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Factors Influencing Progressive Failure Analysis Predictions 
for Laminated Composite Structure 

Norman F. Knight, Jr.1 
General Dynamics – Advanced Information Systems, Chantilly, VA 20151 

Progressive failure material modeling methods used for structural analysis including 
failure initiation and material degradation are presented.  Different failure initiation criteria 
and material degradation models are described that define progressive failure formulations.  
These progressive failure formulations are implemented in a user-defined material model for 
use with a nonlinear finite element analysis tool. The failure initiation criteria include the 
maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the 
Hashin criteria.  The material degradation model is based on the ply-discounting approach 
where the local material constitutive coefficients are degraded.  Applications and extensions 
of the progressive failure analysis material model address two-dimensional plate and shell 
finite elements and three-dimensional solid finite elements.  Implementation details are 
described in the present paper.  Parametric studies for laminated composite structures are 
discussed to illustrate the features of the progressive failure modeling methods that have 
been implemented and to demonstrate their influence on progressive failure analysis 
predictions. 

I. Introduction 
Advanced composite structures are a challenge to analyze.  This challenge is driven by the evolution of new 

material systems and novel fabrication processes. Analytical procedures available in commercial nonlinear finite 
element analysis tools for modeling these new material forms are often lagging behind the material science 
developments.  That is to say, analytical models implemented in the analysis tools must frequently be “engineered” 
for new material systems through the careful extension, within the known limits of applicability, of existing material 
models available in the analysis tools. When the materials technology matures sufficiently, verified analytical 
models can be developed, validated, and become available in the commercially available tools.  In the interim, some 
commercial finite element analysis tool developers have responded to user needs by providing a capability to embed 
user-defined, special-purpose finite elements and material models. 

This need for a capability to explore user-defined material models exists – particularly for composite structures.  
Composite material systems have unique characteristics and capabilities not seen in metals.  These characteristics 
include being brittle rather than ductile, being directional in stiffness and strength, and being applicable to different 
fabrication architectures.  These characteristics enable advanced design concepts including structural tailoring, 
multifunctional features, and performance enhancements. 

Another consideration for the material model developer is the intended application and target finite element 
analysis tool.  Applications involving an explicit transient dynamic nonlinear tool impose different requirements on 
the material model developer than applications involving implicit (or quasi-static) nonlinear tools.  In explicit 
formulations, only the current stress state is needed to evaluate the current internal force vector in order to march the 
transient solution forward in time.  In implicit (or quasi-static) formulations, the current stress state and a consistent 
local tangent material stiffness matrix are needed to form the internal force vector for the residual (imbalance) force 
vector computation and to form the tangent stiffness matrix for the Newton-Raphson iteration procedure.  

The objective of the present paper is to describe a progressive failure analysis methodology [1] that is applicable 
to laminated composite structures and focuses on implicit, quasi-static applications.  This material model accounts 
for a linear elastic-brittle bimodulus material behavior.   Several options for detecting failure initiation and 
subsequent damage progression are provided in this user-defined material model.  The material model can be 
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applied even when only laminate-level or “apparent” material data rather than lamina-level data are available.  
Factors influencing the progressive failure analysis prediction are identified and discussed.  Implementation of the 
material model for progressive failure analysis is demonstrated using the user-defined material modeling (or 
UMAT) feature provided in the ABAQUS/Standard2 nonlinear finite element analysis tool [2].  

The present paper is organized in the following way.  First, a brief overview of composite materials is presented 
to define terminology.  Second, the basic equations for constitutive modeling in two- and three-dimensions are 
described.  Next, the failure initiation and material degradation models proposed for use with laminated composites 
are defined. Then, the nonlinear solution process and implementation details of the material model for traditional 
progressive failure analyses are described.  Numerical results and discussion are presented for a 16-ply open-hole-
tension coupon using two different stacking sequences.  Concluding remarks are given in the final section of the 
paper.  

II. Composite Materials 
Composite materials can be defined as materials comprised of more than one material, such as a bimetallic strip 

or as concrete (e.g., see Refs. [3-8]). However, composite materials are more commonly defined as materials formed 
using fiber-reinforced materials combined with some matrix material (e.g., graphite fibers embedded in an epoxy 
resin system).  Typical fiber materials include graphite and glass, and typical matrix materials include polymer, 
metallic, ceramic, and phenolic materials.  Composite material systems are available as unidirectional or textile 
laminas that are used to design laminated composite structures.    Background material and issues are briefly 
described in the next subsections.  

A. Unidirectional Laminated Composites 

Unidirectional laminated composite structures are formed by stacking (or laying up) unidirectional lamina with 
each layer having different properties and/or different orientations in order to form a composite laminate of a given 
total thickness.  The elastic analysis of such composite structures is well developed [3-8].  Typically, composite 
structures are thin structures that are modeled using two-dimensional plate or shell elements formulated in terms of 
stress resultants and based on an assumed set of kinematical relations.  Hence, pre-integration through the shell 
thickness is performed and the constitutive relations are in terms of resultant quantities rather than point stresses and 
strains.  Integrating the constitutive relations through the thickness generates the so-called “ABD” stiffness 
coefficients where the “A” terms denote membrane, the “B” terms denote membrane-bending coupling, and the “D” 
terms denote bending stiffness coefficient matrices, respectively.  However, in some cases, composite structures are 
relatively thick and require three-dimensional modeling and analysis. 

Material characterization of laminated composite structures has been demonstrated to be quite good, and failure 
prediction models for damage modes associated with fiber failure in polymeric composites have also been 
successful. Ochoa and Reddy [5] present an excellent discussion of progressive failure analyses.  In laminated 
composite structures, fiber-dominated failure modes (e.g., axial tension) are better-understood and analyzed than 
matrix-dominated failure modes (e.g., axial compression, transverse tension). Methods to predict failure initiation 
(e.g., see Refs. [9-11]) and to perform material degradation remain active areas of research.  Material degradation 
can be performed using a ply-discounting approach or an internal state variable approach based on continuum 
damage mechanics.  Most composite failure analysis methods embedded within a finite element analysis tool 
perform a point-stress analysis, evaluate failure criteria, possibly degrade material properties, and then continue to 
the next solution increment (e.g., see Refs. [12-31]). Application of progressive failure analysis methods to 
postbuckled composite structures continues to challenge analysts due to the complexity and interaction of failure 
modes with the nonlinear structural response (e.g., see Refs. [15-20, 23, 28, 29]). 

Damage associated with matrix cracking, the onset of delaminations, and crack growth is very difficult to predict 
for laminated composite structures.  Failure analysis procedures based on the use of overlaid two-dimensional 
meshes of shell finite elements [23], the use of computed transverse stress fields from the equilibrium equations 
[15], and the use of decohesion or interface elements [29, 32-36] have met with limited success. Analytical methods 
for predicting matrix cracking, delamination, and crack growth are still immature while current research associated 
with decohesive models appears promising, these failure prediction models require additional material properties 
obtained from further testing and material characterization. 
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B. Woven-Fabric Laminated Composites 

Woven-fabric laminated composite structures (e.g., see Refs. [37-44]) can be formed by laying up woven-fabric 
layers or by weaving through the total thickness.  Fabric layers usually have interwoven groups of fibers in multiple 
orientations. Plain- and satin-weave fabrics have warp and weft (0-degree and 90-degree, respectively) yarns only.  
Woven-fabric laminated composites are different from unidirectional-based laminated composites, and different 
analysis methods are needed.  Often, however, plain- and satin-weave fabrics of a given thickness are modeled as an 
equivalent set of two unidirectional layers (i.e., [0/90]) where each unidirectional layer has half the fabric layer 
thickness.  Alternatively, a single fabric layer is modeled as an “equivalent” single layer of the same thickness and 
having equal in-plane longitudinal and transverse moduli (E11=E22).  This equivalence is a modeling simplification 
and does not accurately represent the micromechanics of the woven-fabric composite. When only “apparent” 
material data are available (i.e., only laminate-level material data), failure initiation criteria should be defined in a 
manner consistent with the available data [44].  As such, the through-the-thickness material definition is smeared 
over the laminate, and lamina properties are essentially those of identical orthotropic layers with E1 and E2 being 
equal to the corresponding effective engineering values (Ex and Ey) obtained from a laminate analysis.  An average 
lamina thickness is defined as the local laminate thickness divided by the number of apparent ply layers. 

III. Constitutive Models 
The constitutive models in a quasi-static stress analysis relate the state of strain to the state of stress.  These 

relations may be different depending on the kinematic assumptions of the formulation (e.g., different through-the-
thickness assumptions for the displacement fields).  However, in performing point strain analyses, the state of stress 
at a point is desired and is readily computed once the point strains are determined through the use of the kinematics 
relations.  Dimensional reduction may result in one or more of the stress components being assumed to be zero. For 
two-dimensional models, C0 plate and shell kinematics models have five non-zero components and typically account 
at least for constant non-zero transverse shear stresses through the thickness, while C1 plate and shell kinematics 
models have only three stress components and neglect transverse stresses.  For three-dimensional models, six stress 
and six strain components are evaluated. The subsequent sections describe the constitutive relations for these 
kinematics models.  Additional details on laminated composite structures are provided in Refs. [3-8]. The 
engineering material constants appearing in subsequent equations are the linear elastic mechanical property 
values ) and ,, , , , ,, , (e.g., 231312231312332211 νννGGGEEE . 

A. Two-Dimensional Material Model 

In two dimensions, the strain-stress relations for a typical linear elastic orthotropic material used with two-
dimensional plate and shell elements based on C0 continuity requirements and implemented within ABAQUS are 
written as: 
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For C1 shell elements, the terms associated with the transverse or interlaminar shear effects (i.e., terms associated 
with γ13 and γ23) are neglected. It is clear from Eq. 1 that the normal components are coupled to one another, while 
the shear components are completely uncoupled.  The compliance coefficients Sij

0  in this matrix are defined in terms 
of the elastic engineering material constants (see Ref. [2], Vol. II, p. 10.2.1-3).  Namely, the non-zero terms are: 
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Hence, the stress-strain relations can be obtained directly from the compliance relations given in Eq. 1 as: 
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Note that the order of the stress and strain terms is defined by the convention used by ABAQUS.  The stiffness 
coefficients Cij

0  in this matrix are defined in terms of the elastic material constants (see Ref. [2], Vol. II, p. 10.2.1-
3).  Namely, 
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and based on the reciprocity relation for plane elasticity given by: 

E11ν 21 = ν12E22                 (5) 

In this approach, the material is modeled implicitly through the thickness by using the kinematics assumptions of 
the two-dimensional shell elements (i.e., in-plane strains vary linearly through the shell thickness and the transverse 
normal strain is zero).  Typically, the in-plane shear stress-shear strain relationship is assumed to be linear; however, 
nonlinear in-plane normal stress behavior as well as Hahn-type in-plane shear nonlinearity [45, 46] can be 
incorporated as part of a material model.  In addition, shear correction factors for orthotropic laminates can be 
computed using the approach presented by Whitney [47]. 

Similarly, the stress-strain relations for a typical linear elastic orthotropic material used with two-dimensional 
plate and shell elements based on the C1 continuity requirements are written as: 
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where the Cij
0  coefficients are defined in Eq. 4. 

At each planar Gaussian integration point within each plate or shell element surface plane (e.g., 2×2 Gaussian 
integration points for a fully integrated two-dimensional plate or shell element), material points through the entire 
thickness (referred to as section points in ABAQUS) are evaluated to determine the through-the-thickness state of 
strain and to estimate the trial stresses (i.e., point stresses and strains). 
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Implicit in the previous discussion is the assumption that the elastic response is the same in tension and 
compression; however, some composite systems exhibit a bimodulus behavior.  A bimodulus elastic orthotropic 
material exhibits a different stress-strain response in tension and compression.  Basic constitutive relations for a 
bimodulus material are presented by Ambartsumyan [48], Tabaddor [49], Jones [50], Bert [51], Reddy and Chao 
[52], and Vijayakumar and Rao [53].  However, such a material model for a modern composite material is not 
readily available in most commercial general-purpose finite element tools.  In some cases, various options can be 
combined or semi-automated procedures developed to address bimodulus composite material systems.  In a linear 
stress analysis, for example, a material iterative process to assign material properties can be used that defines the 
appropriate material properties based on the local principal strains.  Such a material iterative process is typically 
performed manually or it may be a semi-automated process, and the process needs to be repeated for each different 
loading case since the local strain state changes. For a nonlinear analysis that accounts for material degradation and 
damage, a semi-automatic material iteration approach is not viable.  In such cases, user-defined material models can 
be developed for certain commercial finite element tools (e.g., ABAQUS/Standard).  Alternatively, “engineering” 
models (e.g., use only the tensile modulus, use an average modulus, or some other engineering approximation for 
the material response) can be developed that approximate the mechanical behavior provided these approximations 
are defined and limitations are understood by the end-users (or stakeholders) of the analysis results.  The next 
section describes failure initiation (or failure detection) criteria commonly used with laminated composite structures 

IV. Failure Initiation Criteria 
Having described the basic constitutive models for two-dimensional formulations for the recovery of stresses at a 

material point in a composite structure, the failure initiation criteria implemented in this UMAT subroutine for 
ABAQUS/Standard are now described.  Four common failure initiation criteria have been implemented; namely, the 
maximum stress criteria, the maximum strain criteria, the Tsai-Wu failure polynomial [9, 17, 18, 27], and the Hashin 
criteria [11].  Both two- and three-dimensional implementations of these criteria are required depending on whether 
the finite element model of the structural component involves two-dimensional shell elements or three-dimensional 
solid elements, and both implementations are included within this single UMAT subroutine.  Even though transverse 
shear behavior is not treated explicitly within an ABAQUS/Standard UMAT subroutine, their failure criteria are 
defined herein for completeness. 

The stresses in the material coordinate system are computed within the current UMAT subroutine using the 
given strains and the material stiffness coefficients at each material point.  Having these stresses, the stress-based 
failure criteria are evaluated, and material degradation is imposed as warranted.  In the following subsection, the 
Hashin failure criteria implemented within the current UMAT subroutine is described.  The other criteria 
implemented in this UMAT subroutine are described in Ref. [1].  Later, in a separate section of the present paper, 
the material degradation approach is described. 

A. Hashin Failure Criteria 

The Hashin failure criteria [11] are also interacting failure criteria as the failure criteria use more than a single 
stress component to evaluate different failure modes. The Hashin criteria were originally developed as failure 
criteria for unidirectional polymeric composites, and hence, application to other laminate types or non-polymeric 
composites represents a significant approximation.  Usually, the Hashin criteria are implemented within a two-
dimensional classical lamination approach for the point-stress calculations with ply discounting as the material 
degradation model. Failure indices for the Hashin criteria are related to fiber and matrix failures and involve four 
failure modes.  Additional failure indices result from extending the Hashin criteria to three-dimensional problems 
wherein the extensions are simply the maximum stress criteria for the transverse normal stress component.  The 
failure modes included with the Hashin criteria [11] when extended to three dimensions are: 
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• Compressive fiber failure – for 011 <σ  
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• Tensile matrix failure – for σ 22 + σ 33 > 0 
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• Compressive matrix failure – for σ 22 + σ 33 < 0 
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• Interlaminar normal tensile failure – for σ 33 > 0 
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• Interlaminar normal compression failure – for σ 33 < 0 
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In these failure criteria, lamina strength allowable values for tension and compression in the lamina principle 
material directions (fiber or 1-direction and matrix or 2-direction) as well as the in-plane shear strength allowable 
value are denoted by XT, XC, YT, YC, and S12, respectively, ZT and ZC are the transverse normal strength allowable 
values in tension and compression, respectively, and S13 and S23 are the transverse shear strength allowable values.  
In Eqs. 7-12, the in-plane normal and shear stress components are denoted by σij (i, j=1, 2).  The failure indices for 
the transverse normal stress component σ33 are based on the maximum stress criteria for tension and compression, as 
indicated by Eqs. 11 and 12.  Finally, failure indices for tension and compression are then compared to unity to 
determine whether failure initiation is predicted.  If any failure index ei

t,c  exceeds unity, then failure initiation has 
occurred for that stress component at that material point and material degradation will be performed.  That is, each 
failure mode may fail independently at different load levels, and the Hashin failure flags fi

H  are set accordingly: 

f i
H =

0 for ei
t,c ≤ 1

±1 for ei
t,c > 1

⎧ 
⎨ 
⎩ 

   for i = 1,  3          (13) 

Once a failure flag is nonzero, material degradation is performed as described in the next section.  Also, once a 
failure flag becomes nonzero, it remains nonzero (i.e., no self healing of the material is permitted). 

V. Damage Progression Models 
Previous sections described the constitutive models and the failure initiation criteria implemented in the current 

UMAT subroutine.  This section presents the damage progression strategies that provide material degradation and 
also the heuristics associated with the material degradation models for these failure initiation criteria.  Various 
material degradation models have been proposed and demonstrated for laminated composite structures (e.g., see 
Refs. [12-36]).  These models may be generally categorized into two main groups: heuristic models based on a ply-
discounting material degradation approach and models based on a continuum-damage-mechanics (CDM) approach 
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using internal state variables.  Representative models for the ply-discounting material degradation approach are 
implemented within the current UMAT subroutine [1]; however, both approaches are described subsequently in the 
present paper. 

A. Ply-Discounting Approach 

Traditionally, ply-discounting material degradation models are based on the degradation (or discounting) of the 
elastic material stiffness coefficients by a value βI that, in essence, generates a diminishing stiffness value (i.e., 
approaches zero as the number of solution increments from failure initiation increases) for the ith stress component.  
In this strategy, the ith diagonal entry of the elastic constitutive matrix Cii

0  is set equal to βI multiplied by Cii
0 , and 

the other row and column entries of the elastic constitutive matrix [C0] are also degraded in a similar manner.   
Another ply-discounting strategy involves degrading the elastic mechanical properties of the material directly (i.e., 
assumption of vanishing elastic moduli after failure initiation is detected) and then re-computing the local material 
stiffness coefficients using the degraded mechanical properties.  In this strategy, special care needs to be given to 
maintain symmetry in the degraded constitutive matrix. 

The application of material degradation implemented in this UMAT subroutine is related to the rate of material 
degradation once failure initiation is detected.  Instantaneous or single-step degradation degrades the material 
stiffness coefficients only once by the degradation factor.  Typical values for the degradation factor can range from a 
very small value (e.g., 10-6) to a large value (e.g., 0.8) for this type of material degradation.  Recursive degradation 
successively degrades the material stiffness coefficients in a gradual manner.  When the degradation factor is not 
small (e.g., say 0.5), then some of the numerical convergence issues associated with an instantaneous local change in 
material stiffness are avoided. Specifying recursive degradation with a near-zero degradation factor is nearly 
equivalent to specifying instantaneous degradation with the same near-zero factor.   

Methods based on recursive material degradation have been implemented to minimize the computational impact 
of localized changes in material stiffness terms, and the recursive degradation option is included in the current 
UMAT subroutine implementation.  Artificial viscous damping has also been used to improve the convergence 
behavior of the nonlinear solution procedure in quasi-static analyses [14, 28].  Examples of the ply-discounting 
approach and related computational details are presented in Refs. [15-20, 28].  The ply-discounting approach based 
on degrading the constitutive matrix coefficients including options for either recursive or single-step (instantaneous) 
material degradation (controlled by the parameter RECURS) has been implemented in the current UMAT subroutine 
and is available as a user-specified option. 

For the ply-discounting models, the analyst selects the failure initiation criterion (PDA), the material degradation 
factor (β), and the type of degradation (instantaneous or recursive).  The failure initiation criteria implemented in 
this UMAT subroutine are the maximum stress criteria (PDA=1), maximum strain criteria (PDA=2), Tsai-Wu failure 
polynomial (PDA=3), and the Hashin criteria (PDA=4). The form of the material degradation is selected by the 
parameter RECURS.  When RECURS equals zero, instantaneous degradation is imposed.  When RECURS equals 
unity, recursive degradation is imposed.  Material degradation is also dependent on the failure mode (tension, 
compression, or shear) and independent degradation factors can be specified in this UMAT subroutine (i.e., 
Dgrd(1) for tension, Dgrd(2) for compression, and Dgrd(3) for shear). The material degradation factor 
implemented in this UMAT subroutine multiplies the material stiffness coefficients directly rather than multiplying 
the engineering material properties themselves.  By multiplying the stiffness coefficients directly, the issue of 
maintaining the reciprocity relations for degraded engineering material properties is avoided. 

The combined use of recursive degradation (RECURS=1) and a fractional degradation factor (e.g., β=0.5) can 
provide a gradual degradation of material stiffness over several solution increments in an attempt to mitigate 
numerical convergence difficulties attributed to near singularities in the stiffness matrix caused by localized material 
failures.  In the present paper, the degradation factor β will be shown to have a significant effect on the failure 
prediction.  The numerical studies reported here use a degradation factor of 0.5 as a default value for β.  This value 
gives successive reductions in the stiffness coefficients by a factor of two on each solution increment after initial 
failure has been detected.  While somewhat arbitrary, this value has been shown to give good convergence behavior 
for the overall nonlinear solution algorithm applied to progressive failure simulations. 

For each failure initiation criteria, six failure indices ei are evaluated for the three-dimensional analysis models.  
Failure initiation is defined when one or more of these failure indices reach or exceed unity.  For the various criteria, 
the material degradation rules follow the heuristics available in the literature.  Typically, when a failure is detected 
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in a particular mode, say when the first failure flag is nonzero, then the local material stiffness associated with the 
fiber direction is degraded.  

This approach to material degradation may lead to very conservative predictions for interacting failure initiation 
criteria.  For example, the tensile fiber failure mode given by Eq. 7 for the Hashin [11] criteria in the present UMAT 
subroutine implementation will result in a degradation of the fiber related stiffness coefficients as well as the in-
plane shear coefficients.  However, if the first term in Eq. 7 is close to unity but does not cause failure initiation 
(maximum stress comparison) but the entire term does exceed unity, then the failure mode could be interpreted as a 
fiber-matrix shearing failure mode wherein only the in-plane shear stiffness coefficients are degraded.  While 
Hashin [11] developed failure initiation criteria, no material degradation rules were presented. 

In this UMAT subroutine, the ply-discounting material degradation models are based on discounting (or 
degrading) the terms of the elastic stiffness constitutive matrix (i.e., Cij

Degraded = βICij
0).  Degradation factors βI are 

defined for three failure types: tension-failure degradation factor βT, compression-failure degradation factor βC, and 
shear-failure degradation factor βS.  Off-diagonal terms in the constitutive coefficient matrix along the same row and 
column are also degraded in the same manner.  Material degradation can be performed either only once when failure 
initiation is detected (single-step approach), or it can be done recursively on each solution increment after failure 
initiation is detected (recursive approach).  Recursive material degradation typically provides a more “gentle” 
process of degrading material stiffness data and potentially can improve convergence characteristics of the solution 
procedure compared to an “abrupt” single-step degradation approach using near zero values for the degradation 
factors.  In addition, once a failure mode is detected, that failure mode is not checked at that material point again; 
however, recursive degradation of the material stiffness coefficients will continue to be applied.  Material 
degradation continues until the degradation factor reaches a specified minimum value, and then it is held constant at 
that minimum value (currently set to a value of 10-30).  At subsequent solution increments, other failure modes 
within a given failure criteria are evaluated at that material point and potentially could lead to a subsequent failure in 
a different mode. 

B. Internal State Variable Approach 

Continuum-damage-mechanics (or CDM) models generally describe the internal damage in the material by 
defining one or more internal state variables.  Regardless of the damage state, these CDM models still represent the 
material as continuum having smooth, continuous field equations.  Krajcinovic [54] described CDM “as a branch of 
continuum solid mechanics characterized by the introduction of a special (internal) field variable representing, in 
an appropriate (statistical) sense, the distribution of microcracks locally.”  Early continuum damage mechanics 
work for metal structures is discussed by Lemaitre [55].  Talreja [56] was one of the earliest to propose such a model 
for laminated composites along with Chang and Chang [14].  Ladevèze and LeDantec [57], Shahid and Chang [58], 
and Barbero and Lonetti [24] have additional CDM models.  CDM models express the constitutive relations in a 
manner similar to the elastic constitutive relations given previously, except that the coefficients (i.e., either 
compliance coefficients, stiffness coefficients, or the mechanical properties themselves) are functions of one or more 
internal state variables.  CDM models also generally require additional material data as part of the material property 
definition.  For example, one may require a material strength allowable value to be defined as a function of internal 
state variables, which may themselves be dependent on laminate stacking sequence.  As such, their use requires even 
more care than material degradation models based on heuristic rules as used in ply-discounting material degradation 
models. Krajcinovic [59] provides additional details on CDM methods for damage modeling. 

One approach is to incorporate the statistical nature of the material into the constitutive relations.  Matzenmiller 
et al. [60] proposed such a model (called the MLT model) based on the use of a Weibull function [61] to describe 
the statistical nature of internal defects and the ultimate strength of a fiber bundle within a composite lamina.  In the 
MLT model, the Weibull factor m is a primary control parameter that affects the strain-energy density at a given 
material point.  By adjusting the value m, the degree of strain softening in the post-ultimate region is controlled. 
Nonlinearity in the pre-ultimate region is controlled by the independent specification of the ultimate stress value, the 
ultimate strain value, and a parameter similar to a material modulus.   

Creasy [62] developed a different model based on the Weibull function, and Moas and Griffin [20] also used 
Weibull functions in their material degradation model. Hahn and Tsai [63] considered the post-ultimate behavior of 
symmetric cross-ply laminates.  Their results indicate that a gradual degradation of the cross-ply stiffness terms 
explains the bilinear stress-strain behavior that occurred prior to total failure.  Furthermore, they suggested that any 
failed lamina continues to carry its failure load in the post-ultimate range until the laminate fails (see Refs. [63, 64]). 
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Hence, Schweizerhof et al. [65] incorporated a stress limit factor that sets the minimum stress value in the post-
ultimate regime of the stress-strain curve. The MLT model as extended by Schweizerhof et al. [65] is available in 
LS-DYNA3 [66] as MAT58. 

VI. Nonlinear Solution Process 
The very nature of a progressive failure analysis implies a nonlinear solution process is required.  The 

framework for the present study is ABAQUS/Standard – an implicit nonlinear finite element analysis tool [2] that 
provides a user-defined material modeling interface using a UMAT subroutine.  Having a user-defined material 
feature is becoming an increasingly important capability for commercial finite element software systems.  
Developers of commercial finite element analysis tools frequently provide entry points for material data through 
special features and well-documented definition of the subroutine calling arguments.  The user is given various 
computational results from the element routines and solution procedure that are passed to the UMAT subroutine 
through the calling arguments.  These values may be used to determine new trial values for the stresses and 
constitutive coefficients based on the current deformation state. 

In an ABAQUS/Standard analysis, the analyst defines various analysis “steps” to perform.  Within each “step”, a 
number of solution increments may be performed depending on the type of analysis for that solution step.  
ABAQUS uses the concept of an accumulated “pseudo-time” to cover all types of solution steps within a complete 
implicit nonlinear analysis and a separate “pseudo-time” variable for each individual solution step.  In a quasi-static 
analysis, “pseudo-time” is related to the load factor.  In the present analyses, only a single solution step is employed 
– quasi-static nonlinear analysis through the keyword *STATIC.  Within the solution step, the pseudo-time variable 
is used to scale the applied loads and displacements.  The analyst specifies the starting solution increment, the 
maximum value of the scaling parameter (also called the solution step period or duration), the minimum solution 
increment value, and the maximum solution increment value.  These factors are referred to as the solution increment 
size factors in later sections.  If automatic solution step size adjustment is permitted, the solution process within a 
solution step will begin with the initial solution increment size.  Then, depending on convergence ease or difficulty, 
the solution increment size may increase to the maximum value defined by the maximum solution increment value 
or decrease to the minimum value defined by the minimum solution increment value.  The analysis for each solution 
step ends when the accumulated “pseudo-time” reaches the solution step period.   

The nonlinear formulation is based on an incremental-iterative formulation where each increment in 
displacement generates an increment of strain during a Newton-Raphson iteration procedure.  Results are defined 
using two superscripts k,i where k denotes the solution increment number and i denotes the iteration number for the 
current solution increment.  For the k+1th solution increment, the strains for the ith iteration may be written as: 

ε{ }k +1,i = ε{ }k,∞ + Δε{ }k +1,i             (14) 

where ε{ }k,∞  represents the strains from the previous kth converged solution increment (denoted by letting the 

iteration index i go to infinity or i → ∞), Δε{ }k +1,i represents the increment of strain from the previous kth 

converged step to the ith iteration of the current k+1th solution increment, and ε{ }k +1,i  represents the estimate of the 
strains for the ith iteration of the current k+1th solution increment.  The recovery of the stress state involves two 
aspects of the constitutive relations:  those stresses computed using the reference deformation state defined by the 
previous converged solution and the increment of stress computed using the current local tangent state.  As a result, 
the current trial stresses are defined as: 

{ } { } { } { } { } { } [ ] { } ikikkik
ik

kikkik J ,1,1,,1
.1

,,1,,1 ++∞+
+

∞+∞+ Δ+=Δ⎥⎦
⎤
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⎡

Δ
Δ

+=Δ+= εσε
ε∂
σ∂σσσσ   (15) 

Here { } ik ,1+σ represents the trial stress state for the ith iteration of the current k+1th solution increment, 

{ } ∞,kσ represents the stress state at the previous kth converged solution increment (denoted by the superscript ∞),  

and [ ] ikJ ,1+  represents the trial local tangent stiffness matrix (or trial local material Jacobian matrix) for the ith 

                                                           
3 LS-DYNA is a registered trademark of Livermore Software Technology Corporation (LSTC). 
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iteration of the current k+1th solution increment.  The trial stress state and the trial local tangent stiffness matrix need 
to represent a consistent set of relations.  To obtain a consistent set, these terms are derived based on the first and 
second variations of the strain energy density functional. 

These two sets of relations (namely, the trial stress estimates and the trial tangent constitutive coefficients for the 
ith iteration of the current k+1th solution increment) need to be provided by the UMAT subroutine after being called 
by ABAQUS/Standard.  For a linear elastic brittle material, the trial local tangent stiffness coefficients are 
independent of the current strain values and are defined using the local secant stiffness approach from the ply-
discounting material degradation process.  For a material model that exhibits a nonlinear relationship in terms of 
strains (e.g., the MLT formulation [60]), special consideration must be taken in defining these terms.   

The trial stress estimates and the trial constitutive coefficients are returned to ABAQUS/Standard from the 
UMAT subroutine at each material point and incorporated into the computations that generate the internal force 
vector for the residual vector (or force imbalance vector) and the tangent stiffness matrix for a particular iteration 
and solution increment.  It is important to realize that the UMAT subroutine actually defines a trial stress state for 
the end of the increment and as such, damage can evolve as the nonlinear solution procedure iterates to find the 
solution for the current increment.4  These new trial values are returned to the main program for additional 
computations (i.e., element stiffness matrices and internal force vectors). 

The overall nonlinear solution strategy is essentially unchanged from the default approach in 
ABAQUS/Standard.  However, it may be necessary to disable the extrapolation feature for the next solution 
increment in order to enhance numerical convergence.  This is accomplished using the ABAQUS keyword 
command *STEP EXTRAPOLATION=NO. The overall convergence behavior of the solution process can be 
monitored using the *.sta file provided by ABAQUS. 

VII. UMAT Implementation 
The material models described in the previous sections have been implemented as a UMAT subroutine [1] for 

ABAQUS/Standard to describe the mechanical behavior of a laminated composite material system including 
progressive failure analysis.  Different options are provided within the UMAT subroutine.  This UMAT subroutine 
may be used with either two-dimensional shell elements or three-dimensional solid elements.  It may be used for 
linear elastic bimodulus response (PDA=0).  In addition, it may be used for progressive failure analysis based on 
point-stress approach, failure criteria assessment (i.e., maximum stress criteria (PDA=1), maximum strain criteria 
(PDA=2), Tsai-Wu failure polynomial (PDA=3) or Hashin criteria (PDA=4)), and material degradation based on the 
ply-discounting approach.  

The current version of the UMAT subroutine requires the user to specify fifty-five input values defining material 
property values and analysis options.  Output from this UMAT subroutine includes a set of solution-dependent 
variables or SDVs that are computed at each material point in the finite element model and returned on exit from this 
UMAT subroutine: eight variables for two-dimensional shell elements and fourteen variables for three-dimensional 
solid elements.    For this UMAT subroutine, the solution-dependent variables represent the degradation factors for 
each stress component, the failure flags for each component, the total strain energy density, and the energy-based 
damage estimate for each solution increment of the nonlinear analysis.  The failure flags are defined as the 
increment number when first failure is detected.  Hence, a plot of the failure flags can be used to give an indication 
of the damage progression.  Solution-dependent variables can be selected for output to the ABAQUS solution 
database (*.odb file) for subsequent post-processing of the solution using ABAQUS VIEWER5.  Note that for 
user-defined material models, ABAQUS/Standard actually does not distinguish between C0 and C1 shell elements – 
only the in-plane stress and strain states can be treated within the UMAT subroutine (i.e., all two-dimensional shell 
elements are treated as C1 shell elements, transverse shear components are not available to the user). 

Applying the current UMAT subroutine to structures composed of multiple materials requires a capability to 
handle multiple sets of material properties where each set is associated with a different local thickness value or a 
different material type.  Material properties are required to be specified by the user for each thickness value 
                                                           
4 Alternatively, the ABAQUS/Standard user-defined field approach using the USDFLD subroutine explicitly defines 
the stress state at the beginning of the increment and maintains that stress state over the increment.  Such an 
approach is generally used in explicit solution procedures and in implicit procedures wherein the solution increment 
size is limited to be a small value. 
5 ABAQUS VIEWER is a trademark of ABAQUS, Inc. 
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including the tensile modulus ET, the compression modulus EC, the in-plane shear modulus G, Poisson’s ratio ν, the 
tensile material strength allowable value XT, the compressive material strength allowable value XC, and the in-plane 
shear material strength allowable value S.   Essentially, each thickness value would define a separate material 
number or name within the UMAT subroutine and the analysis input data. 

Material-property data and state-variable data from an ABAQUS execution are passed as calling arguments to 
the UMAT subroutine. In addition, input variables to UMAT from an ABAQUS execution include the total strains 
from the previous solution increment k and the current iterative increment of strains (increment k+1) for a given 
material point in the structure. Given these values, the principal strains can be computed for this material point in the 
structure, and then control is transferred to the appropriate branch within the UMAT subroutine (i.e., tension branch 
or compression branch).  That is, on entry to the UMAT subroutine, an estimate of the current total strains for the 
current iteration is determined: 

εij( )k +1
= εij( )k

+ Δεij( )k +1
             (16) 

Using the total strains from the previous solution increment, the first invariant of the strain tensor is computed, 
which represents the volumetric strain from the previous solution increment, 

Iε = trace(εij ) =
εxx + εyy          for 2D
εxx + εyy + εzz  for 3D

⎧ 
⎨ 
⎩ 

           (17) 

The sign of the first invariant of the strain tensor determines the overall stress state at that material point (i.e., either 
tensile or compressive).  This scalar quantity is invariant with regard to coordinate system and is used within the 
UMAT subroutine to determine whether the material point is in a state of tension or compression.  Based on the sign 
of the first invariant of the strain tensor, the appropriate branch of the material response curve is selected.  That is, 

⎩
⎨
⎧
<
≥

nCompressio 0
Tension 0

εI             (18) 

Once on the appropriate branch, new trial constitutive coefficients and new trial stresses are determined.  These 
stresses are then used to evaluate failure initiation criteria (if the input variable PDA is non-zero).  If failure initiation 
is detected, material degradation is imposed using the ply-discounting approach when PDA equals 1, 2, 3 or 4.  The 
constitutive relations, the failure initiation criteria, and the material degradation models needed for both three-
dimensional solid elements and two-dimensional shell elements in ABAQUS/Standard are described in Ref. [1].  

The implementation process for the three-dimensional solid elements follows the next series of steps.  For each 
element integration point, these basic steps are followed: 

1. Call the user-defined subroutine UMAT with the previous strain vector, the iterative increment in strains, 
and trial values for the constitutive matrix at this material point (i.e., the element integration point through 
the thickness). 

2. Compute the current total strains for this iteration by summing the total strains from the previous increment 
and the corresponding iterative increments of strain. 

3. Using the current total strains, compute the first invariant of the strain tensor at that material point.  Based 
on the sign of the first invariant of the strain tensor, set the engineering material properties to either their 
tension or compression values. Then, compute the trial constitutive matrix.   

4. Compute the trial stresses using the trial constitutive matrix and the total strains at this material point. 

5. Perform a failure initiation check using a point-stress analysis approach for either: 

a. Evaluate the maximum stress failure criteria (PDA=1) and determine whether any material failure 
initiated.  If so, perform material degradation. Or, 

b. Evaluate the maximum strain failure criteria (PDA=2) and determine whether any material failure 
initiated.  If so, perform material degradation. Or, 
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c. Evaluate the Tsai-Wu failure polynomial (PDA=3) and determine whether any material failure 
initiated.  If so, perform material degradation. Or, 

d. Evaluate the Hashin criteria (PDA=4) and determine whether any material failure initiated. If so, 
perform material degradation. 

6. Perform material degradation using a ply-discounting approach – If material failure is detected, then 
degrade the material properties by degrading the entries in the constitutive matrix, rather than degrading the 
engineering properties, so that the appropriate stress component will approach zero after failure initiation.  
If the degradation factors are set to zero, then instantaneous degradation to zero will occur.  Recursive 
degradation is imposed when the variable RECURS is set to unity, while instantaneous (single or one-time) 
degradation is imposed when RECURS equals zero. 

7. Re-compute the trial constitutive matrix and the trial stresses, update the solution-dependent variables, and 
return to ABAQUS. 

The input data to the UMAT subroutine include the strain state and the estimate of the constitutive coefficients 
based on user data defined in the user-defined material property array PROPS and on the computed data defined in 
the solution-dependent variable array STATEV (see Ref. [1]).  The output variables passed back to 
ABAQUS/Standard from the UMAT subroutine includes the trial stresses, the trial constitutive matrix coefficients, 
and updated values of the solution-dependent variable array. 

VIII. Numerical Results and Discussion 
An example problem has been solved using this user-defined material model, and selected results are described 

in the present paper.  The example problem is a tension-loaded coupon strip with a center circular hole, and results 
compared with existing test data.  Results are presented in terms of xy-plots of results recovered from the history 
variables and in terms of contour plots of results recovered from the field variables stored in the solution database 
(*.odb file).  Output of the history variables to the solution database occurs after every ten solution increments or 
at the end of the simulation provided the maximum solution factor was obtained.  Field-variable output is stored for 
every solution increment. 

A. Open-Hole-Tension Coupons 

Tension-loaded coupons with a center circular hole are examined and compared with available test data [67].   
Each coupon is 9-in. long and 1-in. wide.  The hole diameter is 0.25 inches.  The laminate is a 16-ply T300H/3900-2 
graphite-epoxy with an average ply thickness of 0.00645 in. for a 0.1032-inch total laminate thickness. Two stacking 
sequences are analyzed in the present paper: a [(0/90)4]s cross-ply laminate and a [(0/45/90/-45)2]s quasi-isotropic 
laminate. Three open-hole-tension tests were reported in Ref. [67] for the cross-ply laminate giving a net-section 
average strength of 124.1 ksi, which equates to an average failure load of 9,605 lb.  Two open-hole-tension tests 
were reported in Ref. [67] for the quasi-isotropic laminate giving a net-section average strength of 100.9 ksi, which 
equates to an average failure load of 7,810 lb.  Progressive failure analyses of these two laminates are reported in 
Ref. [67] using a continuum-damage-mechanics model based on crack density as an internal state variable. The 
predicted net-section strength values (failure load values) of 122.5 ksi (9,482 lb) for the cross-ply laminate and 
110.0 ksi (8,514 lb) for the quasi-isotropic laminate are given in Ref. [67]. 

Material data for a representative T800/3900-2  graphite-epoxy system are given in Ref. [67] as: E11=23.2 Msi, 
E22=E33=1.30 Msi, G12=G13=0.90 Msi, G23=0.50 Msi, ν12=ν13=ν23=0.28, XT=412 ksi, YT=ZT=8.72 ksi, XC=225 ksi, 
YC=ZC=24.3 ksi, S12=S13=13.76 ksi, S23=7.64 ksi, and GIc=0.86 in.-lb/in.2 The allowable strains are obtained by 
dividing the strength allowable values by the elastic modulus for that component.  The tensile and compressive 
elastic moduli are the same, and the response is assumed to be linear elastic up to the ultimate strength values of the 
material.  Hence, the progressive failure analyses performed using either stress- or strain-based non-interacting 
failure criteria should provide the same solution for this UMAT subroutine.  The UMAT input records for the lamina 
modeling approach are given in the appendix. 

As mentioned earlier in the present paper, plain-weave textile composites are often modeled by treating each 
fabric layer as a pair of [0/90] cross-ply layers with each layer having half the thickness of the single fabric layer.  
For the present 16-ply cross-ply laminate, the effective engineering properties were calculated and used as the 
“apparent” mechanical properties for the entire 16-ply laminate.  These effective or apparent properties for the 
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0.1032-inch-thick laminate are:  Ex=Ey=12.29 Msi, νxy=0.029, Gxy=0.90 Msi, XT=YT=210.4 ksi, XC=YC=124.7 ksi, 
and Sxy=Sxz=13.76 ksi.  The corresponding ultimate normal strains are 0.0171 in./in. in tension, and 0.0101 in./in. in 
compression, and the ultimate shearing strain is 0.0153 in./in.  The input records for the UMAT subroutine based on 
the apparent or smeared or effective engineering properties of this laminate system are also given in the appendix.  
Progressive failure analyses are performed using these apparent or smeared properties with a single equivalent layer 
and compared with the predictions obtained using a layer-by-layer laminate modeling approach. 

The finite element analysis model for this problem is the same as the analysis model used in Ref. [28] and is 
shown in Figure 1.  A right-hand coordinate system is used with positive z directed out of the paper and toward the 
reader. A total of 80 4-node S4R5 shell elements are distributed around the perimeter of the hole, and ten rings of 
elements are distributed between the hole boundary and the edge of the coupon (i.e., the one-inch-square region in 
the vicinity of the hole as shown in Figure 1b).  The entire coupon is modeled using a total of 1,200 4-node S4R5 
shell elements.   

Boundary conditions indicated on Figure 1a were imposed on opposite ends of the finite element model to 
simulate the clamped edge and the edge with an imposed uniform longitudinal (y-direction) end displacement δ.  In 
the analyses, the bottom edge is fully restrained (i.e., 0v ====== zyxwu θθθ ), while the top edge is restrained 
except for the applied displacement (i.e., δθθθ ======  vand  0zyxwu ). The end displacement is specified and 
incrementally increased (tensile loading), and the nonlinear solution process of ABAQUS/Standard is under 
displacement control. 

Nonlinear analyses are performed using a full Newton-Raphson procedure without extrapolation for the next 
solution increment.  The initial factor for the solution increment size is set at 0.005 with a minimum value specified 
as 0.0001 and a maximum value specified as 0.02.  Automatic solution increment size control is permitted.  Solution 
increment size may be adjusted by the nonlinear solution strategy implemented in ABAQUS/Standard, and twenty 
equilibrium iterations can occur before the solution step size is reduced. In addition, progressive failure analyses 
were performed using various failure criteria based on the value of PDA.  The progressive failure analyses utilize the 
user-defined material model described in the present paper and implemented as a UMAT subroutine within the 
ABAQUS/Standard nonlinear finite element tool. 

Progressive failure simulations are performed on the cross-ply open-hole-tension coupon using different failure 
criteria (different values of PDA).  The applied tension load as a function of end displacement for different failure 
criteria are summarized in Figure 2 for two values of the maximum solution increment size.  The short-dash line 
indicates the average failure load from three tests reported in Ref. [67]. The long-dash line represents the linear 
elastic response from the finite element analysis.  Progressive failure analysis results were generated using the 
nominal lamina material data, a single integration point through the thickness of each lamina within the 16-ply 
laminate, and recursive degradation with a degradation factor β of 0.5.  Results obtained using two different values 
of the maximum solution increment size factor for the nonlinear analysis are indicated in Figure 2 – 0.02 in Figure 
2a and 0.01 in Figure 2b.  For both values of this factor, overall the predicted progressive failure responses are 
similar.  The maximum stress criteria (PDA=1) and the maximum strain criteria (PDA=2) predict nearly the same 
failure load (i.e., peak load) of approximately 11,200 pounds using the 0.02 value for the maximum solution 
increment size factor and approximately 9,500 pounds using the 0.01 value.  The Tsai-Wu failure polynomial 
(PDA=3) predicts a lower failure load (10,300 pounds using the 0.02 value and 8,700 using the 0-.01 value) due the 
interactive nature of the failure criterion since the material system is a linear elastic brittle material.  The Hashin 
criteria (PDA=4) under predict the failure load by nearly 30% due to the degradation model associated with tensile 
fiber failure, also referred to as fiber-matrix shear, see Eq. 7.  As the maximum solution increment size factor is 
reduced, the peak load predictions obtained from the other failure criteria are reduced except for the Hashin criteria, 
which increased to 7,129 pounds.  By reducing the maximum solution increment size, a smooth response is still 
predicted, and numerical drift in the simulation due to smaller solution increments is minimal. 

The influence of the maximum increment size factor is shown in Figure 3a for the maximum strain criteria 
(PDA=2) and in Figure 3b for the Hashin criteria (PDA=4).  Recursive degradation with a degradation factor β of 
0.5 is used in all cases.  Four values of the maximum increment size factor are considered.  As the factor is reduced 
in size for the maximum strain criteria, the peak load prediction is also reduced as shown in Figure 3a.  However, 
the load value corresponding to local fiber failure near the hole is the same for all values – approximately 7,000 
pounds.  For the Hashin criteria, the peak load predictions generally were unchanged with decreasing maximum 
solution increment size.  However, for the smallest value considered (0.001), the peak load prediction is reduced by 
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approximately 30%.  The maximum solution increment size factor, which is used in the nonlinear solution strategy, 
apparently influences the post-ultimate behavior of the simulation, and its influence on the response needs to be 
established for each new analysis effort. 

The influence of the degradation factor β is shown in Figure 4a for the maximum strain criteria (PDA=2) and in 
Figure 4b for the Hashin criteria (PDA=4).  Recursive degradation and a maximum solution increment size factor of 
0.02 are used in all cases.  Five values of the degradation factor are considered for both criteria.  As the degradation 
factor β is reduced, the peak load prediction for the maximum strain criteria is also reduced as indicated in Figure 
4a; however, the load value corresponding to the initiation of local fiber failure near the hole is the same for all 
values of β.  As the degradation factor β is reduced, the peak load prediction for the Hashin criteria is also reduced 
as indicated in Figure 4b.  When recursive degradation is used, the degradation factor and the solution increment 
size have a combined effect on the predicted progressive failure response.  For small values of the degradation 
factor, the local material stiffness coefficients degrade in value at a faster rate than when larger degradation factors 
are used and tend to simulate instantaneous degradation because of a near-zero degradation factor. 

The influence of the maximum solution increment size factor is shown in Figure 5 for the maximum strain 
criteria (PDA=2) using instantaneous degradation with a degradation factor β of 10-6.  Three values of the maximum 
increment size factor are considered.  As the factor is reduced, the peak load prediction is essentially the same as the 
peak load predicted using recursive degradation with a degradation factor of 0.001.  Reducing the maximum 
solution increment size factor has little effect on the progressive failure response prediction when using 
instantaneous degradation with a very small value of the degradation factor (i.e., β=10-6).   

Peak failure loads are summarized in Table 1 for different failure criteria using recursive degradation with a 
degradation factor β of 0.5 and a maximum increment size factor of 0.01.  The maximum stress (PDA=1) and 
maximum strain (PDA=2) criteria give essentially the same result since the material is a linear elastic brittle 
material, and these predicted failure loads correlate well with the reported average test value [67].  The Tsai-Wu 
failure polynomial (PDA=3) predicts a similar behavior and onset of damage; however, a lower failure load is 
predicted.  The Hashin criteria (PDA=4) under predict the peak load by nearly 25%.  

Progressive failure simulations performed on the cross-ply open-hole-tension coupon using different failure 
criteria are also performed using the apparent or smeared material properties for the cross-ply laminate given in the 
appendix. These progressive failure analysis results are generated using the effective engineering material data, three 
integration points through the laminate thickness, and recursive degradation with a degradation factor β of 0.5.  The 
maximum solution increment size factor is 0.01 for the nonlinear analysis.  The results obtained using the effective 
material data are shown in Table 1 and are consistent with the results obtained using the cross-ply laminate (ply-by-
ply) modeling approach with a single integration point in each layer. However, information on individual lamina 
failure modes is not recoverable when the effective properties and laminate modeling approach is used.  In addition, 
results generated for the case of a single integration point through the laminate thickness agree with those generated 
using only three integration points for this example problem. 

Progressive failure simulations performed on the quasi-isotropic open-hole-tension coupon using different failure 
criteria are summarized in Figure 6.  The short-dash line indicates the average failure load from two tests [67].  The 
long-dash line represents the linear elastic response from the finite element analysis.  These progressive failure 
analysis results are generated using the nominal lamina material data, a single integration point through the thickness 
of each lamina, recursive degradation with a degradation factor β of 0.5, and a maximum solution increment size 
factor of 0.01.  The maximum stress (PDA=1) and maximum strain (PDA=2) criteria again give essentially the same 
result because the material is a linear elastic brittle material.  The Tsai-Wu failure polynomial (PDA=3) predicts a 
similar behavior and failure load since the laminate is quasi-isotropic.  The Hashin criteria (PDA=4) under predict 
the peak load. This lower peak load prediction by the Hashin criteria is due to the tensile fiber failure mode defined 
in Eq. 7 and its associated degradation rules.  Alternate failure criteria and degradation rules are given by Chang et 
al. [67]; however, they are not included in the current version of this UMAT subroutine [1]. 

The predicted peak failure loads for the open-hole-tension coupons are summarized in Table 1.  For the cross-ply 
laminate case, the peak failure loads predicted by the maximum stress, maximum strain, and Tsai-Wu criteria are 
within 10% of the average failure load from test.  The Hashin criteria gave very conservative predictions (lower by 
more than 25%).  Similar trends are obtained for the cross-ply case using smeared or apparent material data.  For the 
quasi-isotropic laminate case, the peak failure loads predicted by the maximum stress, maximum strain, and Tsai-
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Wu criteria are within 2% of the average failure load from test.  The Hashin criteria again gave conservative 
predictions (lower by 23%). 

IX.  Concluding Remarks 
A user-defined material model for laminated composite structures is described in the present paper.  This 

material model takes advantage of previous work in progressive failure analysis of laminated polymeric composites.  
In addition, extensions of these models are provided for bimodulus materials.  Progressive failure analysis options 
are provided for different point-stress methods with traditional failure initiation and material degradation models as 
well as from a linear elastic model.  These models are implemented within an UMAT subroutine and are executed 
using the ABAQUS/Standard nonlinear finite element tool. 

Each of the progressive failure analysis models is summarized in the present paper and fully described in Ref. 
[1].  For the ply-discounting models, the failure initiation criteria are described as well as the procedure for material 
degradation.  Material degradation is achieved through a set of degradation factors dependent on whether the failure 
mode is tension, compression or shear driven.  Material degradation is applied to the material stiffness coefficients 
rather than the elastic engineering mechanical properties to maintain symmetry in the local material stiffness matrix.  
Material degradation can be applied instantaneously or recursively in the ply-discounting models.    Recursive 
degradation in combination with fractional degradation factors is found to provide reliable progressive failure 
solutions. 

The features of the progressive failure analysis models implemented in this UMAT subroutine are illustrated 
using two 16-ply open-hole-tension coupons.  One coupon has a cross-ply lamination scheme, and the other coupon 
has a quasi-isotropic lamination scheme.  This material exhibited a linear elastic orthotropic brittle behavior.  The 
form of degradation, the degradation factor, and the solution increment size are found to influence the progressive 
failure predictions.  The maximum stress and maximum strain criteria predicted nearly the same peak failure loads 
and nonlinear response.  While the Tsai-Wu failure polynomial criterion predicted lower peak failure loads, these 
predictions are still in good agreement with test results.  The Hashin criteria typically under predicted the peak 
failure loads by approximately 25% for a nominal value of the degradation factor (β=0.5) when combined with 
recursive degradation.  This result is tied to the material degradation model for the tensile fiber failure mode given 
by Eq. 7.  This expression typically implies a fiber-matrix shear failure, and material degradation should only be 
applied to the in-plane shear coefficients [67].  However, typical material degradation implementations associated 
with the Hashin criteria, including the present UMAT subroutine, degrade the in-plane normal coefficients as well as 
the in-plane shear term when this failure mode is detected, which leads to a conservative failure prediction. 
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Appendix 
The UMAT material property data for a representative T800/3900-2 graphite epoxy composite material [67] 

named T800H39002 are defined using the following records: 
 

** UMAT Property Data Definitions 
** props(1-8):E11t,E22t,E33t,E11c,E22c,E33c,G12,G13, 
** props(9-16):G23,nu12,nu13,nu23, Xt, Yt, Zt, Xc, 
** props(17-24):Yc,Zc,S12,S13,S23,Eps11T,Eps22T,Eps33T, 
** props(25-32):Eps11C,Eps22C,Eps33C,Gam12,Gam13,Gam23,Eps11Tmx,Eps22Tmx, 
** props(33-40):Eps33Tmx,Eps11Cmx,Eps22Cmx,Eps33Cmx,Gam12mx,Gam13mx,Gam23mx,GIc, 
** props(41-48):FPZ,SlimT,SlimC,SlimS,weibull(1),weibull(2),weibull(3),weibull(4), 
** props(49-55):weibull(5),weibull(6),Dgrd(1),Dgrd(2),Dgrd(3),RECURS,PDA 
** ========================================================================================== 
** T300H/3900-2     Material 1 with total thickness =  0.00645 inches per ply 
*MATERIAL, NAME=T800H39002    
*USER MATERIAL,  CONSTANTS=55 
 2.320E+07, 1.300E+06, 1.300E+06, 2.320E+07, 1.300E+06, 1.300E+06, 0.900E+06, 0.900E+06, 
 0.500E+06, 2.800E-01, 2.800E-01, 2.800E-01, 4.120E+05, 8.720E+03, 8.720E+03, 2.250E+05, 
 2.430E+04, 2.430E+04, 1.376E+04, 1.376E+04, 7.644E+03, 0.178E-01, 0.671E-02, 0.671E-02, 
 0.970E-02, 0.187E-01, 0.187E-01, 0.153E-01, 0.153E-01, 0.153E-01, 1.000E-01, 1.000E-01, 
 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 0.860E+00, 
 2.000E-01, 0.800E+00, 0.800E+00, 0.800E+00, 1.000E+00, 1.000E+00, 1.000E+00, 1.000E+00, 
 1.000E+00, 1.000E+00, 5.000E-01, 5.000E-01, 5.000E-01, 1.000E+00, 4.000E+00 
*DEPVAR 
   8 
 
Note that the only difference for applying this UMAT subroutine to two-dimensional or three-dimension problems is 
the last keyword *DEPVAR.  This keyword defines the number of solution-dependent variables or SDVs for the 
problem.  For two-dimensional finite elements, it is 8, and for three-dimensional finite elements, it is 14. 
 

For the present 16-ply cross-ply laminate, the effective engineering properties were calculated and used as the 
“apparent” mechanical properties for the entire 16-ply laminate.  The input records for the UMAT subroutine based 
on smeared or effective engineering properties of this system are: 
 
** UMAT Property Data Definitions 
** props(1-8):E11t,E22t,E33t,E11c,E22c,E33c,G12,G13, 
** props(9-16):G23,nu12,nu13,nu23, Xt, Yt, Zt, Xc, 
** props(17-24):Yc,Zc,S12,S13,S23,Eps11T,Eps22T,Eps33T, 
** props(25-32):Eps11C,Eps22C,Eps33C,Gam12,Gam13,Gam23,Eps11Tmx,Eps22Tmx, 
** props(33-40):Eps33Tmx,Eps11Cmx,Eps22Cmx,Eps33Cmx,Gam12mx,Gam13mx,Gam23mx,GIc, 
** props(41-48):FPZ,SlimT,SlimC,SlimS,weibull(1),weibull(2),weibull(3),weibull(4), 
** props(49-55):weibull(5),weibull(6),Dgrd(1),Dgrd(2),Dgrd(3),RECURS,PDA 
** ========================================================================================== 
** T800H/3900-2 graphite epoxy with 0.00645 inches per ply 
** Smeared laminate values based on effective engineering properties Ex and Ey 
** for the [(0/90)_4]_s laminate 
*MATERIAL, NAME=SMEARED16 
*USER MATERIAL,  CONSTANTS=55 
 1.229E+07, 1.229E+07, 1.300E+06, 1.229E+07, 1.229E+07, 1.300E+06, 0.900E+06, 0.900E+06, 
 0.500E+06, 2.970E-02, 2.970E-02, 2.970E-02, 2.104E+05, 2.104E+05, 8.720E+03, 1.247E+05, 
 1.247E+05, 2.430E+04, 1.376E+04, 1.376E+04, 7.644E+03, 0.171E-01, 0.171E-01, 0.671E-02, 
 0.101E-01, 0.101E-01, 0.187E-01, 0.153E-01, 0.153E-01, 0.153E-01, 1.000E-01, 1.000E-01, 
 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 0.860E+00, 
 2.000E-01, 0.000E+00, 0.000E+00, 0.000E+00, 1.000E+00, 1.000E+00, 1.000E+00, 1.000E+00, 
 1.000E+00, 1.000E+00, 5.000E-01, 5.000E-01, 5.000E-01, 1.000E+00, 3.000E+00 
*DEPVAR 
   8 
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Table 1.  Summary of the peak failure loads for the cross-ply and quasi-isotropic 16-layer graphite-epoxy open-hole-

tension coupons using different failure criteria, a maximum solution increment size of 0.01, and recursive 
degradation with a degradation factor β of 0.5. 

 

Peak Failure Load, pounds  

Progressive 

Failure 

Analysis 

(value of PDA) 

Cross-ply 

(laminate) 

Cross-ply 

(smeared) 

Quasi-

isotropic 

(laminate) 

Max. Stress (1) 9,531 10,041 7,975 

Max. Strain (2) 9,620 9,996 7,941 

Tsai-Wu (3) 8,655 9,466 7,869 

Hashin (4) 7,129 6,056 5,985 

Test Average 

[67] 

9,605 9,605 7,810 
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(a)  Complete model.    (b)  Close-up view of region near the hole. 

Figure 1.  Finite element model of the open-hole-tension coupon. 
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(a) Predictions obtained using a 0.02 value for the maximum solution increment size. 

 
(b) Predictions obtained using a 0.01 value for the maximum solution increment size. 

Figure 2.  Comparison of different progressive failure analysis models for the 16-ply cross-ply open-hole-tension 
coupon using recursive degradation with a degradation factor β of 0.5. 



 
American Institute of Aeronautics and Astronautics 

092407 
 

23

 
(a) Results using maximum strain criteria (PDA=2). 

 
(b) Results using Hashin criteria (PDA=4). 

Figure 3.  Influence of maximum solution increment size on the progressive failure predictions for the 16-ply cross-
ply open-hole-tension coupon using recursive degradation with a degradation factor β of 0.5. 



 
American Institute of Aeronautics and Astronautics 

092407 
 

24

 
(a) Results using maximum strain criteria (PDA=2). 

 
(b) Results using Hashin criteria (PDA=4). 

Figure 4.  Influence of degradation factor β on the progressive failure predictions for the 16-ply cross-ply open-hole-
tension coupon using recursive degradation and a maximum solution increment size of 0.02. 
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Figure 5.  Influence of maximum solution increment size on the progressive failure predictions for the 16-ply cross-

ply open-hole-tension coupon using the maximum strain criteria (PDA=2) and instantaneous degradation with a 
degradation factor β of 10-6. 

 
Figure 6.  Comparison of different progressive failure analysis models for the 16-ply quasi-isotropic open-hole-

tension coupon using recursive degradation with a degradation factor β of 0.5 and a maximum solution increment 
size of 0.01. 


