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Abstract

A thermodynamically consistent damage model is proposed for the simulation of

progressive delamination in composite materials under variable-mode ratio. The

model is formulated in the context of Damage Mechanics. A novel constitutive

equation is developed to model the initiation and propagation of delamination. A

delamination initiation criterion is proposed to assure that the formulation can

account for changes in the loading mode in a thermodynamically consistent way.

The formulation accounts for crack closure effects to avoid interfacial penetration of

two adjacent layers after complete decohesion. The model is implemented in a finite

element formulation, and the numerical predictions are compared with experimental

results obtained in both composite test specimens and structural components.
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1 Introduction

Structural collapse in a composite structure is caused by the evolution of

different types of damage mechanisms, such as matrix transverse cracking,

fibre fracture and delamination. The particular damage modes depend upon

loading, geometry, lay-up and stacking sequence.

Delamination is one of the most common types of damage in laminated fibre-

reinforced composites due to their relatively weak interlaminar strengths. De-

lamination may arise under various circumstances, such as in the case of trans-

verse concentrated loads caused by low velocity impacts. This damage mode

is particularly important for the structural integrity of composite structures

because it is difficult to detect during inspection. Furthermore, delamination

causes a drastic reduction of the bending stiffness of a composite structure

and, when compressive loads are present, promotes local buckling.

When other material non-linearities can be neglected, methods based on Lin-

ear Elastic Fracture Mechanics (LEFM) have been proven to be effective in

predicting delamination growth. However, LEFM cannot be applied without

an initial crack. In some situations, methods combining a stress analysis with

a characteristic distance have been applied to predict the initiation of de-

lamination [1]-[2]. After delamination onset, LEFM can be used to predict

delamination growth [3]-[4]. Techniques such as virtual crack closure tech-

nique (VCCT) [5]-[9], J-integral method [10], virtual crack extension [11] and

stiffness derivative [12] have often been used to predict delamination growth.

These techniques are used to calculate the components of the energy release
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rate. Delamination growth is predicted when a combination of the components

of the energy release rate is equal to, or greater than, a critical value [13].

However, difficulties are also encountered when these techniques are imple-

mented using finite element codes. The calculation of fracture parameters,

e.g. stress intensity factors or energy release rates, requires nodal variable and

topological information from the nodes ahead and behind the crack front. Such

calculations can be done with some effort for a stationary crack, but can be

extremely difficult when progressive crack propagation is involved.

Another approach to the numerical simulation of the delamination can be

developed within the framework of Damage Mechanics. Models formulated

using Damage Mechanics are based on the concept of the cohesive crack model:

a cohesive damage zone or softening plasticity is developed near the crack

front. The origin of the cohesive crack model goes back to Dugdale [14] who

introduced the concept that stresses in the material are limited by the yield

stress and that a thin plastic is generated in front of the notch. Barenblatt [15]

introduced cohesive forces on a molecular scale in order to solve the problem

of equilibrium in elastic bodies with cracks. Hillerborg et al. [16] proposed

a model similar to the Barenblatt model, but where the concept of tensile

strength was introduced. Hillerborg’s model allowed for existing cracks to grow

and, even more importantly, also allowed for the initiation of new cracks.

Cohesive damage zone models relate tractions to displacement jumps at an

interface where a crack may occur. Damage initiation is related to the in-

terfacial strength, i.e., the maximum traction on the traction-displacement

jump relation. When the area under the traction-displacement jump relation

is equal to the fracture toughness, the traction is reduced to zero and new crack
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surfaces are formed. The advantages of cohesive zone models are their sim-

plicity and the unification of crack initiation and growth within one model.

Moreover, cohesive zone formulations can also be easily implemented in fi-

nite element codes using decohesion elements [17]-[25]. Although the cohesive

damage models cannot be considered non-local damage models [26], they al-

low a mesh-independent representation of material softening, provided that

the mesh is sufficiently refined.

In the formulation of the cohesive models, it is important to control the en-

ergy dissipation during delamination growth in order to avoid the restoration

of the cohesive state, i.e., it is necessary to assure that the model satisfies

the Clausius-Duhem inequality. There are some models in the literature that

can be used under constant mixed-mode conditions [21],[23]-[24], [30]-[35].

However, the models proposed generally do not satisfy the Clausius-Duhem

inequality under variable-mode loading situation. Most of the models cited

above define the damage threshold parameter as the maximum displacement.

This assumption may lead to the violation of the Clausius-Duhem inequality

when the crack grows in a varying mode.

The restoration of the cohesive state is illustrated in Figure 1. This Figure

represents the traction (τ)-relative displacement (∆) relation for two different

mode ratios, GII/ (GII +GI) = A (Figure 1 a)) and GII/ (GII +GI) = B

(Figure 1 b)), where GI and GII are the components of the energy release

rate. If the mode ratio changes from A to B during delamination growth,

there is a restoration of the cohesive state. This effect is clearly inconsistent

with the thermodynamical principles.

[Figure 1 about here]
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A damage model for the simulation of delamination under variable-mode is

presented in this paper. A new delamination initiation criterion is proposed.

The delamination onset criterion stems from the expression of the critical

energy release rate for delamination propagation under mixed-mode loading

proposed by Benzeggagh and Kenane [36]. The model is implemented in the

implicit finite element code ABAQUS [54] by means of a user-written decohe-

sion element.

This paper is structured as follows: first, the formulation of the damage model

for the simulation of delamination onset and growth model is presented. The

finite element discretization of the boundary value is described. Finally, the nu-

merical predictions are compared with experimental results obtained in com-

posite test specimens and composite structural components.

2 Model for delamination onset and propagation

The boundary value problem, the kinematic equations, and the constitutive

relations are presented for the formulation of the model for delamination onset

and delamination propagation.

2.1 Boundary value problem

Consider a domain Ω, as shown in Figure 2(a), containing a crack Γc. The

part of the crack on which a cohesive law is active is denoted by Γcoh and is

called the fracture process zone (FPZ).

[Figure 2 about here]
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Prescribed tractions, ti, are imposed on the boundary ΓF , whereas prescribed

displacements are imposed on Γu. The stress field inside the domain, σij, is

related to the external loading and the closing tractions τ+j , τ
−
j in the cohesive

zone through the equilibrium equations:

σij,j = 0 in Ω (1)

σijnj = ti on ΓF (2)

σijn
+
j = τ+i = −τ−i = σijn

−
j on Γcoh (3)

2.2 Kinematics of the interfacial surface

To develop the necessary kinematic relationships, consider the crack Γc shown

in Figure 2(a) as part of a material discontinuity, Γd, which divides the domain

Ω into two parts, Ω+ and Ω− (Figure 2(b)).

The displacement jump across the material discontinuity Γd, [[ui]], can be writ-

ten as:

[[ui]] = u+i − u−i (4)

where u±i denotes the displacement of the points on the surface of the material

discontinuity Γd of the parts Ω± of the domain.

The fundamental problem introduced by the interfacial surface Γd is how to

express the virtual displacement jumps associated to the surfaces Γd± as a

function of the virtual displacements. Consider a three-dimensional space with

Cartesian coordinates Xi, i = 1, 2, 3 . Let the Cartesian coordinates x±i de-

scribe the position of the upper and lower surfaces Γd± in the deformed con-

figuration. Any material point on Γd± in the deformed configuration is related
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to its undeformed configuration through:

x±i = Xi + u±i (5)

where u±i are the displacements with respect to the fixed Cartesian coordinate

system. The coordinates x̄i of the midsurface can be written as [37]:

x̄i = Xi +
1

2

³
u+i + u−i

´
(6)

[Figure 3 about here]

The components of the displacement jump vector are evaluated at the mid-

surface Γ̄d, which is coincident with Γd in the undeformed configuration (see

Figure 3). The midsurface coordinate gradients define the components of the

two vectors, vηi and vξi , that define the tangential plane at a given point, P̄ :

vηi = x̄i,η (7)

vξi = x̄i,ξ (8)

where η, ξ are curvilinear coordinates on the surface Γ̄d. Although vηi and

vξi are generally not orthogonal to each other, their vector product defines a

surface normal. Therefore, the local normal coordinate vector is obtained as:

vn = vξ × vη kvξ × vηk−1 (9)

The tangential coordinates are then obtained as:

vs = vξ kvξk−1 (10)

vt = vn × vs (11)
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The components of vn,vs and vt represent the direction cosines of the local

coordinate system in the global coordinate system at a material point P̄ ∈ Γ̄d.

The director cosines define an orthogonal rotation tensorΘmi relating the local

coordinate system to the fixed coordinate system.

Using the rotation tensor, the normal and tangential components of the dis-

placement jump tensor expressed in terms of the displacement field in global

coordinates are:

∆m = Θmi [[ui]] (12)

where ∆m is the displacement jump tensor in the local coordinate system.

2.3 Constitutive laws

A constitutive law relating the cohesive tractions, τ j, to the displacement

jump in the local coordinates, ∆i, is required for modeling the behavior of

the material discontinuity. The constitutive laws in the material discontinuity

may be formally written as:

τ j = τ (∆i) (13)

τ̇ j = Dtan
ji ∆̇i (14)

where Dtan
ji is the constitutive tangent stiffness tensor.

A new constitutive model relating the displacement jumps to the tractions,

and based on Damage Mechanics is proposed.

The delamination model proposed follows the general formulation of Contin-

uum Damage Models proposed by Simo and Ju [38]-[39] and Mazars [40].
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The free energy per unit surface of the interface is defined as:

ψ (∆, d) = (1− d)ψ0 (∆) (15)

where d is a scalar damage variable, and ψ0 is a convex function in the dis-

placement jump space defined as:

ψ0 (∆) =
1

2
∆iD

0
ij∆j i = 1, 3; j = 1, 3 (16)

Negative values of ∆3 do not have any physical meaning because interpen-

etration is prevented by contact. Therefore, a modification of equation (15)

is proposed to prevent interfacial penetration of the two adjacent layers after

complete decohesion. The expression for the free energy proposed is:

ψ (∆, d) = (1− d)ψ0 (∆i)− dψ0
³
δ̄3i h−∆3i

´
(17)

where h·i is the MacAuley bracket defined as hxi = 1
2
(x+ |x|) and δ̄ij is the

Kronecker delta. The constitutive equation for the interface is obtained by

differentiating the free energy with respect to the displacement jumps:

τ i =
∂ψ

∂∆i
= (1− d)D0

ij∆j − dD0
ij δ̄3j h−∆3i (18)

The undamaged stiffness tensor, D0
ij, is defined as:

D0
ij = δ̄ijK (19)

where the scalar parameter K is a penalty stiffness. The constitutive equation
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can be written in Voigt notation as:

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ 1

τ 2

τ 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= (1− d)K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆1

∆2

∆3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
− dK

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

h−∆3i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

The energy dissipation during damage evolution, Ξ , represented in Figure 4

for single-mode loading, can be obtained from:

Ξ = −∂ψ
∂d
ḋ ≥ 0 (21)

[Figure 4 about here]

The model defined by equation (18) is fully determined if the value of the

damage variable d is evaluated at every time step of the deformation process.

For that purpose, it is necessary to define a suitable norm of the displace-

ment jump tensor, a damage criterion, and a damage evolution law, as will be

described in the following sections.

2.3.1 Norm of the displacement jump tensor

The norm of the displacement jump tensor is denoted as λ and is also called

equivalent displacement jump norm. It is used to compare different stages of

the displacement jump state so that it is possible to define such concepts as

‘loading’, ‘unloading’ and ‘reloading’. The equivalent displacement jump is a
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non-negative and continuous function, defined as:

λ =
q
h∆3i2 + (∆shear)

2 (22)

where ∆3 is the displacement jump in mode I, i.e., normal to midplane, and

∆shear is the Euclidean norm of the displacement jump in mode II and in

mode III:

∆shear =
q
(∆1)

2 + (∆2)
2 (23)

2.3.2 Damage criterion

The damage criterion is formulated in the displacement jump space. The form

of this criterion is:

F
³
λt, rt

´
:= λt − rt ≤ 0 ∀t ≥ 0 (24)

where t indicates the actual time and rt is the damage threshold for the current

time. If r0 denotes the initial damage threshold, then rt ≥ r0 at every point

in time. Damage initiation is produced when the displacement jump norm, λ,

exceeds the initial damage threshold, r0, which is a material property.

A fully equivalent expression for equation (24) that is more convenient for

algorithmic treatment is [41]:

F̄
³
λt, rt

´
:= G

³
λt
´
− G

³
rt
´
≤ 0 ∀t ≥ 0 (25)

where G(·) is a suitable monotonic scalar function ranging from 0 to 1. G(·)
will define the evolution of the damage value, and will be presented in the

following section.

11



2.3.3 Damage evolution law

The evolution laws for the damage threshold and the damage variable must be

defined in the damage model. These laws are defined by the rate expressions:

ṙ = µ̇ (26)

ḋ = µ̇
∂F̄ (λ, r)

∂λ
= µ̇

∂G (λ)

∂λ
(27)

where µ̇ is a damage consistency parameter used to define loading-unloading

conditions according to the Kuhn-Tucker relations:

µ̇ ≥ 0 ; F̄
³
λt, rt

´
≤ 0 ; µ̇F̄

³
λt, rt

´
= 0 (28)

From the previous equations, it is easy to prove that the evolution of the

internal variables can be integrated explicitly [38]:

rt = max
n
r0,maxλs

o
0 ≤ s ≤ t (29)

dt = G
³
rt
´

(30)

which fully describes evolution of the internal variables for any loading-unloading-

reloading situation. The scalar function G (·) defines the evolution of the dam-
age value. For a given mixed-mode ratio, β, the function proposed here is

defined as:

G (λ) =
∆f (λ−∆0)

λ (∆f −∆0)
(31)

Equation (31) defines the damage evolution law by means of a bilinear con-

stitutive equation (see Figure 5), where ∆0 is the onset displacement jump,

and it is equal to the initial damage threshold r0. The initial damage thresh-

old is obtained from the formulation of the initial damage surface or initial
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damage criterion. ∆f is the final displacement jump, and it is obtained from

the formulation of the propagation surface or propagation criterion.

[Figure 5 about here]

It is therefore necessary to establish the delamination onset and propagation

surfaces for the complete definition of the damage model. Delamination on-

set and propagation surfaces and the damage evolution law fully define the

constitutive equations.

The constitutive equations for the interfacial surface are normally developed in

a phenomenological way, i.e., satisfying empirical relations that are obtained

using experimental results. There are several types of constitutive equations

used in decohesion elements: Tvergaard and Hutchinson [42] proposed a trape-

zoidal law, Cui an Wisnom [43] a perfectly plastic rule, Needleman first pro-

posed a polynomial law, [28], and later an exponential law [29]. Goyal et al.

[44] adopted Needleman’s exponential law to account for load reversal without

restoration of the cohesive state.

The law proposed here is a bilinear relation between the tractions and the

displacement jumps [21],[24],[45]. The bilinear law is the most commonly used

cohesive law due to its simplicity. One drawback of the bilinear law is that

the traction-displacement jump relation is discontinuous at the peak value

of the traction. The discontinuity in the traction-displacement jump relation

can be avoided using continuous functions. However, even for such continuous

functions, the discontinuity is unavoidable when modeling loading-unloading

cycles.
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For a given mixed-mode ratio, β, defined as:

β =
∆shear

∆shear + h∆3i (32)

the bilinear constitutive equation is defined by a penalty parameter, K, the

damage value, d, the mixed-mode damage initiation, ∆0, and the total decohe-

sion parameter, ∆f . These last two values are given by the formulation of the

onset and the propagation criterion which takes into account the interaction

between different modes, and their value depends on the mixed-mode ratio β.

The penalty parameter K assures a stiff connection between two neighboring

layers before delamination initiation. The penalty parameter should be large

enough to provide a reasonable stiffness but small enough to avoid numeri-

cal problems, such as spurious tractions oscillations [46], in a finite element

analysis.

Propagation criterion

The criteria used to predict delamination propagation under mixed-mode load-

ing conditions are usually established in terms of the components of the energy

release rate and fracture toughness. It is assumed that when the energy re-

lease rate, G, exceeds the critical value, the critical energy release rate Gc,

delamination grows.

The most widely used criterion to predict delamination propagation under

mixed-mode loading, the ”power law criterion” is normally established in

terms of a linear or quadratic interaction between the energy release rates

[48]. However, Camanho et al. [24] have shown that the expression proposed

by Benzeggagh and Kenane [36] for the critical energy release rate for a mixed-

mode ratio is more accurate for epoxy and PEEK composites. The expression
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proposed by Benzeggagh and Kenane for the critical energy release rate Gc is:

Gc = GIc + (GIIc −GIc)
µ
Gshear

GT

¶η
(33)

Delamination growth is produced when the total energy release rate G is

greater or equal than the critical value Gc:

G ≥ Gc (34)

The energy release rate under mixed-mode loading is G = GI +Gshear where

Gshear = GII + GIII is the energy release rate for shear loading proposed by

Li [49],[50].

The propagation surface in the displacement jump space is defined through the

final displacements, which are obtained from the pure mode fracture toughness

(GIC , GIIC , GIIIC) considering that the area under the traction-displacement

jump curves is equal to the corresponding fracture toughness, i.e.:

GC =
1

2
K∆0∆f (35)

Using equation (35) in equation (33) the propagation criterion is obtained in

the displacement jump space as:

∆f =
∆0
3∆

f
3 +

³
∆0

shear∆
f
shear −∆0

3∆
f
3

´ ³
Gshear

GT

´η
∆0

(36)

where ∆0
3 and ∆0

shear are the pure mode onset displacement jumps and ∆f
3

and ∆f
shear are the pure mode final displacement jumps. It is necessary to

obtain the ratio Gshear

GT
to fully define the final displacement jump. For a given

mixed-mode ratio, β, the energy release rates are obtained from:

GI =
1

2
K
³
∆0
3 (β)∆

f
3 (β)−∆3∆

f
3 (β)

´
(37)
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Gshear =
1

2
K
³
∆0

shear (β)∆
f
shear (β)−∆shear∆

f
shear (β)

´
(38)

where ∆0
shear (β) and ∆0

3 (β) are respectively the shear and normal displace-

ment jump corresponding to the onset of softening under mixed-mode loading,

∆f
shear (β) and∆

f
3 (β) are the shear and normal displacement jump correspond-

ing to the total decohesion under mixed-mode loading, and ∆shear and ∆3 are

the components of the current displacement jump.

From (32):

∆0
shear (β) = ∆0

3 (β)
β

1− β
(39)

∆f
shear (β) = ∆f

3 (β)
β

1− β
(40)

∆shear = ∆3
β

1− β
(41)

Using equations (39), (40), and (41) in (37) and (38), the ratio between Gshear

GT

can be established in terms of β. Since the ratio Gshear

GT
is only a function of

the mixed-mode ratio β, henceforward this ratio is named as B:

B =
Gshear

GT
=

β2

1 + 2β2 − 2β (42)

Initial damage surface

Under pure mode I, mode II or mode III loading, delamination onset occurs

when the corresponding interlaminar traction exceeds its respective maximum

interfacial strength, τ 03, τ
0
2, τ

0
1. Under mixed-mode loading, an interaction be-

tween modes must be taken into account. Few models take into account the

interaction of the traction components in the prediction of damage onset. The

models that account for the interaction of the traction components are usually
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based on Ye’s criterion [51], using a quadratic interaction of the tractions:

Ãhτ 3i
τ 03

!2
+

Ã
τ 2
τ 02

!2
+

Ã
τ 1
τ 01

!2
= 1 (43)

However, experimental data for the initiation of delamination under mixed-

mode is not readily available and, consequently, failure criteria that can predict

the initiation have not been fully validated.

The criterion for propagation is often formulated independently of the crite-

rion for initiation. In this paper, a link between propagation and initiation

is proposed. Since delamination is a fracture process, the initiation criterion

proposed in this paper evolves from the propagation criterion and the damage

evolution law. The isodamage surface for a damage value equal to 1 corre-

sponds to the propagation surface obtained from equation (33). Then, the

isodamage surface for a damage value equal to 0 is the initial damage surface.

With these assumptions, the criterion for delamination initiation proposed

here is:

³
τ 0
´2
= (τ 3)

2 + (τ 1)
2 + (τ 2)

2 = (τ o3)
2 +

³
(τ oshear)

2 − (τ o3)2
´
Bη (44)

In the displacement jump space, the criterion becomes:

³
∆0
´2
= (∆3)

2 + (∆1)
2 + (∆2)

2 =
³
∆0
3

´2
+
µ³

∆0
shear

´2 − ³∆0
3

´2¶
Bη (45)

The initiation criterion developed here and summarized by equation (44) is

compared with Ye’s criterion and with a maximum traction criterion that does

not take into account interaction between the tractions. The surfaces obtained

by the different criterion are represented in Figure 6. The values predicted by

the new criterion are very close to Ye’s criterion, that has been successfully
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used in previous investigations [24].

[Figure 6 about here]

The formulation presented assures a smooth transition for all mixed-mode ra-

tios between the initial damage surface to the propagation surface through

damage evolution. If the loading mode changes, the formulation presented

avoids the restoration of the cohesive state and assures that the energy dissi-

pation is always positive.

The evolution of the damage surface from the damage initiation surface to the

propagation surface is represented in Figure 7, for positive values of displace-

ment jumps.

[Figure 7 about here]

2.4 Formulation of the constitutive tangent tensor

The constitutive tangent tensor needs to be defined for the numerical imple-

mentation of the proposed model. The constitutive tangent tensor is obtained

from the differentiation of the secant equation (18):

τ̇ i = Dij∆̇j − δ̄ijK

"
1 + δ̄3j

h−∆ji
∆j

#
∆j ḋ (46)

where Dij is defined as:

Dij = δ̄ijK

"
1− d

Ã
1 + δ̄3j

h−∆ji
∆j

!#
(47)
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The evolution of the damage variable d only occurs for loading situations.

Then, the evolution of the damage variable can be written as:

ḋ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ġ (λ) = ∂G(λ)

∂λ

.

λ , r < λ < ∆f

0 , r > λ or ∆f < λ

(48)

where the variation of the function G is obtained assuming that the variation

of the final displacement jump ∆f and the onset displacement jump ∆0 with

the mixed-mode ratio β are not significant for the time increment taken:

∂G (λ)

∂λ
=

∆f∆0

∆f −∆0

1

λ2
(49)

The evolution of the displacement norm is obtained from equation (22):

.

λ =
∂λ

∂∆k
∆̇k =

∆k

λ

Ã
1 + δ̄3k

h−∆ki
∆k

!
∆̇k (50)

Using equations (48) through (50), equation (46) can be written as:

τ̇ i = Dtan
ij ∆̇j (51)

Dtan
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n
Dij −K

h
1 + δ̄3j

h−∆ji
∆j

i h
1 + δ̄3i

h−∆ii
∆i

i
H∆i∆j

o
, r < λ < ∆f

Dij , r > λ or ∆f < λ

(52)

where H is a scalar value given by:

H =
∆f∆0

∆f −∆0

1

λ3
(53)
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3 Finite element discretization - computational model

To transform the strong form of the boundary value problem into a weak form

better suited for finite element computations, the velocities vi must belong

to the set U of the kinematically admissible velocity field which allows for

discontinuous velocities across the boundary Γd of the delamination.

The spaces for the test functions and trial functions are defined as:

δvi (X)∈U0, U0 =
n
δvi|δvi ∈ C0 (X) , δvi = 0 on Γvi

o
(54)

vi (X,t)∈U , U =
n
vi|vi ∈ C0 (X) , vi = v̄i on Γvi

o
(55)

The space of velocities in U are the kinematically admissible velocities or

compatible velocities. The space U satisfies the continuity conditions required
for compatibility and the displacement boundary conditions.

Considering Figure 2, the weak form of the momentum equation is obtained

as:

X
Ω±

Z
Ω±

Ã
∂σij
∂xj

+ ρbi

!
δvidΩ± = 0 ∀vi ∈ U (56)

where bi are the body forces and ρ is the density of the material

Using the decomposition of the velocity gradient and the traction continuity

condition, the weak form of the momentum equation in an updated Lagrangian

formulation is obtained as:

Z
Γd
tiδ [[vi]] dΓd +

X
Ω±

Z
Ω±

δDijσijdΩ± = (57)

X
Γ±

Z
Γ±

nj (δviσji) dΓ± +
X
Ω±

Z
Ω±

δviρbidΩ± ∀vi ∈ U
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where ti is the traction tensor, σij is the Cauchy stress tensor, and Dij is the

rate of deformation tensor. From equation (57), it is clear that the tractions

occurring at the cohesive interface are work-conjugate with the displacement

jumps.

The discretization of the domain is performed by the discretization of the

whole domain Ω with standard volume elements. However, the surfaces sur-

rounding the potential delamination Γd are discretized with decohesion ele-

ments [24]. The discretized formulation is divided in the two domains consid-

ering no formal coupling between the continuous and the discontinuous parts

of the deformation in the expression for the free energy of the interface [53].

3.1 Discretization of the interfacial surface

The displacements and displacement gradients for the decohesion elements are

approximated as:

ui|Ωe = Ne
Kq

e
Ki

(58)

[[ui]] |Ωe = N
e
Kq

e
Ki

(59)

with:

N̄e
K =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ne

K K ∈ Γ+d

−Ne
K K ∈ Γ−d

(60)

where qeKi is the displacement in the i direction of the K node of the element

e, Ne
K are standard Lagrangian shape functions [52]. N̄

e
K are Lagrangian shape

functions defined for the decohesion elements [24].

According to equation (58), the displacement field, ui, and the undeformed

material coordinate, Xi, associated with the surfaces Γd± are interpolated as
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follows:

u±i = NKq
±
Ki (61)

X±
i = NKp

±
Ki (62)

where q±Ki are the nodal displacement vectors and p±Ki are the undeformed

material nodal coordinate vector. Note that the values of p−Ki and p+Ki can be

different in the case that an initial crack exists. Using these equations, the

material coordinates of the interfacial midsurface are:

x̄i =
1

2
NKi

³
p+Ki + p−Ki + q+Ki + q−Ki

´
(63)

The components of the two vectors that define the tangential plane can be

written as:

vηi = x̄i,η = NKi,η
1

2

³
p+Ki + p−Ki + q+Ki + q−Ki

´
(64)

vξi = x̄i,ξ = NKi,ξ
1

2

³
p+Ki + p−Ki + q+Ki + q−Ki

´
(65)

Using (59) and (12), the displacement jump can then be obtained in local

coordinates as:

∆m = ΘimN̄KqKi = B̄imKqKi (66)

The contribution of a decohesion element for the internal load vector is given

by:

f intiK =
Z
Γd
τnB̄inKdΓd (67)

with B̄inK = ΘinN̄
e
K.

The softening nature of the decohesion element constitutive equation causes

difficulties in obtaining a converged solution for the non-linear problem when

using Newton-Raphson iterative method. In particular, quadratic convergence
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is not assured because the residual vector is not continuously differentiable

with respect to the nodal displacements.

The tangent stiffness matrix stems from the linearization of the internal force

vector and it is obtained using Taylor’s series expansion about the approxima-

tion qKi [25]. Taking into account that the calculation of the geometric terms

of the tangent stiffness matrix is computationally very intensive, these terms

are neglected. The tangent stiffness matrix, KrZiK , for the decohesion element

is therefore approximated as:

KrZiK ≈
Z
Γd
B̄jrZD

tan
nj B̄inKdΓd (68)

where Dtan
ij is the material tangent stiffness matrix, or constitutive tangent

tensor defined in 2.4.

4 Comparison with experimental studies

The formulation proposed here was implemented in the ABAQUS Finite Ele-

ment code [54] as a user-written element subroutine (UEL).

To verify the element under different loading conditions, the numerical pre-

dictions were compared with experimental data obtained for composite test

specimens and aircraft subcomponents. The double cantilever beam (DCB)

test, the end notched flexure (ENF) test, and mixed-mode bending (MMB)

tests in PEEK/AS4, a thermoplastic matrix composite material, were simu-

lated.

The debonding of a composite co-cured skin-stiffener subcomponent loaded

under tension was simulated, and the numerical results were compared with
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experimental data.

4.1 Mode I, mode II and mixed-mode I and II delamination growth for a

PEEK composite

The most widely used specimen for mixed-mode fracture is the mixed-mode

bending (MMB) specimen shown in Figure 8, which was proposed by Reeder

and Crews [55]-[57].

[Figure 8 about here]

The main advantages of the MMB test method are the possibility of using vir-

tually the same specimen configuration as for mode I tests, and the capability

of obtaining different mixed-mode ratios, ranging from pure mode I to pure

mode II, by changing the length c of the loading lever shown in Figure 8.

An 8-node decohesion element is used to simulate DCB, ENF and MMB tests

in unidirectional AS4/PEEK carbon-fiber reinforced composite. The spec-

imens simulated are 102-mm-long, 25.4-mm-wide, with two 1.56-mm-thick

arms. The material properties are shown in Table 1, and a stiffness K = 106

N/mm3 is used.

[Table 1 about here]

The experiments used to assess the accuracy of the model proposed were per-

formed by Reeder [55]-[57]. The experimental tests were performed at different

GII

GT
ratios, ranging from pure mode I loading to pure mode II loading. The
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initial delamination length of the specimens (a0) and the mixed-mode fracture

toughness obtained experimentally are shown in Table 2.

[Table 2 about here]

Models using 150 decohesion elements along the length of the specimens, and

4 decohesion elements along the width, were created to simulate the ENF

and MMB test cases. The initial size of the delamination is simulated by

placing open decohesion elements along the length corresponding to the initial

delamination of each specimen (see Table 2). These elements are capable of

dealing with the contact conditions occurring for mode II or mixed-mode I

and II loading, therefore avoiding interpenetration of the delamination faces.

The model of the DCB test specimen uses 102 decohesion elements along the

length of the specimen.

The different GII/GI ratios are simulated by applying different loads at the

middle and at the end of the test specimen. The analytical determination of

the middle and end loads for each mode ratio is presented in [24].

The experimental results relate the load to the displacement of the point

of application of the load P in the lever (load-point displacement, Figure

8). Since the lever is not simulated, it is necessary to determine the load-

point displacement from the displacement at the end and at the middle of the

specimen using the analytical procedure described in [24].

The B-K parameter, η = 2.284, is calculated by applying a least-squares fit to

the experimental data shown in Table 2.
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Figures 9 to 13 show the numerical predictions and the experimental data for

all the test cases simulated.

[Figure 9 about here]

[Figure 10 about here]

[Figure 11 about here]

[Figure 12 about here]

[Figure 13 about here]

Table 3 shows the comparison between the predicted and experimentally de-

termined maximum loads.

[Table 3 about here]

It can be concluded that a good agreement between the numerical predictions

and the experimental results is obtained. The largest difference (−8.1%) cor-
responds to the case of an MMB test specimen with GII

GT
= 20%. This fact

is not surprising, since the largest difference between the fracture toughness

experimentally measured and the one predicted using the B-K criterion occurs

for GII

GT
= 20%.
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4.2 Skin-stiffener co-cured structure

Most composite components in aerospace structures are made of panels with

co-cured or adhesively bonded frames and stiffeners. Testing of stiffened panels

has shown that bond failure at the tip of the stiffener flange is a common failure

mode. Comparatively simple specimens consisting of a stringer flange bonded

onto a skin have been developed by Krueger et al. to study skin/stiffener

debonding [58]. The configuration of the specimens studied by Krueger is

shown in Figure 14.

[Figure 14 about here]

The specimens are 203 mm-long, 25.4 mm-wide. Both skin and flange were

made from IM6/3501-6 graphite/epoxy prepreg tape with a nominal ply thick-

ness of 0.188 mm. The skin lay-up consisting of 14 plies was (0◦/45◦/90◦/-

45◦/45◦/-45◦/0◦)S and the flange lay-up consisting of 10 plies was (45◦/90◦/-

45◦/0◦/90◦)S.

The properties of the unidirectional graphite/epoxy and the properties of the

interface reported in reference [58] are shown in Tables 4 and 5, respectively.

[Table 4 about here]

[Table 5 about here]

The parameter for the B-K criterion is taken from test data for AS4/3501-625

as η=1.45, and a stiffness K = 106 N/mm3 is used.
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To keep the modeling difficulties low and the approach applicable to larger

problems, the model that was developed uses only two brick elements through

the thickness of the skin, and another two through the flange. The complete

model consists of 1,002 three-dimensional 8-node elements and 15,212 degrees

of freedom. To prevent delamination from occurring at both ends of the flange

simultaneously, model symmetry was reduced by modeling the tapered end of

the flange with a refined mesh on one side and a coarser mesh on the other.

Unlike the previous examples, this model does not contain any pre-existing

delaminations.

Residual thermal effects in the composite plies are simulated by performing

a thermal analysis step before the mechanical loads are applied. The same

coefficients of thermal expansion (α11=-2.4x10
−8 /◦C and α22=3.7x10

−5 /◦C)

are applied to the skin and the flange, and the temperature difference between

the room and curing temperatures is ∆T=-157 ◦C. The flange has more 90◦

plies than 0◦ plies, and the skin is quasi-orthotropic, so it is expected that

residual thermal stresses are present at their interface at room temperature.

Deformed plots of the finite element model immediately before and after flange

separation are shown in Figure 15.

[Figure 15 about here]

It can be observed that only the refined end of the flange separates. It is

worth noticing that the debond growth is not symmetric across the width: the

debond initiates on the left corner of the flange shown on the bottom left of

Figure 15 due to the lack of symmetry introduced by the terminated plies at

the flange tapered ends. This behavior was also observed in the experiments
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[58].

Figure 16 shows the load-extensometer measurement relation obtained in 4

experiments and the corresponding numerical prediction. Debond is detected

in the experiments by the discontinuities in the load-displacement relation.

Table 6 compares the average of the measured debond loads with the numerical

predictions.

[Figure 16 about here]

[Table 6 about here]

It can be observed that good accuracy in the prediction of the debond loads

is obtained. The predicted stiffness of the specimen is also in good agreement

with the experimental data. The stiffening effect detected in the experiments,

Figure 16, is due to the extensometer rotation as a result of specimen bending.

Although specimen bending is properly represented by the numerical model,

the extensometer measurement calculated from the numerical model does not

account for the rotation of the extensometer.

5 Concluding remarks

A thermodynamically consistent model for the simulation of progressive de-

lamination based on Damage Mechanics was presented. A constitutive equa-

tion for the interface was derived from the free energy of the interface. The

resulting damage model simulates delamination onset and delamination prop-
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agation. The constitutive equation proposed uses a single scalar variable to

track the damage at the interface under general loading conditions. A new

initiation criterion that evolves from the Benzeggagh-Kenane propagation cri-

terion has been developed to assure that the model accounts for changes in the

loading mode in a thermodynamically consistent way and avoids restoration

of the cohesive state. The damage model was implemented in a finite element

model. The material properties required to define the element constitutive

equations are the interlaminar fracture toughnesses, the penalty stiffness, and

the strengths of the interface. In addition, a material parameter η, which is

determined from standard delamination tests, is required for the Benzeggagh-

Kenane mode interaction law.

Two examples were presented that test the accuracy of the method. In the first

example, the simulations of the DCB, ENF and MMB tests represent cases

of single-mode and mixed-model delamination. A composite skin-stiffener co-

cured sub-component was also simulated, and the model predictions were com-

pared with available experimental data.

The examples analyzed are in good agreement with the test results, and they

indicate that the proposed formulation can predict the strength of composite

structures that exhibit progressive delamination.
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Fig. 6. Comparison between Ye’s criterion, a maximum traction criterion and the

new proposed criterion.

Fig. 7. Damage evolution surface in the relative displacements space.
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Fig. 8. MMB test specimen.

Fig. 9. Numerical and experimental results- pure mode I loading.
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Fig. 10. Numerical and experimental results- mixed mode I and II loading with

GII/GT =20%.
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Fig. 11. Numerical and experimental results- mixed mode I and II loading with

GII/GT =50%.
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Fig. 12. Numerical and experimental results- mixed mode I and II loading with

GII/GT =80%.

Fig. 13. Numerical and experimental results- pure mode II loading.

47



��� ��

�� ��
�� 		


�� 

���� ��

������������

���� ! "�"#$

%

Fig. 14. Skin-stiffener test specimen.
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Fig. 15. Skin-Stiffener debonding.
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Fig. 16. Experimental and numerical load-extensometer displacement relations.
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Tables
Table 1

Ply properties.

E11 E22 = E33 G12 = G13 G23 ν12 = ν13

122.7 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25

ν23 GIC GIIC τ0
3 τ0

2 = τ0
1

0.45 0.969 kJ/m2 1.719 kJ/m2 80 MPa 100 MPa

Table 2

Experimental data.

GII/GT 0% (DCB) 20% 50% 80% 100% (ENF)

Gc [kJ/m2] 0.969 1.103 1.131 1.376 1.719

a0 [mm] 32.9 33.7 34.1 31.4 39.2
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Table 3

Maximum loads.

GII/GT Predicted [N] Experimental [N] Error (%)

0% (DCB) 152.4 147.5 3.4

20% 99.3 108.1 -8.1

50% 263.9 275.3 -4.2

80% 496.9 518.7 -4.2

100% (ENF) 697.1 748.4 -6.9

Table 4

Material properties for IM6-3501-6 unidirectional graphite epoxy.

E1 (GPa) E2=E3 (GPa) ν12 = ν13 ν23 G12=G13 (GPa) G23 (GPa)

144.7 9.6 0.3 0.45 5.2 3.4
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Table 5

Interface properties.

GIC (Nmm−1) GIIC (Nmm−1) N (MPa) S (MPa) η

0.075 0.547 61 68 1.45

Table 6

Comparison between experimental and numerical results.

Experimental (kN) Predicted (kN) Error (%)

Flange debond load 22.7 21.0 -7.5
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