemisphere. Coincident pairs were selected by applying a distance criterion of no more than 

500 km and a time difference of within 12 hours. 

Figure 7. As in Figure 3, but for 198 coincident ILAS-II and POAM III pairs in the non-PSC 
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season in the Southern Hemisphere. Coincident pairs were selected when a distance criterion 

of within 150 km and a time difference within 1 hour were applied for AEC data from January 

to May. 

Figure 8. Comparison between the ILAS-II (74.0º S, 36.6º E) and the OPC/LPC (74.0º S, 

36.6º E) on 22 February. The distance between the measurement locations was 599 km. See 

text for the detail of estimate of error in the OPC/LPC AEC data. 

Left Panel. ILAS-II AEC profile (thick black line) and the total error profile (thin black line). 

Thick gray and thin gray lines also indicate AEC profile calculated from the OPC/LPC data 

and the error profile. 

Right Panel. Relative percent difference (D) between the ILAS-II and the OPC/LPC AEC 

data and the relative error defined as RSS of the both errors divided by the mean are indicated 

by black and gray dashed lines, respectively. 

Figure 9. As in Figure 3, but for 163 coincident ILAS-II and POAM III pairs in the PSC 

season in the Southern Hemisphere. Coincident pairs were selected when a maximum 

distance of 50 km and a maximum time difference of 1 hour were applied to AEC data from 

June to October. 


