Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

Workshop on Materials and Structures for Hypersonic Flight
University of California Santa Barbara
July 12-13, 2006

David E. Glass
NASA Falcon Lead
NASA Langley Research Center
david.e.glass@nasa.gov
Agenda

♦ Introduction
♦ Modeling
♦ Fabrication and Testing
♦ Future Direction and Challenges
♦ Concluding Remarks
Heat pipes transfer heat isothermally by the evaporation and condensation of a working fluid.
Leading-Edge Heat-Pipe Operation

- Condenser: $T_s > T_{rad}$
- Evaporator: $T_s < T_{rad}$

Graph showing heat flux, Btu/ft²·sec vs position, in.

NASP ascent ($q_{max} = 495$ Btu/ft²·sec)

Shuttle Orbiter

Sharp LE, hypersonic vehicle

Upper surface

Lower surface

Position, in.
Heat Pipe Cooled Leading Edge History

- **Cal Silverstein** 1971
 - R=0.5"
 - Mach 8 Cruise Aircraft

- **C. Camarda** 1978
 - ½ scale Space Shuttle
 - Design, Fab/Test
 - Hastelloy x/Na

- **C. Wojcik** 1991
 - Nb-Zr/Li

- **Merrigan/Seng** 1989
 - Bench -scale Nose cap

- **NASP** 1990
 - Boman & Elias
 - 1990
 - Hastelloy-X/Na Heat pipe

- **C. Silverstein** 2001
 - Hypersonic
 - Engine Cowl
 - Mach 6 test

- **LMSSC_ AFRL/VA** 2005
 - Superalloy/Li;
 - Superalloy/Na; Mo-Re/Li

- **D. Glass et. al.** 1999
 - (Mo/Re)/Li Heat Pipe
 - Embedded in C-C
 - Fab & Test

- **2005/6**
Agenda

♦ Introduction
♦ Modeling
♦ Fabrication and Testing
♦ Future Direction and Challenges
♦ Concluding Remarks
Heat-Pipe Modeling

♦ Conduction, convection, or radiation coupling to environment
♦ Container - conduction only
♦ Wick/working fluid - conduction and heat of fusion
♦ Vapor
 • Phase I - free molecular
 • Phase II - continuum front moves toward cooler end. Flow may be choked at end of evaporator
 • Phase III - continuum over entire length in vapor region Sonic limit not encountered
Heat-Pipe-Cooled Leading Edge Finite Element Analysis

$T_{\text{max}} = 2765^\circ\text{F}$

$T_{hp} = 2197^\circ\text{F}$

3-D finite element model (non-linear properties)
Agenda

♦ Introduction

♦ Modeling

♦ Fabrication and Testing
 • NASA
 • Air Force

♦ Future Direction and Challenges

♦ Concluding Remarks
NASA Langley Heat-Pipe Leading-Edge Experience

- Experience in design, analysis, integration, and testing

- Shuttle
 - Hastelloy-X
 - Na working fluid
 - Circular heat pipes

- NASP
 - Mo-Re embedded in C/C
 - Li working fluid
 - D-shaped heat pipes

- Advanced STS
 - Hastelloy-X
 - Na working fluid
 - Rectangular heat pipes
Heat pipes passively reduce leading-edge temperatures to reuse limits of composite refractory composite structure.

Mo-Re heat pipe lithium working fluid.
Description of Heat-Pipe-Cooled Wing Leading Edge

♦ Heat-pipe container
 • 0.010 in. arc cast Mo-41Re
 • High strength
 • High use temperature
 • Lighter than W-Re or pure Re
 • Ductile at room temperature
 • Weldable

♦ Heat-pipe working fluid
 • Lithium
 • 17 psia vapor pressure at 2500°F (1370°C)
 • Compatible with refractory metals

♦ Refractory composite structure
 • C/C or C/SiC (3-D woven fabric)
 • High use temperature
 • Lightweight
 • 0.010 in. SiC oxidation protection coating
 • CVD coating for minimization of coating temperature
Heat-Pipe-Cooled Leading Edge Development

- Numerous small specimens to study various issues

- Design validation heat pipe
 - 36-in-long straight heat pipe
 - Operated up to 2460°F (1350°C)
 - Throughput of 3.1 Btu/sec (3.3 kW)
 - Radial heat flux of 141 Btu/ft²·sec (160 W/cm²)
 - Developed leak due to difficulties with welded thermocouple

- Three straight heat pipes
 - 28-in-long
 - Operated up to 2300°F (1260°C) and 155 Btu/ft²·sec
 - Embedded in carbon/carbon
 - Testing to be performed at NASA LaRC

- J-tube heat pipe
 - 30-in-long
 - Nose and wick fabrication issues resolved
 - Transient performance tests at LANL
Heat-Pipe Fabrication and Testing
Design Validation Heat Pipe

- Container: 0.01-in. arc cast Mo-41Re, 0.3-in. radius
- Wick: 4 layers of 400 x 400 Mo-5Re screen
- Artery to reduce liquid pressure drop
 - 0.1-in. diameter, 400 x 400 mesh screen
 - Located on non-heated surface
 - Spring in artery for support
 - One end closed, pool at other end
- Heat pipe with thermocouples and induction heat coils
Steady State Heat-Pipe Operation

Design Validation Heat Pipe

Note: Thermocouples ~ 4 in. apart.
Heat-Pipe Start-Up From the Frozen State
Design Validation Heat Pipe

Induction heating

Heat pipe (~ 4-in. spacing)

TC #1 TC #2 TC #3 TC #5

Temp., °F

Time, sec.

TC 1 TC 2 TC 3 TC 5 TC 6 TC 7 TC 8 TC 9 TC 10

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000
Heat-Pipe-Cooled Leading Edge Development

- Numerous small specimens to study various issues

- Design validation heat pipe
 - 36-in-long straight heat pipe
 - Operated up to 2460°F (1350°C)
 - Throughput of 3.1 Btu/sec (3.3 kW)
 - Radial heat flux of 141 Btu/ft²-sec (160 W/cm²)
 - Developed leak due to difficulties with welded thermocouple

- Three straight heat pipes
 - 28-in-long
 - Operated up to 2300°F (1260°C) and 155 Btu/ft²-sec
 - Embedded in carbon/carbon
 - Testing to be performed at NASA LaRC

- J-tube heat pipe
 - 30-in-long
 - Nose and wick fabrication issues resolved
 - Transient performance tests at LANL
Comparison of the Three Heat Pipes
Three Straight Heat Pipes

Lithium, lb Wet in

Heat pipe #1	0.0099	42 hrs @ 1650-1740°F
Heat pipe #2	0.0088	70 hrs @ 1650°F
Heat pipe #3	0.018	47 hrs @ 1650°F

- Heat pipe #1
 - 2300°F, 155 Btu/ft²-s over 1.5 in.
 - Nearly fully isothermal

- Heat pipe #2
 - 2420°F
 - @ 2075°F, non-condensible gas over last 6 in. of heat pipe

- Heat pipe #3
 - Never operated properly

28-in long
Heat Pipes Embedded In Carbon/Carbon
Three Heat Pipes in C/C

- Three Mo-Re heat pipes
- 3-D woven preform with T-300 fibers in a carbon matrix
 - increase through-the-thickness thermal conductivity
 - eliminate delaminations with 2-D C/C due to CTE mismatch
- No oxidation protection coating on C/C, therefore must test in an inert environment
C/C Heat Pipe Transient Testing

Three Heat Pipes in C/C

- Temp., °F
- Time, sec
- x = 30.0 in.
- x = 27.4 in.
- x = 2.9 in., under heaters
- Vertical, Horizontal
- 130 V
- 180 V
- x = 27.4 in.
- x = 30.0 in.
Heat-Pipe-Cooled Leading Edge Development

- Numerous small specimens to study various issues

- Design validation heat pipe
 - 36-in-long straight heat pipe
 - Operated up to 2460°F (1350°C)
 - Throughput of 3.1 Btu/sec (3.3 kW)
 - Radial heat flux of 141 Btu/ft²·sec (160 W/cm²)
 - Developed leak due to difficulties with welded thermocouple

- Three straight heat pipes
 - 28-in-long
 - Operated up to 2300°F (1260°C) and 155 Btu/ft²·sec
 - Embedded in carbon/carbon
 - Testing to be performed at NASA LaRC

- J-tube heat pipe
 - 30-in-long
 - Nose and wick fabrication issues resolved
 - Transient performance tests at LANL
Machine and Weld Nose Region
J-Tube Heat Pipe

Photograph of nose parts
Curved Wick Fabrication

J- Tube Heat Pipe

Wick formed on mandrel

Wick being formed around machined part

Nose portion of wick
RF-Induction Heating of J-Tube Heat Pipe

- RF-induction coil/concentrator heating of nose region on outer surface
- Test specific issue: Hot spot in nose region
 - Test
 - Curved surface not insulated, thus higher throughput required
 - Flight vehicle
 - Curved surface is “insulated”
J-Tube Heat-Pipe Checkout Tests

![Location of thermocouples](image)

Start up of J-tube heat pipe

Maximum temperature distribution (not steady state)

Test 1

Test 2

Test 3

Test 4
Test Induced Failure of Heat Pipe

- Nominal operation during 4 tests
- Test induced failure (concentrator arcing) during test 4
 - Insulation outgassed during test (~0.1 Torr)
 - Ionization between heating coil and heat pipe
Agenda

♦ Introduction

♦ Modeling

♦ Fabrication and Testing
 • NASA
 • Air Force

♦ Future Direction and Challenges

♦ Concluding Remarks
Overview: Heat Pipe Cooling for SOV Leading Edges AFRL/Lockheed Martin

♦ Identify Specific Operational Requirements, and SOV Configuration
 • Generated Performance Maps (Assuming Typical Requirements, and Configuration)

♦ Using LM-TSTO Orbiter Requirements, Developed Heat Pipe Cooled Leading Edge Designs for Moderate to High Heat Flux Cases
 • Heat Pipe Design Option
 – Modular Mo-Re Alloy Heat Pipe
 – Developed Processing approaches for Mo-Re/Li Heat Pipe Design
 • Heat Pipe Design Option
 – Modular Superalloy/ Li Heat Pipe
 – Successfully Designed, Fabricated, and Tested

♦ Developed Heat Pipe Design Solutions for Hypersonic Vehicles
 • Sharp Hybrid Leading Edge Designs
 • Cowl Inlet Cooling (Fabricate and Test Superalloy/Na Heat Pipe)

* First Superalloy/Li Heat Pipe
Performance Map for Heat Pipe Leading Edge Cooling

- Generated Relationship Between the **Cooling System Temperature** and Radiation Length and **Aerothermal Environment** for Different Leading Edge Radii
Technical Assessment of Key HPCLE Design Options

- **Key Design Options Very High Temp.**
 - Modular Mo Alloy/Li Heat Pipe
 - Modular (or D) Mo-Re/Li Heat Pipes Embedded in C-C or C/SiC
 - Modular (or D) Mo-Re/Li Heat Pipe Design

- **Key Design Options High Temp**
 - Superalloy/ Li Heat Pipe

- **Trade Study Criteria**
 - Materials Cost
 - Machining
 - Joining
 - Heat Pipe Durability
 - Thermal Performance
 - Structural Performance
 - System Weight
 - Life Cycle Cost
 - Manufacturing Yield
 - Start-up Risk
 - Atmospheric Protection Risk
 - Repair/Rework

- **Other System Level Concerns**
 - Impact From Atmospheric Debris
 - Oxidation Resistance
 - Thermal Contact Resistance
 - Robustness in Flight of Ground
 - Toxicity of Li, in Case of Leak
 - Manufacturing and Ease of Integration
 - Comparison with Passive and Actively Cooled Designs
Air Force Program Summary

♦ Developed Performance Maps Providing HPCLE Design Solutions

♦ Based on Analysis for TSTO-Based SOV Configuration
 • # 1 Modular Mo-47%/Li Heat Pipe
 • # 2 Modular Superalloy/Li Heat Pipe

♦ Performed Superalloy/Li Heat pipe Life Compatibility Tests
 • Successfully Demonstrated ~401 Hours Life

♦ Design, Fabrication and Testing of Prototype Articles
 • 4” x 36” Superalloy/Li Heat Pipes
 • Passed Functional Tests, Operational Performance Test (in Progress)

♦ HPCLE Design Development for Hypersonic Cruise Vehicles (Ongoing)
Additional Air Force-Funded Activities

♦ Refrac Systems - Norm Hubele (480) 940-0068
 • Wick/artery fabrication utilizing Mo-5Re alloy
 • Wick/artery insertion technique
 • Heat pipe container welding technique
 • Diffusion bonding methods
 • Modular heat pipe fabrication
 • Novel lithium fill method development
 • Alternate screen material evaluation

♦ MR&D – Brian Sullivan (610) 964-6131
 • Design and analysis of heat pipe cooled refractory composite leading edges

♦ Ultramet – Art Fortini (810) 899-0236 x118
 • Low cost CVD heat pipe fabrication

♦ Lockheed – Suraj Rawal (303) 971-9378
 • Small radius heat pipe cooled leading edge designs for hypersonic cruise vehicles
Agenda

- Introduction
- Modeling
- Fabrication and Testing
- Future Direction and Challenges
- Concluding Remarks
Path Forward

♦ For heat pipes to be utilized on the leading edges of flight vehicles
 • Designers must be willing to insert the technology
 • The payoff must be significant and the technical evolution not

♦ High temperature heat pipe options
 • Superalloy or refractory metal
 • Embedded or not embedded

♦ Superalloy heat pipes offer increased heat flux capability to the designer using “conventional” materials

♦ Refractory metal heat pipes embedded in a refractory composite offer a significant increase in heat flux capability
Different Materials At Elevated Temperatures Are Problematic

- Material compatibility, f(t,T)
 - Problem: Brittle carbides, Carbon in heat pipe
 - Solution: Coating on Mo-Re

- Coefficient of thermal expansion mismatch (loose for stress, tight for thermal)
 - Problem: Buckling of flat surface, Increased contact resistance
 - Solution: Convex surface, Compliant or removable layer
Concluding Remarks

- Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles

- Heat-pipe leading edge development
 - Design validation heat pipe testing confirmed design
 - Three heat pipes embedded and tested in C/C
 - Single J-tube heat pipe fabricated and testing initiated

- HPCLE work is currently underway at several locations