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Abstract 

A traction-displacement relationship that may be embedded into a cohesive zone model for 

microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics 

simulations. A molecular-dynamics model for crack propagation under steady-state conditions is 

developed to analyze intergranular fracture along a flat Σ99 [1 1 0] symmetric tilt grain boundary 

in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack 

propagation in the two opposite directions along the grain boundary. In one direction, the crack 

propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the 

other direction, the propagation is ductile through the mechanism of deformation twinning. This 

behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at 

the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions 

of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while 

the stress field around the brittle crack tip follows the expected elastic solution for the given 

boundary conditions of the model, the stress field around the twinning crack tip has a strong 

plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element – an atomistic 

analog to a continuum cohesive zone model element -  the results from the molecular-dynamics 

simulation are recast to obtain an average continuum traction-displacement relationship to 

represent cohesive zone interaction along a characteristic length of the grain boundary interface 

for the cases of ductile and brittle decohesion. 
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1. Introduction 

 Cohesive zone models (CZMs) approximate traction-displacement relationships along an 

interface (Tvergaard and Hutchinson, 1992; Costanzo and Allen, 1995; Camacho and Ortiz, 

1996; Klein and Gao, 1998) and are frequently used in conjunction with the finite element 

method (FEM) to study fracture in a wide variety of materials. Idealized traction-displacement 

behavior of interface debonding is embedded into CZM elements. In fracture studies at the 

micromechanical level, CZM elements can be placed between the continuum finite elements that 

discretize the grain interior to predict transgranular fracture or placed between the continuum 

finite elements on either side of a grain boundary to predict intergranular fracture.  

Modeling of material failure with CZMs has been advanced to the level of being able to 

perform large scale simulations of fracture in polycrystals. Recently, Zavattieri et al. (2001) 

studied the fracture of alumina-ceramic microstructures subjected to multi-axial dynamic 

loading. The effective size of the polycrystalline specimen studied was 0.54 x 0.19 mm, thus 

reaching macroscopic scales. A bilinear traction-displacement relationship parameterized to 

empirical data, such as macroscopic fracture toughness KIC was used. Zavattieri and Espinosa 

(2003) used a modification of the same model to study interface effects of an alumina specimen 

in contact with steel plates. Wei and Anand (2004) have used a modified CZM model to study 

intergranular fracture in nanocrystalline Ni. In their finite element (FE) model simulation, the 

CZM element approximated both reversible and irreversible inelastic sliding-separation 

deformations at the grain boundaries prior to failure. The parameterization of the model was, 

again, performed by using available experimental data for stress-strain curves of nanocrystalline 

Ni in tension with an average grain size of 15-40 nm and having a comparatively large number 

of grains. Iesulauro et al. (2002) have applied the CZM technique to simulate fatigue crack 
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initiation in Al polycrystals. The use of MD simulations to parameterize the traction-

displacement curve was suggested, but the actual parameterization was performed by using the 

established macroscale yield properties of aluminum. 

The macroscale values of strength and toughness that are input to the CZM in these 

references represent the aggregate responses of thousands or millions of grains, grain boundaries, 

and defects within the specimens from which they were obtained. Thus, these macroscale values 

do not represent the unique response of a particular interface at which a local fracture event 

might occur. If the microscale predictions are to become quantitative, consideration of the local 

nanoscale properties is required. One possible means of making this connection is to use the 

results of atomistic MD models as input to the CZM. This connection would allow more realistic 

simulations leading to accurate predictions of the failure properties of a large class of materials 

and microstructures, even when experimental data is not available. 

Attempts to extract relevant parameters for the decohesion law of a CZM from atomistic 

(molecular-dynamics or molecular-static) simulations have been made by various groups in the 

last few years (Gall et al., 2000; Komanduri et al., 2001; Spearot et al., 2004). The approach in 

all of these works is based on simulating the debonding of a flat interface under a constant tensile 

strain rate perpendicular to the interface. In these references, the system size is between 4 and 8 

nm, and the dynamics of the atoms is severely constrained by the boundary conditions, which do 

not allow for Poisson lateral contraction and shear deformation. As a result, plastic processes, 

such as dislocation slip, are strongly suppressed. Consequently, the simulated mechanism for 

interface decohesion in these references reproduces the process of atomic adhesion (strength) 

rather than that of fracture at the interface. Raynolds et al. (1996) used a similar setup to study 

adhesion in an NiAl-Cr interface by first principles calculations.  
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The boundary conditions, at which a typical CZM element operates in a large scale FE model 

are very different from the ones used in the referenced MD and first principles simulations. 

Typically, the CZM elements are embedded within a system of finite elements, that reproduce 

the elastic and plastic response of the surrounding material to both the external load and the 

crack-tip stress. In contrast, decohesion parameters, such as peak stress and opening 

displacement of the CZM curve, are extracted from an atomistic volume less than 10 nm in each 

direction. The lack of an adequate surrounding volume of material suppresses the plastic 

processes, such as dislocation nucleation, limiting the accommodation of deformation at the 

interface and forcing it to debond in an unnatural manner. The periodic boundary conditions 

usually applied in these models cause the simulation to create a response of an array of repeating 

units with a strong overlap of image elastic forces rather than the response of a single specimen 

unit. Consequently, the resulting decohesion curves cannot be directly applied  to derive the 

constitutive laws for CZM elements.  

The main goal of the approach described in the present study is to extract, and understand the 

contributions to, an MD-based CZM decohesion law for intergranular fracture under local 

conditions similar to those experienced by the CZM element in a polycrystalline FE model. The 

CZM decohesion law reflects the response of the CZM element to an approaching and 

propagating crack (Costanzo and Allen, 1995; Dávila, 2001). Thus, the MD model should be a 

model of crack propagation rather than of adhesion. The MD model used in this study is built to 

simulate a crack propagating through a flat high-energy grain-boundary in aluminum (Yamakov 

et al., 2005). 

The paper is constructed as follows: The simulation approach is described in Section 2. The 

mechanism of intergranular crack growth together with the plastic processes near the crack tip as 
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revealed by MD simulations at the atomic level is broadly discussed in Section 3. The 

contribution of the plastic processes to the stress field near the crack tip is discussed in Section 4. 

Section 5 describes a methodology for extracting a constitutive relation for a continuum CZM 

element from the MD results. The main conclusions of this study are outlined in Section 6. 

 

2. The simulation approach 

The simulation approach used in this study is based on a MD simulation model of crack 

propagation under time-independent, or steady-state, conditions through a flat grain boundary 

(GB) in Al (modeled by the interatomic potential of Mishin et al. (1999)) at low temperature 

(100 K). The purpose of the MD simulation is to reveal and analyze the atomistic processes 

taking place near the crack tip and to derive a statistical traction-displacement relationship for a 

continuum CZM element. The simulation must also provide a study on the influence of the 

atomistic processes on the resulting traction-displacement (decohesion) curve.  

To produce reliable and time-independent statistics for extracting the CZM decohesion law 

the simulation model is based on a well known continuum-elastic analytical model for steady-

state crack propagation, which is briefly reviewed in Section 2.1. Following the analytical model, 

the MD set up and the details of the MD simulation are discussed in Section 2.2. Major attention 

is given to the crystallography of the atomistic MD system, which determines the behavior of the 

model and, to a large extent, predefines the ongoing atomistic processes.  

The values of the initial and the simulation parameters of the MD system are crucial for 

recovering the steady-state regime in the MD simulation. To set up these parameters, specifically 

the system size, the initial crack length and the initial loading conditions, a continuum elastic 

solution of the system is needed. This solution cannot be taken from the analytical model, which 
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has an infinite dimension (see Section 2.1), because the finite size effects always present in an 

MD simulation make it impossible for the MD system to reproduce exactly the analytical model. 

In this work, a linear elastic solution is obtained by performing a FE simulation on an elastically 

equivalent continuum system (described in Section 2.3), and provides for a direct comparison 

between the MD and the FE results. Such a comparison helps to distinguish the role of the plastic 

processes such as dislocation nucleation, vacancy and void formation, etc. present in the MD 

simulation, but not in the FE simulation.  

2.1 The analytical model 

The theoretical model for steady-state crack propagation adapted and used in this work is 

discussed and analyzed by Langer and co-authors (Barber et al., 1989; Langer, 1992; Langer, 

1993; Langer and Nakanishi, 1993). The model represents a laterally strained strip of elastic 

material. The strip is infinite in the longitudinal direction, and a semi-infinite crack propagates 

through it (Barber et al., 1989). Far ahead of the crack tip, the strip is under uniform tension. Far 

behind the tip, the tension is relieved, and the crack opening becomes constant. Thus, there are 

two stable states for the material: “closed”, in front of the crack tip, and “open”, behind the crack 

tip. The crack propagation can be viewed as a continuous steady-state transition between these 

two states (Barber et al., 1989). The stress field of a steadily moving crack for this model was 

calculated by Ching (1994). Applying this model as a base for the MD simulation (Yamakov et 

al., 2005) ensures that after some initial unsteady growth, the crack propagation will proceed 

under steady-state conditions independent of the crack length.  

2.2 The molecular-dynamics model 
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The MD simulation is based on the previously described analytical model for steady-state 

crack propagation and has the configuration shown in Fig. 1 (Yamakov et al., 2005). With 

periodic boundary conditions in all directions, the model represents an aluminum multilayer 

system of alternating sets of thick and thin crystalline layers separated by four flat GBs. The two 

broad layers, marked as “Crystal I” and “Crystal II”, form a bicrystalline system with a flat GB 

in the middle, through which the crack propagates. The crystallographic orientations of Crystal I 

and Crystal II are presented in Fig. 2. In the imposed coordinate system of the model, the 

orientation of Crystal I is: (x:[

! 

7 7

"

10

"

]; y:[

! 

5 5

"

7]; z: [

! 

1 1 0]), and the orientation of 

Crystal II is: (x:[

! 

7 7

"

10

"

]; y:[

! 

5

"

5 7

"

]; z: [

! 

1 1 0]) (see Fig. 2). In this way, Crystal II is a 

mirror image of Crystal I relative to the crystallographic plane {

! 

5 5 7}, which becomes the 

plane of the GB between them. The GB thus formed is a <1 1 0> ∑99 symmetric tilt GB, for 

which the atomic structure in Al is known from the literature (Dahmen, 1990). This is a high-

angle grain boundary (tilt angle of 89.42o) with a large excess (i.e., above the perfect crystal) 

energy, γGB = 0.60±0.05 J/m2, estimated here for a relaxed structure at T = 100 K. The high 

excess GB energy facilitates its decohesion (Wolf, 1990). The surface energy of the GB plane γs 

at 100 K is estimated in this work at γs = 0.952±0.010 J/m2 and is in good agreement with 

experimental data for the Al surface energy.  

The two smaller layers, Absorbing Layer I and Absorbing Layer II, on both sides of the 

bicrystalline system (Fig. 1) have the same crystallographic orientations as Crystal II and Crystal 

I, respectively. Consequently, the GBs formed by these layers are of the same crystallographic 

type as the GB between Crystal I and Crystal II. The purpose of these layers in the simulation is 

to serve as shock-wave absorbers (Gumbsch, 1997), where a damping friction coefficient is 

applied to the atoms to absorb the phonon waves generated from the crack tips. In addition, the 
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GBs between these layers and Crystal I and II act as absorbers for the dislocations that may be 

emitted and spread out from the crack tip during propagation. In this way, the negative effect of 

the periodic boundary conditions in the y-direction creating periodic images of all crack-tip 

disturbances and influencing the crack propagation is suppressed.  

The interaction between individual atoms in the system is presented by a many-body 

embedded-atom method (EAM) potential of Mishin et al. (1999) fitted to give the correct zero-

temperature lattice constant, ao = 4.05 Å, elastic constants, cohesive energy, vacancy formation 

energy, etc. Of particular importance for the simulation of fracture and dislocation plasticity is 

the close fit of the potential to the experimentally measured surface and stacking-fault energies. 

Potential-dependent parameters that will be needed in this study are the relaxed stable stacking-

fault energy, γsf = 0.146 J/m2, the unstable stacking-fault energy, γus = 0.168 J/m2, as defined in 

Mishin et al. (1999), and the unstable twinning energy, γut = 0.210±0.010 J/m2 estimated here 

according to the method described in Tadmor and Hai (2003).  

The system thickness h in the z-direction equals only 10(2 2 0) crystallographic planes 

(accounting for the symmetry of the fcc lattice), or h = 10√2/2ao ≈ 2.9 nm. This thickness is more 

than four times larger than the range of the interatomic potential, rc = 1.55ao = 0.628 nm (Mishin 

et al., 1999), which prevents interference of the atoms with their periodic images and preserves 

the local three-dimensional (3D) physics in the system. The small thickness in the z-direction 

allows the system size in the x- and y- directions to extend up to 21<7 7 10>ao ≈ 120 nm, and 

24<5 5 7>ao ≈ 97 nm, respectively (see Fig 1 and Fig. 2), while limiting the number of simulated 

atoms to 1,994,000, allowing the simulation to be carried out on a modest Beowulf cluster.  

The choice of the [1 1 0] crystallographic orientation of the smallest system dimension z is 

not random (Yamakov et al. 2001). The [1 1 0] direction is the common axis of the (

! 

1

"

1 1) and 
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(

! 

1 1

"

1) planes, which are glide planes for the most common slip dislocations (i.e., 1/2<110> 

dislocations) in fcc metals. It has been shown (Yamakov et al., 2003a) that all of the six slip 

systems available on these two planes can operate unobstructed by the small system size in this 

direction. Moreover, a number of complex dislocation interactions and events are still possible 

between these six slip systems, as in a full 3D space (Yamakov et al., 2002; 2003a). As the 

dislocation activity is expected to be very important in this study, the choice of the [1 1 0] 

direction as a columnar axis for this quasi-two dimensional set-up ensures the best resemblance 

to a full 3D environment, the main constraint being that the dislocation lines of all possible 

dislocations have to be straight lines parallel to the columnar direction. A comparison between 

this quasi-2D and a full 3D environment in a nanocrystalline model shows that some grain size 

effects, related to the curvature of the dislocation loops presented in 3D, are suppressed 

(Yamakov et al., 2003b). Specifically, as the stress needed to expand a dislocation loop is 

inversely proportional to the loop radius, which, by itself, is limited by the very small grain size 

of the nanocrystalline metal, there is a substantial grain size dependence of the yield stress. This 

geometrical dependence is absent in a quasi-2D model, because the small thickness of the system 

constrains the dislocation lines to be always straight and parallel to each other preventing the 

formation of dislocation loops. The lack of curvature of the dislocation lines, as well as of the 

crack front, should also be taken into account as a simplification in this model. In the case where 

the grain size is large enough not to be a governing parameter, the presence of curvature usually 

helps the defect nucleation process at or around the crack tip, such as dislocations and 

microvoids. While it is expected that neglecting the effects of curvature would not qualitatively 

change the fracture mechanism, it may affect the process quantitatively in terms of slightly 

decreased peak stress and work of debonding.  
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The simulations are run at a temperature of T = 100 K, which is low enough to suppress GB 

and surface diffusion processes and to facilitate brittle fracture in aluminum. The temperature is 

kept constant by using the Nose-Hoover thermostat (Nose, 1984). 

The system is driven to the initial condition of the simulation before crack nucleation in 

several steps. First, the system is constructed out of four blocks of perfect crystals (each one for 

Crystal I, Crystal II, Absorbing Layer I, and Absorbing Layer II in Fig. 1), which have been 

independently thermally equilibrated at 100 K at zero constant pressure. The constant pressure 

equilibration is achieved by using the Parrinello-Rahman constant-stress simulation (Parrinello 

and Rahman, 1981). When the perfect crystals are joined together into a multilayer system to 

form Σ99 GBs, they are also allowed to shift along the GB planes (in the x- direction) to obtain 

the lowest energy initial GB configuration. After being assembled, the whole system is 

equilibrated at 100 K and zero pressure to achieve thermal equilibrium of the GB interfaces. 

Because the building crystal blocks have been already preheated to 100 K, the thermalization of 

the whole system takes much less time than if it were built out of ideal crystals at 0 K and then 

thermalized.  

After the thermal equilibration at zero pressure, the system is loaded hydrostatically in 

tension, i.e.,  

! 

"xx = "yy = "zz = "         (1) 

and is dynamically equilibrated at this constant stress. After establishing equilibrium between the 

strain in the system and the applied external stress, the system size in all three dimensions is 

fixed under the constant strained condition.  

The transition from a constant stress to a constant strain simulation transforms the volume 

fluctuations, always present in a finite system under thermodynamic equilibrium, into stress 
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fluctuations. Thus, further equilibration at constant strain is necessary to smooth out these 

fluctuations. The simulation then proceeds under this constant strain – constant temperature 

condition. Although the simulations are carried out under constant strain, for convenience in 

presentation, the various analyses will reference the value of prestresses that corresponds to a 

particular value of prestrain.  

To ensure crack nucleation and growth at the nanometer scale, the prestress was varied 

between 3.5 and 4.25 GPa. If the system were uniaxially strained, these very high prestress 

values would have caused strong plasticity effects not related to the crack, such as spontaneous 

dislocation nucleation from the GBs (Yamakov et al., 2002). Applying triaxial hydrostatic stress 

eliminates these undesirable plasticity effects.  

The crack in the system is nucleated by screening (preventing) the atomic interactions 

between atoms at both sides of the GB plane between Crystal I and Crystal II along a region of 

length lo. As the crack grows and the crack opening becomes large enough to prevent interaction 

of atoms on the adjacent crack faces along the screened region, the previously screened atomic 

interactions are restored and the crack continues to evolve on its own. The crack starts growing if 

lo is larger than the critical Griffith length Lg defined when the energy spent to create the upper 

and lower crack surface 2γs minus the energy gained by destroying the GB γGB is equal to the 

released strain energy –dU/dl, per length l,  

2γs - γGB = -dU/dl.          (2) 

An estimate of Lg is made by calculating dU/dl as a function of σ and l. This calculation is 

performed by using an anisotropic elastic finite element model of the elastic equivalent of the 

MD system, as will be discussed later. For the values of prestress applied in this study, σ = 3.5, 

3.75, 4.0, and 4.25 GPa, the obtained Griffith lengths are Lg = 6.08, 5.32, 4.71, and 4.21 nm, 
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respectively. The initial crack length is set equal to the crystallographic period in the x-direction, 

lo = <7 7 10>ao = 5.7 nm, to reflect the existing periodicity of the equilibrated GB structure 

(Dahmen, 1990) induced by the lattice of the two joined crystals. This value of lo is larger than Lg 

for most of the prestresses, except for σ = 3.5 GPa, ensuring the initiation of crack growth for 

these prestresses. Crack growth also occurs for σ = 3.5 GPa (Lg = 6.08 mn), because the use of a 

many-body potential causes all the atoms within the interaction range of the screened atoms to be 

also affected by the screening, effectively increasing the initial crack length. 

The identification of various structural defects including dislocations, twins, stacking faults, 

etc. appearing around the growing crack is important for understanding the mechanism of 

deformation that influence the CZM constitutive law. A procedure for atom identification based 

on the atom’s coordination number and on the common-neighbor-analysis (CNA) technique 

(Honeycutt and Andersen, 1987; Clarke and Jonsson, 1993) is used. The technique makes it 

possible to identify atoms in fcc and hcp states. Layers of hcp atoms in an fcc lattice are formed 

at stacking faults and twin boundaries (Weertman and Weertman, 1992) and can be used very 

successfully for visualizing the ongoing dislocation processes in fcc crystals (Schiotz, 1999). 

Atoms that are not identified in an fcc or hcp state are considered to be in a non-crystalline state 

and indicate the presence of GBs or dislocation cores. In addition, atoms that have lost more than 

1/3 of their neighbors inside the interaction range of the potential are considered surface atoms. 

On average, 1 nm2 of a flat {5 5 7} surface contains 16 surface atoms. The crack free surface S is 

estimated by counting the number of surface atoms, and when divided by 2h (see Fig. 1, the 

prefactor 2 accounts for the two crack surfaces), conveniently gives an effective crack length l. 

Under this convention, the thermalized structure of a 

! 

110 "99  symmetric tilt GB, shown in Fig. 

2, appears as quasi-periodic, with a regular pattern of hcp atoms immersed in a disordered layer 
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with the presence of a few distributed vacancies, identified by the appearance of a few isolated 

surface atoms inside the GB region. As will be shown later in this paper, classifying atoms in this 

way presents a unique possibility to distinguish and quantify the various atomic processes 

occurring at the crack tip, and to identify their contribution to the decohesion law of the CZM 

elements.  

2.3 The finite element model 

A FE configuration, with dimensions scaled to reproduce the proportions of the MD system, 

is presented in Fig. 3. The FE calculations are anisotropic linear-elastic, carried out under 

displacement control in the x- and y- directions, and use generalized plane strain to reproduce the 

hydrostatic triaxial stress in the MD simulation. The use of periodic boundary conditions in the 

constant strain MD simulation, described previously, constrains the problem in the same manner 

as the generalized plane strain condition in continuum mechanics. The commercial software 

package ABAQUS (ABAQUS, 2004) is used. The model contains a combination of six-node 

triangular elements and eight-node quadrilateral elements that support generalized plane strain. 

The anisotropic elastic constants are obtained from the MD interatomic potential and 

transformed according to the crystallographic orientations of the atomic microstructure (see 

Appendix A). Higher order terms in the elastic constants are not included as they are not 

available from the published data for this potential (Mishin et al., 1999) and are not easy to 

calculate. This limits the FE simulation to be linear elastic. 

The FE model contains a built-in lenticular slit, which simulates the MD approximation to a 

crack of varying relative length, 0.05 < l/L < 0.91, and is used to study the evolution of the 

system at different stages of the crack growth. To avoid stress singularities, the edges of the slit 

have a finite, but very small, initial radius λ = 0.008L, which, when scaled to the MD 
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dimensions, corresponds to an initial crack opening of approximately 1 nm, i.e., slightly larger 

than the range of the interatomic MD potential. 

Two significant differences between the FE and MD models have to be outlined here. First, 

the FE calculations are static and linear-elastic. No dynamic or nonlinear effects are 

incorporated, and the results are relevant for static “cracks” under small strain when the 

nonlinear effects can be neglected. Second, there is no elastic equivalent of the GBs in the FE 

system. It is assumed that the difference between the elastic response of the GBs and the interior 

of the grains does not significantly alter the crack behavior because of the relatively small 

volume ratio of the GB in the system. Thus, the FE simulations used here play mainly a guiding 

role in setting up the parameters of the MD model and in understanding the MD results by 

distinguishing between plastic and elastic processes in the MD simulation. 

The first implementation of the FE model is to perform energetic analysis of the system in 

the absence of nonlinear elastic or plastic processes and to extract the Griffith length Lg for the 

different loads of the MD system using Eq. (2). The elastic strain energy per unit thickness, E/h, 

of the FE system versus increasing crack length, 0 ≤ l ≤ 110 nm, is presented in Fig. 4. The 

values for l = 0 relates to a system with no crack, and is given for reference. Because the FE 

simulations are linear elastic, the strain energy can be easily scaled to the absolute dimensions of 

the MD system and to the four different applied prestresses σ. Knowing γs and γGB, extracted 

from the MD model and given in Section 2.2, one can plot their effective contributions to the 

crack energy as two straight lines: for the surface energy, Esurf = 2γsl; and for the change of the 

GB energy, ΔEGB = -γGBl, as shown in Fig. 4. Summing the elastic energy Eelast(σ,l), Esurf, and 

ΔEGB gives the total energy balance of the system for each prestress condition, 

Etot(σ,l) = Eelast(σ,l) + (2γs - γGB)l .       (3)  
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For each σ, Etot(σ,l) has a maximum at the Griffith length l = Lg(σ) as shown in Fig. 4. The 

precise values of these maxima are obtained by using second order polynomial interpolation of 

the FE data points for Eelast(σ,l) at l = 0, 6, and 10 nm in Fig. 4 for each prestress σ. These results 

set the initial length, lo=5.7 nm, of the nucleated crack in the MD model, as discussed in the 

previous subsection. More importantly, the FE simulation shows the region for steady-state crack 

propagation. This steady-state region is where the decrease of Etot(σ,l) with increasing l becomes 

almost constant. The steady-state region is revealed by drawing a straight, or steady-state, line (s-

s) through Eelast(σ,l) for σ=4.25 GPa in Fig. 4. The line overlaps with Etot in the interval 30 < l < 

80 nm indicating the steady-state region in Fig. 4. For Lg < l < 30 nm, the crack propagation is 

expected to increase (nucleation region in Fig. 4) because the slope of Etot increases, approaching 

the steady-state value. For l > 80 nm, the crack starts to be influenced by the finite length of the 

system (finite-size effects region in Fig. 4), and Etot increases above the steady-state value due to 

the increasing contribution of the crack’s periodic image. As the size of the steady-state region is 

a result of the system dimensions only, it remains the same for all the applied loads in the 

simulation. Thus, FE simulations help to estimate Lg and to find the region of crack lengths 

where the crack is expected to grow under steady-state conditions, allowing for time independent 

statistics to be extracted for derivation of the CZM decohesion law.  

3. The mechanisms of crack propagation along the Σ99 grain boundary by MD 

simulation 

As explained in Section 2, the GB opens after 8 ps of screening of the atomic interactions in 

a region of 5.7 nm length along the middle of the GB between Crystal I and Crystal II (Fig. 1), 

and a crack starts to grow in both directions along the GB interface. Fig. 5 shows MD snapshots 

of cracks that have grown for four different initial hydrostatic prestresses: σ = 3.5, 3.75, 4.0, and 
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4.25 GPa. In all cases, the crack growth is not symmetric in the +x and -x directions (as defined 

in Fig. 1) along the GB (1 in Fig. 5). The growth in the -x direction has produced two twin 

patterns (2 in Fig. 5) by emitting a series of twinning dislocations (3 in Fig. 5) (Weertman and 

Weertman, 1992), and is almost symmetric about the grain boundary of the two adjacent crystals. 

The crack propagation in this direction is greatly reduced, when compared to the propagation in 

the +x direction, with energy expended through ductile blunting at the crack tip. The growth in 

the +x direction proceeds through a continuous process of void formation (4 in Fig. 5). Because 

the crack tip emits very few dislocations (3 and 5 in Fig. 5), crack propagation in the +x 

direction proceeds much faster than in the –x direction, and does so in an almost brittle fashion. 

After being emitted, some of the dislocations glide away from the crack tip and are absorbed by 

the next GB layer to form GB dislocations (6 in Fig. 5). Secondary slip (7 in Fig. 5) on a slip 

plane along the 

! 

1 1 2 [ ] direction (see Fig. 2) may also accommodate deformation non-parallel 

to the primary slip plane along the 

! 

1 1 2[ ] direction, where twinning 3 and primary slip 

dislocations 5 propagate.  

A detailed analysis of all of the atomistic processes, accompanying the crack growth and 

governing the decohesion of the GB interface follows. 

3.1 Twinning at the crack tip – crack propagation in the –x direction 

Fig. 6 contains a series of snapshots of the crack shown in Fig. 5(c) monitoring the formation 

of two symmetrical twins at the crack tip propagating in the negative, –x, direction in the system 

(as defined in Fig. 1). Although twinning is not common in Al, twin formation near a crack tip 

has been reported on several special occasions, both in MD simulations (Farkas et al., 2001; Hai 

and Tadmor, 2003) and in experiments (Pond and Garcia, 1982; Chen et al., 1999). Twinning has 
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been found to occur in special cases, when the crack propagation direction is suitably oriented 

with respect to the available slip planes in the crystal. In these references, the crack propagation 

is transgranular and the twins are formed along the most energetically favorable slip plane 

inclined with respect to the crack propagation direction.  

As shown in Fig. 6(a), the twinning process starts with a spontaneous emission of 1/6 

[

! 

1 1

"

2] Shockley partial or twinning dislocations 3 (see, also, 3 in Figs. 5(a-c)) (Weertman 

and Weertman, 1992) on the (

! 

1

"

1 1) planes in both crystals (see Fig.2 for the crystallographic 

orientations in the model). Each dislocation creates a stacking fault 7, which is broadened into a 

nanotwin 2 by the subsequent emission of more twinning dislocations 3 of the same type (Figs. 

6(b-f)). Each new dislocation results in the propagation of the crack tip by one atomic layer. If 

the twinning process starts simultaneously on both, the –y face and the +y face at the –x crack 

tip, as shown in Fig. 6(a), the two twins grow symmetrically in Crystal I and Crystal II  (Figs. 

6(b-f)). If the twinning processes do not start simultaneously due to some small perturbations in 

the simulation, as shown in Fig. 7(a) (to be discussed later), where the twinning in the –y 

direction 2 is initiated first, the two twins in Crystal I and Crystal II may be offset (Fig. 7(b)). 

As the crack grows, the symmetry is nearly restored, as can be seen in Fig. 5(b). Thus, the 

symmetry of the crystal lattice on both sides of the GB leads to a corresponding symmetry in the 

twin formation, which follows the symmetric orientations of the slip planes relative to the GB. 

Secondary slip inside the twins occurs in the form of partial dislocation emission identified 

by trailing stacking faults (7 in Fig. 5(c) and Figs. 6(e,f)). This happens because the growing 

twin cannot accommodate all of the shear produced at the crack tip. The twinning changes the 

orientation of the (

! 

1 1

"

1) slip plane from α1 ≈ 9o to a new orientation α2 ≈ 30o from the crack 

plane (Fig. 6(f)). The latter orientation is more favorable for dislocation emission because it 
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suggests a higher resolved shear stress. Thus, secondary slip is initiated on that plane, giving an 

additional degree of freedom, which makes accommodation of any deformation in the (x,y) plane 

near the crack tip possible. 

The active twinning through the spontaneous emission of twinning dislocations at the crack 

tip, together with the development of secondary slip inside the twins, makes the propagation in 

the –x direction of a ductile type and involves plastic mechanisms that expend considerable 

energy. The MD simulation results from this crack tip will later be used to construct the cohesive 

law for a ductile type CZM element.  

3.2 GB decohesion by cleavage – crack propagation in the +x direction 

The propagation by cleavage in the +x direction for the crack under a 3.75 GPa prestress is 

monitored in Fig. 7. First, the disorder of the GB region in front of the crack tip is increased (Fig. 

7(a)) until a void appears (4 in Fig. 7(b)). The void grows (4 in Fig. 7(c)) and eventually joins 

the main crack, increasing its length (Fig. 7(d)). Then, another void forms (4 in Fig. 7(d)) and 

the process repeats, becoming the primary mechanism for crack propagation. Figure 7(e) shows 

the formation of two successive voids in front of the crack tip that are about to join to form an 

increment of crack growth (Fig. 7(f)). A similar mechanism of fracture in an alloy system has 

been reported in MD simulations of intergranular crack propagation along a high-angle GB in 

NiAl (Farkas, 2000a; 2000b).  

Interestingly, dislocations are not emitted until the final stage of growth (Fig. 7(f)), when the 

crack is blunted by a spontaneous emission of dislocations (3 and 5 in Fig. 7(f)). The 

spontaneous dislocation emission is believed to be caused by a dynamic instability at the crack 

tip that is known to happen at a propagation speed of approximately 1/3 the Rayleigh speed of 

sound cR, and leads to a dynamic brittle-to-ductile transition in the crack propagation (Abraham 
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et. al., 1994; Abraham, 2001; Gao, 1996; Yamakov et al., 2005). The appearance of the dynamic 

instability in the theoretical model of Barber et al. (1989), used as a base for the system 

simulated here (discussed in Sec. 2.1), was predicted by Ching (1994). There, it was stated that 

steady-state crack propagation above the critical speed is unstable. The MD simulation, in the 

present work, supports this statement. Additional details are given by Yamakov et al. (2005), 

wherein the dynamic aspects of crack propagation are discussed. 

The lack of dislocation emission from the crack tip propagating in the +x direction localizes 

the damage zone along the GB interface, where the microvoids are nucleated (Fig. 7(b-e)). The 

+x propagation is much more brittle and propagates much further along the GB than is observed 

in the –x direction. The results from this crack tip will later be used to construct the cohesive law 

for a brittle type CZM element. 

3.3 Rice and Tadmor-Hai criteria for twinning vs. cleavage at the crack tip  

The ability of GBs in fcc metals to produce asymmetric crack growth was first found in an 

MD simulation of intergranular fracture in Cu by Cleri et al. (1999). In their work, a crack 

propagated in the interface plane of the symmetric tilt (221)/(221) grain boundary. The crack 

advanced by brittle fracture along the [

! 

1 1 4

"

] direction and was blunted by dislocation 

emission along the opposite [

! 

1

"

1

"

4] direction. The difference in behavior at the two crack tips 

was attributed to the orientation of the slip planes relative to the GB. A slip plane inclined at 

angle θ to the GB makes the angle θ to the propagation direction of one crack tip, and the angle 

π-θ with the propagation direction of the opposing tip. Thus, for certain GBs, the Rice criterion 

(Rice, 1992) for dislocation nucleation versus cleavage might be satisfied for the crack tip at 

angle θ, but not for the crack tip at an angle π-θ, leading to asymmetric crack propagation. The 
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crack grows primarily in the direction of the π-θ tip since the brittle propagation takes much less 

energy. Note that, for transgranular fracture, every direction in the fcc lattice has inverse 

symmetry, so such asymmetry in crack propagation is not expected to appear. 

In the crystallographic model, presented in Fig. 2, the propagation direction [

! 

7

"

7 10] 

along the GB plane makes an angle θ=79.98o (see Fig. 6(f)) with the twinning direction 

[

! 

1 1

"

2] in both crystals, giving 

! 

cos" =1/ 33 . The Rice criterion for dislocation emission for 

the two propagation directions with 

! 

+cos"  (-x direction) and 

! 

cos " #$( ) = #cos$ (+x direction) 

can be written as 

! 

"
us

2"
s
# "

GB

<
1± cos$( )sin2 $

8
        (4) 

where the dislocations at the crack tip are edge twinning dislocations (shown as 3 in Fig. 6) with 

their Burgers vector coinciding with the twinning direction and lying in the (1 1 0) plane of the 

model. Using the values for γus, γs, and γGB given in Sec. 2.2, the left side of Eq. (4) equals 

0.127±0.01. The right side is determined to be 0.142 and 0.100 for the -x and +x propagation 

directions, respectively. Thus, the Rice criterion predicts that the crack tip should propagate in a 

ductile manner in the -x direction, and in a brittle manner in the +x direction, in agreement with 

the behavior seen in Fig. 5.  

While the Rice criterion explains the ductile-brittle asymmetry of the crack found in the 

simulations (Figs. 6 and 7), an additional consideration is needed to explain the preference for 

twinning rather than the emission of slip dislocations in the -x direction. Tadmor and Hai (2003) 

have recently derived a Pierels based criterion for the onset of deformation twinning at a crack 

tip in fcc metals by comparing the energies for nucleating a twinning or slip dislocation. This 

criterion introduces a so-called unstable twinning energy γut, which, by analogy with the unstable 
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stacking-fault energy γus, gives the energetic barrier that must be exceeded to form a twin from 

an existing stacking-fault. The criterion is given by the parameter T as 

   

! 

T = "
# us
# ut

=
<1

>1

$ 
% 
& 

slip dislocation

deformation twin
      (5) 

where λ is a factor that is dependent on, both, the γsf / γus ratio, and the orientation of the slip 

system of the twinning dislocations with respect to the crack plane (Tadmor and Hai, 2003). For 

the twinning tip in this simulation λ=1.51 (as applied from Tadmor and Hai, 2003), and 

! 

"
us

"
ut

= 0.9, which results in T =1.36. This suggests that twinning, rather than slip dislocation 

emission, will be the preferred deformation mechanism. 

The brittle-ductile analysis based on the Rice criterion is for static or sufficiently slow crack 

growth. The criterion does not account for dynamic effects occurring at the crack tip propagating 

in the +x direction (Yamakov et al., 2005) and cannot explain the observed dislocation burst in 

Fig. 7(f) (discussed in Section 3.2). Crack propagation is expected to be brittle throughout. 

Nevertheless, apart from these dynamic effects, there is good agreement between the simulation 

results and the two conditions expressed through Eqs. (4) and (5). This allows the prediction of 

the type of decohesion by knowing the crystallographic orientations of the grains and a few 

material parameters, such as the surface, GB, stacking-fault, and twinning energies. 

 

4. Plastic contribution to the stress field near the crack: MD - FE comparison 

The plastic processes at the crack tips, including twinning and dislocation emission, have a 

pronounced effect on the stress distribution near the growing crack. This effect is best revealed 

by a comparison between the stress distributions obtained from the MD and the linear elastic FE 
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simulations for the models presented in Section 2. While the MD simulation considers the 

material structure at the atomic level and intrinsically incorporates all the plastic processes 

together with the elastic response of the bicrystal, the FE model assumes an elastically equivalent 

system and gives only the elastic solution. Another aspect of the FE simulation is that it gives a 

static solution when the system is in elastic equilibrium. By contrast, the MD simulation 

describes a continuously evolving system with all dynamic effects present. To avoid the 

implications of the dynamic effects in the comparison between FE and MD results, the 

corresponding MD stress distribution is calculated after the atomistic system reaches elasto-

plastic equilibrium and the crack stops growing. The dynamic solution for the elastic stress as a 

function of the crack velocity in the steady-state analytical model (Barber et al., 1989) is given 

by Ching (1994). Ching’s solution is not studied here because extracting the non-equilibrium 

dynamic stress from MD is not a trivial task and goes beyond the scope of this work.  

To obtain the continuum stress distribution from the MD simulation at elasto-plastic 

equilibrium, the virial formulation for the local stress is used, defined as (Cormier et al., 2001) 

! 

"#$ =
1
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where m(i) and v(i) are the mass and velocity of the i-th atom, respectively, and r(i,j)  = r(i) - r(j) is 

the vector between the positions of atoms (i) and (j) with α,β=1,2,3 for the x, y, and z Cartesian 

vector components. The first sum is taken over atoms (i) in a volume Ω over which the stress is 

calculated, and the second sum is taken over atoms (j), which are in the interaction range of the 

atom (i). The derivative of the interaction potential 

! 

"U

"r
(i, j )

 is a generalization of the pair 

interatomic force between atoms (i) and (j) in the case of a many body potential. The volume Ω 

in this study is of size 6ao x 6ao x h in the x-, y-, and z- directions, respectively, which defines 
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Ω=16.89 nm3 containing 864 atoms. This volume is large enough to ensure a good convergence 

of the calculated stress, but small enough to allow for a sufficiently high resolution of the stress 

distribution map. Additional time averaging of the stress is performed over 16 ps of simulation 

time, which is sufficient to smooth out the noise from the phonon waves in the simulation.  

The virial theorem, which is the basis for calculating the local virial stress (Eq. (6)), provides 

the oldest and most frequently used expression for relating forces and motion within an atomic 

system to a continuum stress. The virial stress is defined through the local momentum flux 

carried by the particles in a small volume element (Lutsko, 1988), rather than as a force acting 

over a small surface element, i.e., the definition of the Cauchy stress used in continuum 

mechanics. Because the Cauchy stress assumes continuous structure of matter, the two 

definitions increasingly diverge at the atomic scale. However, in the limit of time and volume 

averages at equilibrium, the virial stress coincides with the Cauchy stress (Zimmerman et al., 

2002).  

The comparison between the stress distributions obtained from the FE and MD simulations 

for two cases of cracks are given in Figs. 8 and 9 in the form of two-dimensional (x-y) stress-

maps of the system created for each of the three stress components acting in the (x-y) plane: σxx, 

σyy, and σxy. Fig. 8 presents the case of the small prestress of 3.5 GPa, which produces a 10 nm 

crack at equilibrium in the MD simulation (seen in Fig. 5(a)). The size of the crack is sufficiently 

small compared to the system size, and the elastic stress field calculated by the FE simulation 

(Figs. 8(a-c)) does not experience edge effects from the boundary conditions and thus resembles 

an infinite plate. The stress distribution for the brittle crack tip (the circled area in Figs. 8(d-f)) 

obtained by the MD simulation shows very good quantitative similarity to the FE result. This 

similarity suggests that the crack propagation in the MD system in the +x direction is indeed 
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brittle with essentially no plasticity. However, for the twinning tip there is a significant 

difference between the MD and FE results. The FE stress distribution is symmetric for the two 

crack tips, as they are elastically equivalent in the FE model (Figs. 8(a-c)). In contrast, twinning 

occurs in the MD system at the tip propagating in the -x direction and significantly alters the 

stress field. The σxx and σxy stress components are largely relieved, while the σyy stress is 

distributed along the twin boundaries (2 in Fig. 8(e)) and relieved at the crack tip. This 

reduction in local stress state explains the very slow crack propagation in the -x direction of the 

MD model.  

The GB layer, present in the MD model, but not in the FE model, increases the σxx stress (1 

in Figs. 8(d) and 9(d) corresponding to 1 in Figs. 5(a,b)), and suggests a stiffer GB layer. This 

stiffening effect should be taken with caution as the virial stress calculation in the MD simulation 

(Eq. (6)), as discussed previously, may give erroneous results when computed over small 

disordered atomic domains containing structural defects (e.g., GBs and surfaces, dislocation 

cores, etc., Zimmerman et al., 2002). It has been suggested that the highly constrained 

thermodynamic state of GBs in multilayer systems may appear stiffer than the crystal lattice in 

certain directions (Wolf and Jaszczak, 1993). 

At a larger prestress of 3.75 GPa the crack in the MD model reached almost 40 nm in length. 

The stress fields, presented in Fig. 9 (corresponding to the MD snapshot in Fig. 5(b)), are 

strongly affected by the system boundaries at y = ±W/2, as compared with the stress fields in Fig. 

8. In the MD case (see Figs. 9(d-f) related to the snapshot in Fig. 5(b)), the stress field away from 

the crack tips is similar to the corresponding FE stress field, while the near-tip stress distribution 

is strongly affected by the plastic mechanisms at the crack tips. The contribution to the stress 

from the developed twinning on the -x side of the crack (2 in Figs. 5(b) and 9(e)) and the few 
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dislocations remaining in equilibrium with the crack tip on the +x side (5 in Figs. 9(d-f)) can be 

easily identified. Both processes effectively relieve the stress around the crack tips as compared 

to the FE elastic solution (Figs. 9(a-c)) and lead the MD system into elasto-plastic equilibrium. 

The stress-field maps discussed in this section are the basis for continuum interpretation of 

the atomistic MD simulations. They show that the stress around a crack tip, computed in the MD 

model, can be related to a continuum stress field. This makes it possible to use the MD 

simulations of crack propagation to extract the cohesive zone law for a grain-scale continuum 

model. 

 

5. Defining a Traction-Displacement Relationship from Molecular-Dynamics 

Grain-scale simulations that use cohesive zone models to study fracture (such as those 

presented by Zavattieri et al. (2001; 2003), Iesulauro et al. (2002), and Wei and Anand (2004)) 

typically use heuristically derived relationships and input values to define the CZM. In such an 

approach, the values at the microstructural scale are based on macroscopic parameters such as 

fracture toughness. Thus, there is no physical substantiation for the quantities that are input to the 

analysis. Conversely, a cohesive formulation can be part of an effective physics-based approach 

if constitutive parameters are used that exploit the similitude between atomistic simulation and 

continuum finite element results. The model can be developed from results of the MD analyses 

allowing the physical insight of MD to be embedded in the more computationally efficient FE 

models. 

The traction-displacement function of a CZM describes how the traction τ, developed in the 

process zone near the crack, depends on the crack opening λ. In general, the traction-

displacement function τ(λ) considers both normal and tangential crack surface components of the 
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traction. In the case of a normal opening (mode I) crack under hydrostatic load, only the normal 

component of the traction is important. In the MD simulation, the tensile σs
yy component of the 

stress near the debonding GB interface can be used as an equivalent of the normal traction τn. 

The superscript ‘s’ indicates the stress near the GB interface.  

To obtain σs
yy from MD, the simulation box is divided into 2NL+1 slices of thickness δ (Fig. 

10), so that (2NL+1)δ = L. At the beginning of the simulation, before the crack is nucleated, a 

three-dimensional rectangular volume element (called a Cohesive-Zone-Volume-Element, 

CZVE) is defined at the place where each slice crosses the GB plane at y = 0 (illustrated by the 

dotted regions in Fig. 10). The CZVE has a length δx along x and extends to y = ±δy on both sides 

of the GB interface. Its thickness equals the system thickness h. When the propagating crack 

passes through a CZVE during the simulation and the CZVE starts to open, its shape deforms 

(see the dotted elements at the crack tips in Fig. 10). To be able to keep track of the CZVE 

volume, the atoms that have belonged initially to the CZVE are marked, i.e., their identification 

numbers are stored for each CZVE, and are further used to identify the CZVE. Eq. (6), with the 

“i”-index going over the marked atoms of a CZVE, and Ω equal to the volume of the CZVE, is 

used to calculate σs
yy(xp,t) as a function of the position xp of the p-th CZVE along the GB 

interface at time t during the simulation. Here, p ∈ [0, NL] for the crack tip propagating in the +x 

direction, and p ∈ [0, -NL] for the crack tip propagating in the -x direction. At the same instant t, 

the crack opening λ(xp,t) at the same position xp, is also estimated. Thus, every estimate of 

σs
yy(xp,t) corresponds to one estimate for λ(xp,t), allowing the construction of the function 

σs
yy(λ(xp,t)) for each CZVE.  

An example of estimating σs
yy(xp,t) and λ(xp,t) for the case of a crack growing for t = 123 ps 

in a system prestressed at 4.25 GPa is given in Fig. 11. The stress and opening profiles (σs
yy(x) 
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and λ(x) curves, respectively) are taken from a set of CZVEs placed in a line along the 

debonding GB. A fit to the continuum expression for the stress at a crack tip 

! 

"yy

s
(x) =

KI

2#(x $ xo)
+ "o

,         (7) 

is imposed on the stress profile ahead of the brittle tip, propagating in the +x direction (see Fig. 

11). The fit shows a 1/√r type dependence of the stress profile and KI is determined to be 0.36 

MPa.m1/2. Such dependence is not recovered for the ductile tip, propagating in the -x direction in 

Fig. 11, because the stress is continuously relieved by the twinning process. 

The σs
yy(x) and λ(x) profiles in Fig. 11 are for a single instant of time of the crack 

propagation. If the whole simulation of the interface debonding is divided into Nt equal intervals 

of time tq (q∈[0, Nt]), many such profiles can be taken of many CZVEs placed along the GB. 

When plotted in a σs
yy vs. λ plot, each (σs

yy(xp,tq), λ(xp,tq)) couple represents a point σs
yy(λ(xp,tq)). 

After sorting these data points in an ascending order on λ, so that λi < λi+1, and taking a moving 

average (or a consecutive mean):  
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in which the results are averaged over M points backward and M points forward from λi, a 

construction of a statistically representative traction-displacement function τ(λ) can be made. 

The opening of the crack λ(x,t) as a function of x can be estimated in various ways. A 

convenient method is to use the previously described slicing of the simulation system along the 

x-axis (Fig. 10). The separation between atoms on either side of the GB interface increases as the 

crack passes through a slice, creating an opening of size λ in the middle of the slice (the dashed 

slice in Fig. 10 is given as an example). The opening changes the slice’s gyration radius Rg (or 
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the angular momentum), and one can estimate the size of the opening by calculating Rg. 

Assuming a uniform mass distribution, the continuum expression of Rg as a function of λ is 
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Alternatively, expressed through the atomic coordinates, the discrete formula for Rg is: 
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where yi is the y-coordinate of atom i, and the sum is over all N atoms in the slice. 
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is the y-coordinate of the mass center of the slice. Calculating Rg from Eq. (10) and substituting it 

in Eq. (9), the crack opening at the slice is the positive root of λ from Eq. (9).  

Though the introduced CZVE is used to extract the behavior for the CZM element in the FE 

model, it should not be considered an MD equivalent of a CZM element. While the CZM 

elements are strictly surface elements in a 3D finite element model, the CZVE encompasses a 

volume at the surfaces on either side of the crack, large enough to allow for the convergence in 

the stress estimate in (Eq. (6). Each CZVE along the GB interface in the MD simulation has its 

individual behavior, depending on the local structural irregularities at the atomic level, while in a 

FE simulation the CZM elements for one type of interface are all identical. The relation between 

the CZVE and the CZM is made through statistical averaging (Eq. (8)). The assumption is made 

that under the steady-state conditions of crack propagation, the statistical average over many 

CZVEs scanned at different instants of time will produce a statistically unique traction-

displacement curve. Assuming a Gaussian distribution of σs
yy(λ(x,t)) from each individual 

measurement of each CZVE, the dispersion around the average traction-displacement curve will 
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decrease proportionally to the square root increase of the number of atoms belonging to the 

CZVE. Thus, a larger volume of the CZVE would better average out the statistical fluctuations. 

In MD simulations, this volume is limited by the small size of the damage zone around the crack 

tip and by the large stress gradients inside it. This makes the dispersion large, and a sufficient 

number of measurements is required to produce a reliable traction-displacement function.  

The size of the CZVE is defined by δx = δy = δ = 1/3[7 7 10]ao ≈ 1.9 nm (see Fig. 10) for this 

simulation, which gives a volume of 2hδ2 = 20.7 nm3 containing 1245 atoms that contribute to 

the stress-displacement response of one CZVE. For the simulated system in Fig. 1, 2NL + 1 = 63 

CZVEs fit along the 120 nm GB interface. During the simulation, σs
yy(λ) state for each CZVE is 

scanned every 4 ps for a period of 200 ps crack propagation time. This gives 3150 points for 

σs
yy(λ) dependence from each simulation run. These points provide adequate statistics to extract 

the traction-displacement curve through suitable averaging. Because the two crack tips propagate 

in a very different manner, as discussed in Section 3, the statistical averaging (Eq. (8)) must be 

performed separately for these two directions. 

The values of σs
yy(λ) for the brittle tip prestressed at 4.25 GPa are given in Fig. 12(a). At 52 

nm of propagation (Fig. 5(d)), 25 CZVEs have experienced a complete transition from a fully 

closed to a fully opened state. The results from 1575 calculations (along 0 ≤ x ≤ L/2), presented 

as points in Fig. 12(a), gives sufficient statistics to extract a reliable σs
yy(λ) curve using Eq. (8). 

The averaging interval is set to M = 100, which is empirically found to give a sufficiently smooth 

curve. The curve reproduces closely a bilinear type of constitutive relation for the CZM element 

and is similar to the one suggested by Camacho and Oritz (1996) for brittle materials. The 

bilinear types of CZM models were used in several recent FE simulations of brittle fracture 

during multi-axial dynamic loading of ceramic microstructures (Zavattieri et al., 2001; 2003). 
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The traction-displacement curves for 3.75 and 4.00 GPa, obtained in the same way, also given in 

Fig. 12(a) (the data points, over which the traction-displacement curves are averaged are omitted 

for clarity), show that varying the prestress of the system in this range does not change the 

essential character of the averaged σs
yy(λ) dependence. The peak stress σp shows a slight 

systematic decrease with decreasing load, and is probably an effect of the propagation speed 

decrease but remains approximately σp ≈ 5.0 GPa at λp ≈ 0.4 nm. It should be noted that the 

value for λp is taken relative to the initial state at an applied hydrostatic loading of 3.75 to 4.25 

GPa. In reality, σs
yy(λ) for λ < λp should follow the elastic response of the GB before debonding. 

The full opening, or full debonding, of the interface happens at λo ≈ 2.5 nm, when σs
yy  becomes 

zero. 

The corresponding data σs
yy(λ) for the ductile tip, propagating in the –x direction where 

twinning occurs, is presented in Fig. 12(b). Again, only the data points for 4.25 GPa prestress are 

given for clarity, while the averaged traction-displacement curves are shown for the three loads 

of 3.75, 4.0 and 4.25 GPa, as in Fig. 12(a). In contrast with the behavior in the +x direction, a 

stronger influence of the prestress on the traction-displacement curves is observed for the –x 

direction. Most pronounced is this influence for λo, which changes from λo
(1) = 2.7 nm to λo

(3) = 

4.3 nm as the prestress is increased from 3.75 to 4.25 GPa. The peak stress σp shows again the 

slight systematic decrease with decreasing load, which was observed in Fig. 12(a), accompanied 

by a shift in λp.  

The comparison between the extracted traction-displacement relationships for the ductile and 

the brittle crack tips is presented in Fig. 13. The case of 4.25 GPa prestress is chosen because 

there, the crack has achieved its largest growth in both directions (Fig. 5(d)) and has produced 

the most data points for CZVE statistics. Figure 13 reveals how the different atomistic processes, 
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taking place at the two crack tips and discussed in detail in Sec. 3, are affecting the decohesion 

law of the interface debonding. This comparison is also very informative on the significance of 

the form of the traction-displacement curve and how this form reflects the underlying physical 

processes as revealed by the presented atomistic MD simulations. The ductile traction-

displacement curve is substantially more extended towards larger debonding distances λo, 

compared to the case of almost brittle debonding (λo
dt > λo

br, see Fig. 13). The corresponding 

peak stress σp is also lower for the ductile case, which is possibly a result of the emission of 

twinning dislocations relieving the stress at the crack tip. The lower σp and the larger λo during 

twinning produces a more extended debonding region for the ductile traction-displacement 

curve, compared to the steeper curve in the case of brittle fracture. This difference justifies the 

use of a trapezoidal type of curve with a plastic straining region and reduced peak stress for the 

case of elasto-plastic fracture (Tvergaard and Hutchinson, 1996) and a bilinear curve for brittle 

fracture (Camacho and Ortiz, 1996). Despite a lower peak stress, the traction-displacement curve 

with twinning has about 50% larger area, meaning a larger work of separation Γ defined as 

(Tvergaard and Hutchinson, 1992) 

! 

" = #yy

s

0

$
0

% d$  .          (11) 

The larger work of separation also explains the smaller propagation distance in the ductile (–x) 

direction, compared to the brittle (+x) direction in the MD simulation (see Fig. 5(d) and compare 

also Figs. 6(a-f) with Figs. 7(a-f) discussed in Section 3).  

 

6. Conclusions 

A methodology is detailed for extracting the decohesion law for interface debonding by 

introducing a Cohesive-Zone-Volume-Element using molecular-dynamics simulations. The 
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methodology is applied for the process of debonding of a high-energy ∑99 GB in Al through 

crack propagation under hydrostatic loading conditions. The work reveals the atomic 

mechanisms in the damage zone near the crack tips during intergranular fracture. Here, the crack 

propagation has been shown to proceed in a different manner in the two opposite directions 

along the GB interface. While in one direction the crack progresses in a brittle manner, the 

propagation in the opposite direction is of a ductile type, characterized by the presence of plastic 

mechanisms including twinning at the crack tip. The difference in the mechanism is due to the 

inclination of the slip planes to the GB interface making different angles with respect to the two 

opposite propagation directions.  

Applying a statistical procedure, the decohesion laws in terms of traction-displacement 

curves for the brittle and ductile crack propagations are extracted from the atomic forces and 

motions around the crack tips. The comparison between these curves reveals the influence of the 

plastic mechanisms on the behavior of the CZM element. The appearance of plastic mechanisms 

extends the traction-displacement curve towards larger openings, while reducing the peak 

opening traction. This results in an increase of the area below the curve, as the work of 

decohesion increases in the presence of plastic processes. This justifies the use of an empirically 

derived trapezoidal type of decohesion law for the case of solids with enhanced plasticity and a 

bilinear law for britle materials. 

The brittle vs. ductile propagation simulated in both directions along the GB interface is 

found to agree well with the predicting criteria of Rice and Tadmor-Hai. This good compliance 

with the two criteria allows the selection of the proper cohesive zone model in a finite element 

simulation by knowing the crystallographic orientations of the grains in the microstructure and a 

few material parameters. The parameters, including surface, GB, stacking-fault, and twinning 
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energy, are readily available experimentally. Others, such as the unstable stacking-fault energy 

and the unstable twinning energy, need more precise estimates and may require the use of first-

principal calculations. 
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Appendix A 

Molecular-dynamics (MD) monocrystal simulations were used to estimate the stiffness 

coefficients of an aluminum single crystal at 100 K in the basic orientation: (x:[1 0 0]; y:[0 1 0]; 

z:[0 0 1]). The values obtained are (in GPa): C11 = 109.1; C12 = 58.5; C44 = 33.0. While C11 and 

C12 are slightly lower than the zero temperature value for the potential used (Mishin et al., 1999), 

C44 is slightly higher. This increases slightly the anisotropy parameter CA = 2C44/(C11-C12) = 1.30 

compared to the zero temperature CA (T = 0 K) = 1.21. The transformation of the stiffness 

coefficients to the ∑99 crystal orientations, given in Section 2.2, is performed according to the 

shortened for cubic crystals procedure (Wortman and Evans, 1965), which gives the following 

stiffness matrix 

  

! 

" C ij =

118.7 52.7 54.7 0 0 ±2.0
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( 

   ,     (A.1)                 

where the prime indicates transformed elastic constants with C′ij = C′ji. The “±” sign at some of 

the off-diagonal values indicate change of sign when going from Crystal I orientation to Crystal 

II orientation. Due to the small anisotropy, the stiffness matrix in Eq. (A.1) almost preserves its 

cubic symmetry with C′11 ≈ C′22 ≈ C′33 ≈ 118, C′12 ≈ C′13 ≈ C′23 ≈ 54, C′44 ≈ C′55 ≈ C′66 ≈ 29, and 

the remaining C′ij ≈ 0. Using these approximate values in the FE model makes the two 

crystallographic orientations on both sides of the GBs elastically equivalent. This significantly 

simplifies the problem from a slit in a multilayer system to a slit in a single cubic crystal with the 

GBs neglected (see Fig. 3).  
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Figures: 

 

 

 

 

 

Fig. 1. Initial atomistic snapshot of the molecular-dynamics (MD) system before crack initiation, 

representing the simulation set-up, explained in the text. Size dimensions are in nm. Grain 

boundaries (GB) are shown as parallel lines of dark atoms separating the crystalline phases of 

Crystal I, Crystal II, and Absorbing Layers I and II as indicated.    
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Fig. 2. Atomistic snapshot giving the crystallography and structure of the GB interface. Common 

neighbor analysis (CNA) (Honeycutt and Andersen, 1987; Clarke and Jonsson, 1993) is used to 

identify atoms in different crystallographic states: fcc (small dots), hcp (triangles), and non-

crystalline atoms (large dots). Atoms with more than 1/3 of their nearest neighbors missing are 

identified as surface atoms (squares), indicating existing vacancies in the GB. The length scale is 

in units of the lattice constant of Al, ao = 0.405 nm (Mishin et al., 1999). 
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Fig. 3. The mesh of the finite element model with a built in lenticular crack. The relative crack 

length, l/L, varied from 0.05 to 0.91, corresponding to the absolute crack length from 6 to 110 

nm in the MD system, shown in Fig. 1. Generalized plane strain in the z-direction is used to 

emulate the hydrostatic loading conditions in the MD system, shown in Fig. 1.   
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Fig. 4. The strain energy per unit thickness, E/h, of the FE system with increasing crack length l. 

The two straight, dashed, and dot-dashed lines, Esurf = 2γsl and  ΔEGB = -γGBl, show the effective 

increase of the surface energy and the decrease of the GB energy with increasing l. The position 

of the maximum of Etot = Eelast + Esurf + ΔEGB indicates the Griffith length Lg, as shown for the 

four applied prestresses of 4.25, 4.0, 3.75, and 3.5 GPa, starting from the top down.   
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Fig. 5. (In color) MD snapshots of cracks, which have propagated in the MD system, shown in 
Fig. 1, prestressed at four different initial hydrostatic stresses: σ = 3.5 (a), 3.75 (b), 4.0 (c) and 
4.25 GPa (d). As in Fig. 2, CNA is used to identify atoms in different crystallographic states: fcc 
(in gray), hcp (in red), and non-crystalline atoms (in blue). Atoms with more than 1/3 of their 
nearest neighbors missing are identified as surface atoms (in green). Thus, a number of different 
formations are indicated in the figure as follows:  - GB interface;  - twin boundary;  - core 
of a partial or twinning dislocation;  - nanovoid at the crack tip;  - slip dislocation;  - GB 
dislocation; and  - secondary slip. 
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Fig. 6. A series of snapshots monitoring the development of a symmetrical deformation twinning 
at the –x crack tip in the MD system prestressed at 4.0 GPa hydrostatic load. The snapshots are 
taken at various times from the crack initiation, t, given in ps. The length scale is in units of the 
lattice constant of Al, ao = 0.405 nm. Identified as in Fig. 5, the small dots indicate fcc atoms; the 
non-crystalline atoms are shown in black, while hcp and surface atoms are shown in grey. 
Formations , , , and  correspond to the types indicated in Fig. 5. 
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Fig. 7. A series of snapshots monitoring the propagation of the crack tip in the +x direction in the 
MD system prestressed at 3.75 GPa hydrostatic load. The snapshots are taken at various times 
from the crack initiation, t, given in ps. The length scale is in units of the lattice constant of Al, ao 
= 0.405 nm. The atoms of different types are identified as in Fig. 6. Formations - correspond 
to the types indicated in Fig. 5.  
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Fig. 8. (In color) Stress contours from the FEM model (a-c) (corresponding to Fig. 3) and the 
corresponding stress maps (d-f) from the MD model (corresponding to Fig. 5(a) at 3.5 GPa 
prestress) for σxx, σyy, and σxy stress components. In (a), (b), (d), and (e), the stress in blue is 
defined as the stress in tension. In (c) and (f), positive and negative shear corresponds to shear 
directions relative to the GB interface as shown at the two sides of the σxy stress indicator. 
Formations  and  correspond to those indicated in Fig. 5(a). 
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Fig. 9. (In color) Stress contours from the FEM model (a-c) and the corresponding stress maps 

(d-f) from the MD model (corresponding to Fig. 5(b) at 3.75 GPa prestress) for σxx, σyy, and σxy 

stress components. The stress-level colors are defined in the same way as in Fig. 8. Formations 

- correspond to those indicated in Fig. 5(b). 
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Fig. 10. Schematic diagram of the slicing of the system volume in the MD simulation and 

defining the representative regions for extracting the parameters for the cohesive-zone interface 

elements in a continuum simulation.  
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Fig. 11. Stress and opening profiles extracted along the crack growing for 123 ps in a system 

prestressed at 4.25 GPa hydrostatic load. The corresponding snapshot of the crack is shown at 

the bottom.  
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Fig. 12. Surface stress vs. crack opening curves σs
yy(λ) characterizing the propagation of the 

cleavage tip in the +x direction (a) and in the -x direction (b)  for three preloads. The dots are the 

individual measurements for 4.25 GPa hydrostatic load simulation, from which an average was 

taken to produce the corresponding σs
yy(λ) curve (see text). The curves for 3.75 and 4.0 GPa are 

produced in a similar way.  
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Fig. 13. Traction-displacement relationship σs
yy(λ) and the corresponding work of separation 

Γ(λ) for the case of 4.25 GPa prestress compared for the brittle (+x) and the twinning (-x) tip. 


