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♦ Non-Vehicle Specific Technology

♦ Concluding Remarks



3

European TPS and Hot Structures Research and
Development

♦TPS and hot structures research and development critical for future space vehicles

♦Developing next generation TPS and hot structures technology (not Space Shuttle
derived technology)

♦Long-term funding based on technology needs

♦Wide industry support and commitment to X-38 program

♦Test facilities developed for TPS and hot structures development
• Thermal/structural test chamber
• Arc-jet tunnels developed in recent years

♦Technology development has broad base
• Fabrication
• Testing
• Large components
• Fasteners
• Bearings
• Oxidation protection
• Damage repair
• Life cycle

Wayne Sawyer comments from previous ESA TPS & Hot Structures Workshop
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European TPS and Hot Structures Research and
Development

♦ Proposing numerous experimental launch vehicles dedicated to or with
TPS and hot structures research of prime consideration

♦ Committing significant resources to the development of TPS and hot
structures for future space vehicles
• $20 million spent on C/SiC body flaps for X-38, $50M on X-38 technology

by Germany
• Many companies involved (committing resources) in developing C/SiC hot

structure for X-38
• Large thermal/structural test chamber developed specifically for verification

of X-38 hot structure

♦ European TPS & Hot Structures Emphasis
• Developing ceramic matrix composite and metallic TPS with fibrous

insulation
• Waterproofing not required
• Larger unit size (reduce part count)
• More durable (reduced inspection and repairs)

• Developing ceramic matrix composite and metallic hot structure
• No ceramic tile development
• Limited development with blanket insulation

Wayne Sawyer comments from previous ESA TPS & Hot Structures Workshop



X-38 Hot Structures

RSI (Low Density)

Blanket TPS

~$20M

♦ C/SiC nosecap & skirts, Tmax ~ 3200°F
• Nosecap provided by DLR (Germany) (C-C,

liquid Si infiltration fill cracks, final CVI SiC
coating)

• Nose skirts (2) provided by DASA (Germany)
• Chin panel provided by MT Aerospace
• Nose assembly has undergone full qualification

(qual units)
- Vibration
- Thermal (radiant)
- Mechanical

♦C/SiC bodyflaps
• MT Aerospace 

♦ Metallic rudder
(Dutch Space)

♦ C/SiC leading edge
    (flight experiment, 2000°F)

• MT Aerospace
(Germany)
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Oxide CMC

FEI

C/SiC C/SiC

Oxide
CMC(SPFI)

C/SiC

C/SiC

Metallic
TPS

EADS TPS & Hot Structures Hardware for Hopper

TPS Components TRL

SPFI 5
!TiAl Metallic TPS 4

PM1000/2000 Metallic TPS 4

CMC Panel Stand-off TPS 7

CMC Hot Structures 8

Flexible External Insulation (FEI) 8

450 8

650 8

1000 8

1100 6
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Intermediate Experimental Vehicle (IXV)

IAC-06-D2.6.05
IAC-06-C2.4.02

♦Part of ESA FLPP
• Run by NGL Prime, joint venture of Astrium (F, D)

and Finmeccanica (I)
♦PDR end of 2007, first flight end of 2010
♦Objectives

• System design experience for lifting reentry vehicles
• Flight test in representative environments TPS & Hot

Structures for Next Generation Launchers (NGL)
• ATD data to validate tunnels and CFD

♦Build on X-38 nose and body flap experience
♦Both experimental and functional
♦ Leeward and base side utilizes Flexible External

Insulation (FEI)
• FEI 1000, 650,450
• ODS metallic TPS

♦Windward side
• C/SiC shingles of different size
• C/SiC leading edges, either fixed hot structure or

shingle
• Surface Protected Flexible Insulation (SPFI)
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TPS & Hot Structures Technologies on the IXV
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IXV C/SiC Hot Windward Surface TPS (Snecma)

♦TRL 4-5, baseline vehicle technology
♦Development tasks

• Base material characterization - long
duration PWT tests

• Sub-assembly test (lift-off, flight, re-entry
environment)

- Structural integrity
• Sine and random test of hard mounted TPS
• 2 shingle, seals, interfaces, etc.

- Structure characterization
• Modal survey for design assumption correlation

purposes

• Test demonstrator in representative
thermal and pressure environment

- CMC TPS shingle sub-assembly
- Scirocco PWT 1000 sec

• Structural integrity in worst thermal
environment

• Insulation performance for support structure
• Seal integrity and performance
• Attachment interfaces insulation and stress

relief functions
• Degradation characterization
• Analysis models verification
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IXV CMC Shingle TPS (Snecma)

♦ Decouple the thermal (insulation) and
mechanical functions

♦ Design
• External C/SiC thermal shield panel
• Outer oxidation protection system
• Internal ceramic felt insulation
• Static high temperature seals
• Special attachment fixtures combining

isolation and thermal stress relief
♦ Tasks

• Design of panel and attachments
• Analytical validation of design
• Manufacturing of complete large shingle
• Mechanical test of C/SiC panel
• Testing likely done by now

- Dynamic
- Acoustic
- Thermal
- Thermo-mechanical

ESA-TPS-2006-Pichon
ESA-TPA-2006-Denaro
AIAA-2005-3375
AIAA-2006-7950
IAC-06-C2.4.03
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IXV C/SiC Control Surfaces (MT Aerospace)

♦ Includes hot interface components (bearing, seals, joints)
♦ X-38 based design and manufacturing
♦ TRL 4-5, baseline vehicle technology

♦ Torque driven body flap
• Prototype roller bearing sub-assemblies
• Dynamic seals
• Driving torque load introduction interface
• Tube to flap frame joint (validating a “one shot” production process of

complex composite parts)
♦ Development tasks

• Hot verification of structural strength of joint (in-situ joining manufacturing
technology) between torque tube and flap frame

• Thermo-mechanical cycling of body flap demo with IXV T, P profiles
- Structural integrity of demo in worst thermal mechanical conditions (50

cycles)
- Dynamic hot seal performance
- Hybrid (metal & CMC) roller bearings functionality, integrity, and attitude

maintenance
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Pre-X CMC Flap Development (MT Aerospace)

♦C/SiC design
♦Mass is 23.63 kg (7% over goal)
♦ Flap structure

• Cross-wise stiffeners yields most efficient torsion
stiffness (1st eigenmode)

• 2.5 - 5 mm thick
• Open box vs closed box for X-38 design
• Evaluated both 1 and 2 piece

♦Ceramic bearings
♦Attachment at hinge line

• Rectangular C/SiC tubes
♦Actuation mechanism

• C/SiC rod vs arc used on X-38
♦Hot dynamic seals

• Nextel/saffil
♦CMC fasteners

• Fewer than X-38 due to no box cover

ESA-TPS-2006-Lange3
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IXV Metallic Sandwich TPS

♦Metallic sandwich TPS
• Multiple cycles to 900°C
• Core is stainless steel hollow

spheres (Alcatel Alenia Space (I)
and Plansee (A))

• HollowMet core (ODS hollow sphere)
♦TRL 2-4
♦Passenger experiment on IXV
♦Development tasks

• Material development and characterization
for core

- Minimize mass for given thermal
mechanical load

• Thermal cycling of subassembly of ≥ 2
tiles, including interfaces, seals, and
insulation

• Hypervelocity impacts testing (exploit
energy absorption of material)
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IXV Metallic Honeycomb TPS

♦ TRL 2-4

♦ TIMETAL 1000 for use to
850°C (Astrium)
• Orthorhombic TiAl (Ti2AlNb)

or TiAl reinforced TiB
• Passenger experiment on IXV

♦ ODS Superalloys up to 1250°C
(Dutch Space)
• IN 617
• Baseline vehicle technology
• Windward aft or leeward aft
• Development tasks

- Design trades on seals, insulation, and interfaces to cold structure
- Manufacture and test of selected design
- Thermal cycling under IXV thermal and pressure profiles (2 TPS tiles)
- Foils production
- Core manufacturing
- External sheet to core brazing

TIMETAL panels
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IXV Metallic TPS & Hot Structures (Dutch Space)

♦AEOLUS team since 1993, lead by Dutch Space
♦X-38 hot rudder

• Fab and tested a PM-1000 rudder to 1200°C (1 yr)
• Requirements changed
• Qualified Ti/CMC rudder (1 yr)

♦Sandwich panel
• PM-1000 facesheets
• PM-2000 core
• Vacuum brazing
• 47 ascent/descent cycles - good condition
• Low and high speed (hail, 208 m/sec) impact test

performed - good performance
♦New design (post X-38) demonstrated

• Thermo-mechanical tests performed and compared
well to analysis

• Sandwich panels with inserts and edge members
• Corrugated webs with stress/strain reducing clips

♦Extensive materials database developed
♦Manufacturing development performed

ESA-TPS-2006-Mooij
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European eXPErimental Re-entry Testbed (EXPERT)
Flight Experiment TPS (ESA)

♦ Relatively large nose radius (RN <
0.4 m, L = 1.7 m, d = 1.3 m) to
minimize stagnation heating rates
and ablation pollution

♦ 5 km/sec, entry path angle -5.5°, 3°
AoA

♦ Curved corner TPS (4)
♦ Flaps---study complex physics and

X-38 issues; protected with TPS,
instrumented on both sides

♦ Flat panels, including flap box and
flaps (1050 mm2, 1100 mm high)

Configuration: Blunt cone configuration
with a pyramidal shape (called KHEOPS)
having four flat surfaces, each with a fixed
flap (two fixed flap settings).
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EXPERT C/SiC Nose Cap (DLR)

♦Based on X-38 experience (led by DLR Stuttgart)
♦ Internal flexible insulation below surface
♦ qmax = 1,600 kW/m2

♦Material choice C/C-SiC
• Avoided ablator

- Geometrical stability
- Chemical pollution of flowfield

♦ Load transfer from nose to vehicle cold structure
• Elevated temperatures
• Thermal expansion of nose
• Thin metallic brackets bolted to nose and to cold structure

- Less susceptible to side loads than X-38 based double bolt-joint design
- Low complexity and cost

♦Active oxidation in dissociated environments is accompanied by a sudden temperature
increase of up to 500K.

♦Recombination coefficients determined for C/SiC and PM 1000 in O2 and N2

IAC-06-D2.5.04
AIAA-2005-3262
AIAA-2005-3309
ESA-TPS-2006-Reimer1
ESA-TSP-2006-Herdrich1
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EXPERT Metallic TPS

ESA-TPS-2006-Fatemi

♦ODS PM 1000
♦ qmax = 225 kW/m2

• CFD assumed partially catalytic
CMC and PM 1000

• Nose non-catalytic, PM 1000 fully
catalytic.  Thus 1.2 factor used for
conservatism

♦Extensive FEA performed
♦Mechanical stiffness to withstand

re-entry dynamic pressure and fast
depressurization during ascent

♦ Internal flexible insulation below
surface

♦Nose attachment to vehicle and
metallic TPS
• 4 mm step at RT, flush at max

temperature
• Seal designed to seal both hot

and cold
• Used inverted cone which is

pulled upwards by expanding
metallic TPS and counteracts the
downward movement due to drag

• Inverted cone designed to follow
the deformation (~2%) of the PM
1000 metallic TPS
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EXPERT CMC Open Flaps (MT Aerospace)

♦ Fixed at 20° deflection
♦ Open flap, 396 x 315 x 50 mm
♦ Two spherical supports at the hinge line
♦ Static hinge line seal
♦ Flap support connected to flap main body

and PM 1000 cavity via spherical CMC
bearings

♦ All joints CMC to eliminate CTE problems
♦ Flap box is designed as heat sink since flap

is much hotter than metallic TPS capability
♦ Bearing shells fixed by CMC pins to flap main

body
♦ Hinge seal fibrous saffil core wrapped in 1

layer Nextel clamped between flap leading
edge and cavity

ESA-TPS-2006-Lange2
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Unmanned Space Vehicle (USV)

♦Italian Space Agency / CIRA

♦Technology development
• Sharp hot structures

- Wing leading edges
- Nose cap

♦Orbital test bed: Flying Test Bed - X (FTB-X)
• Entry from LEO at 200 km
• < 20° AoA
• < 20 min entry
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USV Ultra High Temperature Ceramics (UHTC) Nose

IAC-05-C2.3.05
IAC-06-C2.4.04
IAC-06-C2.4.05

♦Nose design
• Bulk graphite core
• Truncated conical C/SiC frame from PIP

(Fabbricazioni Nucleari)
• ZrB2-SiC coating on C/SiC frame by plasma spray

(Centro Svilippo Materiali)
• UHTC conical tip from hot pressing (National

Research Council Institute for Ceramic Materials)
♦UHTC primary focus area

• Core/shell configuration
- ZrB2 core
- (Zr,Hf)B2 shell

• Electrical Discharge Machining (EDM), and its effect
on the surface

- Cu, Zn contamination
- Decreased flexure strength

• Mechanical assembly
- Coupling pin (UHTC material to reduce thermal stress)
- Contact pressure not important
- Compressive stresses key

AIAA-2005-3266
AIAA-2005-3267
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USV Wing Leading Edge (Italy)

♦Advanced Structural Assembly (ASA)
program funded by ASI

♦Wing test article for PWT test
• Leading edge (interchangeable options)

- Actively cooled: Inconel
- UHTC

• Hybrid sandwich panel up to 2000°C
(windward surface)

- C/C facesheets
- C foam core - evaluating both co-

processing and secondary bonding
• Leeward surface MMC (CSM)

- Ni sheets and SiC/Al2O3 fibers

ESA-TPS-2006-Fossati-1
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USV UHTC’s

♦Multiple fabrication routes studied
• Sintering aids
• Reactive hot pressing starting from solid

precursors
• Spark plasma sintering for densification
• Introduction of second phases (SiC and

MoSi2) to inprove oxidation resistance
and mechanical properties

♦Complex shaped components via
Electrical Discharge Machining
• Compared diamond tool machining vs

EDM on ZrB2-SiC

ESA-TPS-2006-Bellosi
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USV UHTC Emissivity and Catalycity

♦Compositions
• A: ZrB2 + SiC + sintering aid (MoSi2)
• B: ZrB2 + HfB2 + SiC + sintering aid

♦Total hemispherical emissivity 10-3 and
200 Pa
• A: large difference due to pressure.  200

Pa higher ε due to oxide layer
• B: small difference due to pressure

♦Catalycity
• Just composition A so far

ESA-TPS-2006-Scattela
IAC-06-C2.4.04

Total hemispherical ε,
Composition A

200 Pa 10-3 Pa
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USV UHTC Oxidation

♦ 1200 min
♦ Dry, flowing air
♦ 1450°C
♦ Mass from TGA
♦ XRD & SEM

• Presence of ZrO2 and Zr/HfO2

• External glassy layer (Si-O-like
system)
- 100 µm for A
- 50 µm for B

B: Zr/HfO2 + Si-O
like system, 50 µm

A: ZrO2 + Si-O like
system, 100 µm



27

Sharp Edge Flight Experiment (SHEFEX)

♦Funded by DLR
♦Objectives

• Evaluate performance of
multi-facetted leading edges

• Compare numerical data with
flight results

♦Flight Oct 27, 2006
• Mach 7 between 90-20 km
• 300 km apogee

AIAA-2003-7030
AIAA-2006-7926
AIAA-2006-8071
AIAA-2006-7921
AIAA-2006-8027
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SHEFEX (DLR)

♦ TPS, hot structures experiment, Oct. 2005 flight
• Apogee 211 km
• 550 sec

♦ ~3 ft long, 1.5 ft diameter
♦ Test flat, facetted, panels
♦ Seals and attachments included in test
♦ Primarily CMC’s with some metallic TPS
♦ CMC panels utilizing DLR’s liquid silicon infiltration (LSI) process

• Central post with flexible standoffs at the corners (thermal expansion not suppressed)
• Fibrous matt insulation under cover plate
• CMC fastener connects panel to central post.

♦ C/C-SiC leading edge
♦ WHIPOX (Wound Highly Porous Oxide) seals

• Oxide fibers (Nextel) embedded in porous mullite or alumina matrix
♦ Passenger experiments

• 2 ceramic (EADS)
• 2 metallic (Plansee)
• Ceramic (MT Aerospace)

♦ Aluminum structure
♦ All in-flight instrumentation integrated into TPS
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Sustained Hypersonic Flight Experiment (SHyFE)

AIAA-2003-7030
AIAA-2006-7926
AIAA-2006-8071

♦ Funded by UK Ministry of Defense
♦ Objective

• Design and fly a prototype ramjet
capable of sustained hypersonic flight

♦ Vehicle
• Weight ~ 30 kg, 1.5 m long, 7 in. dia.
• Sounding rocket boost to M 4 at 15 km,

accelerate to M 6 at 32 km, cruise for
200-300 km

• Ballistic climb from M 4 to M 6 that
takes ~ 60 sec.

• Diesel fuel
• Shock on lip is M 4.8

♦ First flight Aug 2009, second flight 2010
♦ Thermal management

• Minimize heat ingress from combustion chamber (2400K) to center body
components

♦ C/SiC used for vehicle construction
• MT Aerospace fabrication
• Air-breathing propulsion experiment
• Practically the entire flight exp is C/SiC, except a Ti tank

- MT Aerospace is fabricating the C/SiC via CVI
- The fuel flows in an annulus between 2 C/SiC tubes
- The fin roots are bonded to the body
- MT Aerospace has eliminated a lot of the bolts by bonding and some other

creative techniques that they have not discussed
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LEA

♦MBDA and Onera (France)
♦6 flight tests 2010 - 2013 in range

of M 4-8
♦4.5 m long
♦Not recovered
♦20-30 sec flight
♦One of the key required

technologies is fuel-cooled
composite structures for
combustion chambers
• C/SiC actively cooled combustion

chamber being worked

AIAA-2003-6918

AIAA-2005-3433

AIAA-2006-7925

AIAA-2006-8072

AIAA-2005-3434
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LEA PTAH-SOCAR Actively Cooled Composites

♦ MBDA / EADS ST
♦ Duct structure

• Obtained by weaving with stitching yarns through removable mandrel
• 100 x 100 x 130 mm3

• Pin-fin coolant channel
• No machining of channels (stitched)
• Back-up structure required
• 10 kg/m2, with backup structure 30% lighter than metallic cooled structure
• Utilized CVI followed LSI (liquid silicon infiltration) for rapid (days vs weeks

for CVI), low-cost densification
♦ Hot test

• Cooled by air
• Tested at M 7.5 conditions
• Supersonic combustion air/H2
• Twelve 10 sec tests

♦ Next step - larger structures
AIAA-2003-6918

AIAA-2005-3433

AIAA-2006-7925

AIAA-2006-8072

AIAA-2005-3434
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LEA CMC Cooled Combustion Chamber

♦Snecma and Onera (through PWR & AFRL, A3CP program)
♦Snecma C/SiC (Sepcarbinox)
• Brazed 2 panels
• Machined grooves in the hot side panel
• Integrated manifolds on cold side
• 115 x 40 mm with 3 channels

♦Tested at AFRL radiant facility
• JP7 fuel coolant
• 1.21 MW/m2 max heat flux
• 6.9 MPa (1000 psi)
• Good correlation with analysis

♦Same panel tested in an Onera scramjet engine test facility
• H2 for combustion
• Up to 1.5 MW/m2



33

DLR Coatings Flown on FOTON

♦ FOTON is a Russian flight experiment (15 days in
orbit)

♦C/C-SiC via Liquid Silicon Infiltration (LSI)
• CFRP via process such as RTM
• Pyrolysis at 900°C in Ar leads to porous C/C
• Siliconizing at 1600°C in vacuum includes LSI

and formation of SiC matrix
♦Developed yttrium silicate coating

• Performed well in PWT tests
• Flew on FOTON

- 1 and 2, CVD SiC + yttrium silicate via low
pressure plasma spray

- 3, CVD SiC + titanium oxide slurry via “painting”
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FOTON and EXPERT
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Actively Cooled CMC Thrust Chamber (DLR)

♦C/C used for inner material, porosity 13-22%
• 0°/90° lay-up
• 10 mm thick
• Temperature gradients 1000°C/mm due to

low k (1-1.2 W/mK)
• 30 mm chamber diameter

♦CFRP jacket
• Internal pressure loads
• Longitudinal compression loads due to

attachments and thrust
• 5 mm thick
• Searching for H2 barrier

♦Permeability of multiple CMC’s measured
♦Numerous hot tests performed

AIAA-2005-3229
ESA-TPS-2006-Kuhn
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Multi-Layer Insulation (MT Aerospace)

ESA-TPA-2006-Keller

♦Medium Temperature (~1000°C)
• Weight limit (by ESA) of 4 kg/m2 and 40 mm thick
• Nextel 312 fabric containment
• Pryogel superior to Microtherm (density, vibration,

humidity, handling)
• Consists of IMI and Pyrogel (6 mm)

♦High Temperature (~1600°C)
• ESA limits: 80 mm, 8.5 kg/m2

• Nextel 440 fabric containment
• IMI with Zircar APA-2 for highest temperature

regions and Pyrogel for lower temperature regions.
♦Seals (DLR)

• Saffil filled Nextel 312 bag impregnated by MTMS
(up to 1300K)

• Saffil filled Nextel 440 bag impregnated by MTMS
(up to 1900K)

• Kept in place by C/SiC guard
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Flexible External Insulation (FEI) (EADS)

♦Improvement of FEI blankets
• New high emittance coating developed with improved stability
• New less toxic waterproofing for initial and re- waterproofing

- Preferred MTES (methyl triethoxy silane) over standard MTMS (methyl
trimethoxy silane)

• Refurbishment and repair procedures defined
• Applied to FEI-1000 blankets and subjected to environmental testing

for 10 flights.
- Waterproofing and coating refurbished after 4 cycles

ESA-TPS-2006-Antonenko
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Hybrid Metal/CMC Winglet Hot Structure (Alenia)

♦Design and analysis complete
♦1/3 size of X-38, removed hinge step
♦Outboard panel and wing leading edge

• MT Aerospace C/SiC, 3 mm thick
♦Inboard panel divided into 3 panels

• Plansee PM 2000, 1 mm thick with 2 mm
thick ribs

♦Seals
• Nextel wrapped saffil

♦Fabrication and PWT test planned

ESA-TPS-2006-Fossati2
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ULTIMATE Metallic TPS (EADS)

♦EADS (Astrium)
♦Load carrying metallic box with standoffs and internal insulation

• Outer surface honeycomb sandwich (10 mm thick, hexagonal cells)
• TiAl ?
• Omega standoffs

♦Fabrication and test
• 200 x 200 mm (final design 500 x 500 mm)
• Single panel test

- Vibration
- Acoustic
- Thermal test to ~850°C

• Assembly tests
- Vibration
- Thermal IR
- PWT

♦SHEFEX flight
• Similar to ULTIMATE design

ESA-TPS-2006-Fischer1
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Passive To Active Oxidation (Germany)

♦PWT tests ranging from  50 - 7000 Pa and 1650 - 1950°C with peak to 2300°C
♦At steady state 1720°C/800 Pa, a small increment in energy (1 mm closer) caused a

small hot spot that within 30 sec. covered the entire sample with a temperature of
2050°C

♦Test very reproducible
♦Also observed at 1700°C/50 Pa, 1800°C/2000 Pa, 1840°C/3500 Pa, 1940°C/7000 Pa
♦Temperature jump occurring

at passive to active transition
♦What causes temperature rise?

• Test done with nitrogen plasma
and little oxygen (few Pa)

- 1460°C/690 Pa temperature
rose to 1850°C with little erosion

• Strong evidence of nitrogen
recombination during active oxidation

• Half energy released during active
oxidation from oxidative reactions,
half from nitrogen recombination

ARV2001-Hilfer
IAC-02-I.3.05



42

Agenda

♦ Background
• Comments on prior ESA workshop
• X-38
• Hopper

♦ Flight Vehicle Based Technology Development
• IXV (ESA)
• EXPERT (ESA)
• USV (Italy)
• SHEFEX (Germany)
• SHyFE (UK)
• LEA (France)
• Foton (Russia)

♦ Non-Vehicle Specific Technology

♦ Concluding Remarks



43

Key TPS & Hot Structures Players in Europe

♦ MT Aerospace - CVI C/SiC hot structures fabrication and
design

♦ Plansee - High temperature metal (Ti, superalloy, and
refractory metals) fabrication

♦ DLR - LSI C/C-SiC hot structures and general hot structures
design

♦ Snecma - CVI C/SiC acreage TPS fabrication and design
♦ Dutch Space - metallic TPS and hot structures fabrication

and design
♦ EADS/Astrium - complete portfolio of acreage TPS, TPS and

hot structures design
♦ IABG - Hot structures testing
♦ ESTEC - ESA’s “field center”
♦ CIRA - Italy’s Aerospace R&D Center, world’s largest PWT
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Observations

♦ Strong emphasis on CMC and metallic acreage TPS
• Europe considers CMC shingle TPS a higher TRL than

metallic TPS.  In the US, we have the opposite view.
♦ In general, companies have niche technologies and little

competition in that area, lots of collaboration
♦ Many of the companies have both the fabrication and

design expertise in the same company
♦ They seem to be focused on developing technology for

flight experiments
♦ They understand that flight experiments sometimes fail

and move on
♦ Europeans are doing a lot of good work.  Get papers and

follow their progress


