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Recent aerospace industry trends have resulted in an increased demand for real-time, 
effective techniques for in-flight structural health monitoring. A promising technique for 
damage diagnosis uses electrical impedance measurements of semiconductive materials. By 
applying a small electrical current into a material specimen and measuring the 
corresponding voltages at various locations on the specimen, changes in the electrical 
characteristics due to the presence of damage can be assessed. An artificial neural network 
uses these changes in electrical properties to provide an inverse solution that estimates the 
location and magnitude of the damage. The advantage of the electrical impedance method 
over other damage diagnosis techniques is that it uses the material as the sensor. Simple 
voltage measurements can be used instead of discrete sensors, resulting in a reduction in 
weight and system complexity. This research effort extends previous work by employing 
finite element method models to improve accuracy of complex models with anisotropic 
conductivities and by enhancing the computational efficiency of the inverse techniques. The 
paper demonstrates a proof of concept of a damage diagnosis approach using electrical 
impedance methods and a neural network as an effective tool for in-flight diagnosis of 
structural damage to aircraft components. 

Nomenclature 
f = applied current per unit volume 
j = current density (charge per unit time per unit area) 
k = thermal conductivity 
q = heat flux 
σ = electrical conductivity 
T = temperature 
V = electrical potential 

I. Introduction 
ECENT aerospace industry trends such as condition-based maintenance (CBM), in which aircraft maintenance 
is scheduled based on the condition of the vehicle instead of occurring at fixed time intervals, have resulted in 

an increased demand for real-time, effective techniques for in-flight structural health monitoring and damage 
diagnosis. Many traditional structural health monitoring approaches use discrete sensors such as strain gages or 
piezoelectric transducers for detecting regions of damage, but these methods may impose a stiff weight penalty due 
to wiring requirements for power and sensing. Other methods use fiber optic sensors or wireless sensors to reduce or 
eliminate much of the wiring constraints, but at the expense of additional complexity. Wireless sensors require 
batteries, either as a primary energy source or for energy storage, which increase vehicle weight and introduce 
maintenance issues. 

                                                           
1 Aerospace Engineer, Durability, Damage Tolerance, and Reliability Branch, Mail Stop 188E, AIAA Member. 
2 Mechanical Engineer, Vehicle Technology Directorate, Mail Stop 266. 

R 



 
American Institute of Aeronautics and Astronautics 

 
 

2

Accurate and timely assessment of airframe damage is a critical element of aviation safety, but analytical 
methods for diagnosing damage are often too computationally intensive to be suitable for in-flight assessment of 
damage. Direct analytical solutions to damage diagnosis problems can require hours or days of computational time 
on computers suitable for meeting the weight and power constraints of today’s aircraft. Non-analytical (data-driven) 
techniques offer a computationally efficient alternative to analytical methods when an analytical solution to the 
problem does not exist or is not feasible. 

Even when an analytical solution exists, its inverse may not. Consider a simple mathematical function, such as 
the sine function, which can be applied to an independent variable, x, to compute the dependent variable, y. In this 
case, there exists an inverse function, sin-1, which can be applied to y and should yield the initial value: x. However, 
not all mathematical functions have inverses that can be obtained by direct computation, especially for relationships 
with many independent and dependent variables. In these cases, approximations must be used. Inverse approaches 
are effective for applications where exact analytical solutions are not known or are too complex to be practical. 

One such application is the in-flight identification and characterization of structural damage in airframe 
components. Techniques such as the finite element method (FEM) provide a forward analytical solution to the 
computation of physical properties (such as strains, displacements, and thermoelectrical characteristics) given a 
known damage state. However, there are no analytical techniques for solving the inverse problem: estimating 
damage from physical properties. In such cases, inverse approaches are warranted. 

While some inverse methods are too computationally intensive, artificial neural networks (ANN) can be an 
effective and efficient approach for solving inverse problems. As described later in this paper, neural networks are 
“trained” to estimate the desired outputs from a set of inputs, while minimizing overall error. Although the training 
process can be quite arduous and time-consuming, a fully trained network can be quite efficient at estimating 
solutions to inverse problems.  

This paper presents an effective and computationally efficient electrical impedance measurement-based method 
for in situ detection and characterization of airframe damage that is applicable to electrically semiconductive 
materials. Such materials are often used to provide shielding from sources of electromagnetic interference (EMI). By 
applying a small electrical current into a material specimen and measuring the corresponding electrical parameters 
such as voltage and resistance at various locations on the specimen, changes in these electrical characteristics due to 
the presence of damage can be detected. An artificial neural network uses these changes in electrical properties to 
provide an inverse solution that predicts the location and magnitude of the damage. The advantage of the electrical 
impedance method over other damage diagnosis techniques is that it uses the specimen itself as the sensor, requiring 
only simple voltage measurements instead of using discrete sensors, reducing weight and system complexity.  

This research paper introduces a damage diagnostic approach using electrical impedance measurements and 
presents relevant background material on previous work using this technique. Next, the damage diagnosis approach 
is presented using FEM models to estimate electrical properties based on known damage conditions. The paper 
describes how the neural network uses these electrical property estimates to compute the inverse relationship: 
estimating damage characteristics from electrical properties. Next, the paper describes the testing and experimental 
demonstration of proof of concept for the damage diagnosis methodology. The paper concludes with a presentation 
of the results of this research effort. 

II. Background 
The concept of using the electrical properties of a material to assess damage originates with biomedical 

applications of Electrical Impedance Tomography (EIT) by Guardo, et al.1 This technique was adapted to damage 
diagnosis of conductive plates by Morabito,2 and later to composite beams and plates by Todoroki and Tanaka.3 
These applications of EIT are based on changes in electrical resistance of semiconductive materials in response to 
the presence of structural damage. 

Anderson, Lemoine, Ambur, and Love used boundary element method (BEM) models to generate electrical 
resistance predictions for training an artificial neural network to determine an inverse solution to the damage 
diagnosis problem.4,5 This approach used electrodes to apply small currents (50 mA, nominal) at known locations 
around the perimeter of specimens made from various semiconductive materials. These included conductive 
elastomers from Parker Hannafin Corporation (doing business as Chomerics North America) such as CHO-SEAL® 
1285 (Ag-Al in silicone), CHO-SEAL 1212 (Ag-Cu in silicone), and Velostat™ 1708 from 3M Corporation.  

This past work successfully demonstrated the feasibility of using electrical impedance techniques for damage 
diagnosis, was computationally efficient, and worked well for test articles with simple geometries. The authors’ 
research extends previous work by employing FEM models to achieve greater accuracy for complex models with 
anisotropic conductivities.6 Further extensions include optimizing the network topology to improve efficiency 
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through a reduction of the number of required computational inputs without compromising the overall fidelity of the 
damage diagnosis model. 

Figure 1 conceptually depicts a 
structural damage diagnosis system 
based on electrical impedance methods. 
FEM models are used to estimate the 
electrical properties of a test article with 
varying locations and magnitudes of 
damage. The FEM results are input to a 
neural network to provide an inverse 
solution estimating the magnitude and 
location of damage based on these 
electrical properties. The differences 
between the expected and the predicted 
location and magnitude of the damaged 
regions are used to train the network to 
minimize the total error. Once fully 
trained, the ANN provides an accurate 
and computationally efficient method for 
in-flight diagnosis of similar damage 
states based on sensor measurements of 
the electrical properties of the vehicle. 

The authors created FEM models to generate training pattern inputs to the artificial neural network, as shown in 
the block diagram in Fig. 2. Those blocks to the lower left of the diagonal line represent the ground-based, offline 
model generation and network training components of the structural health management approach which are not 
subject to the efficiency constraints of in-flight computational methods. The blocks in the upper right depict the 
time-critical activities performed in-flight for diagnosis of structural damage in aircraft components.  

As shown in the left side of Fig. 2, the 
FEM models are generated offline as a 
ground-based learning process and provide 
the forward solution for the methodology 
described in this paper. The authors’ 
approach for diagnosis of structural 
damage employs a large reference database 
of possible damage scenarios created from 
FEM models. Each FEM model is used to 
derive the forward solution to the damage 
diagnosis problem by calculating the 
electrical properties for each damage 
scenario (that is, compute the electrical 
properties as a function of the test article 
configuration including its damage state). 

Next, a neural network-based damage 
diagnosis model is created to solve the 
inverse problem. Specifically, the goal is to 
estimate and reconstruct the damage state 
based on electrical measurements from the 
test article. This damage diagnosis model is optimized to achieve the best solution by minimizing the error in the 
estimated damage location and size. Throughout this paper, the term “damage diagnosis model” (DDM) will be used 
to distinguish the neural network model and diagnosis algorithm from the FEM models. 

After the damage diagnosis model has been created and optimized, the resulting model is evaluated using a 
physical test article to assess the accuracy of the DDM and demonstrate feasibility of the approach. If the DDM is 
insufficient and does not meet the level of accuracy required by the application, the fidelity of the model is increased 
through further optimization of the neural network parameters and by increasing the number of damage scenarios.  

The activities in each of the ground-based learning blocks shown in Fig. 2 will be discussed further in the 
following sections; however, the in-flight diagnosis activities are beyond the scope of this paper. 
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Figure 1. Electrical impedance-based damage diagnosis system.  
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Figure 2. Damage diagnosis methodology. 
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III. FEM Model – Generating the Forward Solution 
For this research effort, the authors modeled an undamaged test article used for experimental evaluation of the 

models, described later in this paper. While the authors modeled the thermoelectric properties of these test articles, 
this method could equally be applied to modeling of mechanical properties such as strain. 

The test article, an 8” by 8” specimen of CHO-SEAL 
1285, is configured with a total of 16 electrodes, as shown in 
Fig. 3, as both actuators (providing electrical conduction 
paths for currents injected into the test article) and sensors 
(measurement test points). Currents are injected using one 
electrode as the current source and another electrode as the 
current sink. A third electrode is used as a voltage ground 
reference for the remaining 13 electrodes employed as 
voltage measurement points. 

The combinations of source, sink, and measurement 
points are varied to reconstruct full field estimates of 
electrical characteristics from these discrete measurements. 
The voltages are always measured relative to the fixed 
reference, with the other 15 available as current source/ 
current sink pairs. The number of current source and sink 
pairs is given by the number of mathematical combinations 
of 15 electrodes taken two at a time for a total of C(15,2) = 
105 combinations. Sampling the voltages at the 13 measure-
ment points for each of the 105 combinations yields a total of 
1365 voltages readings, which can be transformed to 
resistances by applying Ohm’s law. 

While the electrical properties cannot be modeled 
directly, an analogy between heat transfer and Ohm’s law facilitates the derivation of electrical characteristics from 
a thermal transfer model. The test article is modeled as a 2D plate as shown in Fig. 3. If a current is applied to a 
plate, the law of conservation of charge is shown in Eq. (1), 
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where f is applied current per unit volume. Ohm’s Law of current conduction in the plate gives Eq. (2), 
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where V is electric potential; σ is conductivity; j is current density (charge per unit time per unit area) and x, y are the 
principal material directions. Combining these equations, we obtain the form shown in Eq. (3), 
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The thermal analog to this equation is the heat transfer relationship shown in Eq. (4), 
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Figure 3. Damaged test article configuration 
and location of electrodes. Location and size 
of damage varies with damage scenario. 



 
American Institute of Aeronautics and Astronautics 

 
 

5

where T is temperature; k is thermal conductivity; and q is heat flux (applied heat per unit volume). The similarity of 
Eqs. (3) and (4) allows electrical properties to be derived from heat transfer models,7 which are more amenable to 
FEM modeling methods. 

To simplify the analysis, the authors used this thermal analog and conducted a heat transfer analysis in 
ABAQUS® from Dassault Systèmes (Simulia). Current sources and sinks are modeled as heat sources and sinks, the 
reference voltage ground was modeled as a thermal boundary condition, and voltages are modeled as temperatures. 
Because of the similarity of the heat transfer and current conduction equations, temperatures modeled in ABAQUS 
can be readily transformed to voltages using a scaling factor (determined by curve fitting the modeled temperatures 
to experimentally observed voltages from the test specimen). 

First, a FEM model of the undamaged test article is established to provide a baseline from which other models of 
damage scenarios are derived, each of which includes regions of damage. Next, a Python script generates a series of 
models of plates with circular holes of random diameter (up to 10% of the plate width) at random locations 
completely contained within the plate. The models are seeded at eight points around the circumference of each 
electrode and at 16 points around the damage region. Once seeded, the models are meshed using quadrilateral 
elements. A parametric study is performed by applying a thermal flux to the 105 combinations of heat source-sink 
pairs. The script calculates the thermal gradients between the 1365 measurement points and the reference. This 
analysis is performed on each of the 1000 damage scenarios using different damage sizes and locations.  

The damaged regions initially considered were circular holes. More complex forms of damage, such as 
delamination of composite materials or fatigue cracks in metallics, can also be used. These types of damage were 
not considered in this effort because the greater complexity of the model and neural network topology result in a 
significant increase to the computational runtime, which is not practical for this application. 

The results of these analyses provide input values for training and testing the neural network. Collectively, the 
results from these finite element analyses represent the forward solution for estimation of the electrical properties for 
various damage configurations. 

IV. Neural Network – Developing and Training the Inverse Solution 
Referring back to Fig. 2, the forward solution described in the preceding section serve as the inputs to an 

artificial neural network that provides an inverse solution for diagnosis of structural damage. This section of the 
paper discusses the training of the artificial neural network to develop the DDM as the inverse solution. While the 
forward solution computes physical parameters (electrical resistance, in this case) from models of damage regions 
for various locations and sizes, the inverse solution does the opposite – it estimates damage locations and sizes from 
measured physical parameters such as electrical resistance. Like the generation of the FEM models, the development 
and training of the neural network is an offline, ground-based process. 

Multilayer feed-forward artificial neural networks compute the output values of each node from a linear 
combination of the inputs to that node and the and weights associated with the nodes.8 The error associated with the 
output of the network can be computed as the mean square error of the differences between the actual outputs of the 
network and the expected outputs used for training. The network is trained by adjusting the weights to minimize the 
total Mean Squared Error (MSE).8 For a single damage scenario, the overall error is reduced by adjusting the 
individual weights based on the partial derivative of the total error9 as shown in Eq. 5, 
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where Ep is the total error for a given pattern (damage scenario), wij is the weight between hidden node i and input j, 
and ak is the weighted sum of the inputs. 

For this research effort, the inverse solution was implemented in MATLAB® by The MathWorks, Inc.10 using 
the Neural Network Toolbox.11 The majority (80%) of the damage scenarios generated by the forward solution are 
used for training pattern inputs to the neural network and for evaluating and optimizing the network to improve 
accuracy and computational efficiency. The remaining 20% of the damage scenarios are reserved for testing of the 
neural network after the network has been fully trained. 

As described previously, the test article used was CHO-SEAL 1285, a conductive elastomer consisting of silver-
plated aluminum particles in a silicone binder, often used for its electrostatic discharge properties. The test article 
was 8” by 8” by 0.1”, with a tensile strength of 1.38 MPa and a volume resistivity of 0.008 Ω-cm. 
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The scatter plot in Fig. 4 shows the residual voltages, or differences between an undamaged test article and the 
same article with damage, across all measurement conditions. The x axis signifies the 1365 measurement 
combinations, and the y axis represents the voltage differentials. As can be seen, the sensors detect the differences 
between the damaged and undamaged states, although the deltas are small (about a 0.1% change or less).  Figure 5 
shows the same test article, but with the damaged region in a different location from the specimen used in Fig. 4. 
Table 1 identifies the two damage scenarios used for Figs. 4 and 5. 

A comparison of these two plots clearly shows the residual voltages in Fig. 5 are significantly different from 
those shown in Fig. 4, signifying that the residual voltages vary with each damage scenario. First, note that the 
residual voltages in Fig. 5 are nearly two orders of magnitude smaller than those in Fig. 4 (thus requiring a different 
plot scale). The increased magnitude indicated in Fig. 4 is a result of the larger magnitude of the damage. Second, 
observe that the shape of the scatter plots is different between the two figures as a result of closer proximity between 
the damaged region and the reference ground for Specimen 1 than for Specimen 2. 

 The presence of structural damage is 
readily identified by exploiting these 
differences and can be observed by direct 
comparison of the residual voltages between 
the damaged and undamaged specimens. Diag-
nosis of the location and size, however, is a 
more challenging problem. To achieve the 
divergent goals of obtaining the greatest 

accuracy in the minimum execution time, the neural network must be tuned to achieve the desired balance between 
accuracy of damage estimations and computational efficiency. The MATLAB application uses the database of 
damage scenarios from the forward solution and evaluates them using a range of neural network model topology 
parameters (such as the choice of computational algorithm, layer sizes, convergence criteria, and learning rate) to 
obtain an optimal solution to the inverse problem that maximizes accuracy within execution time constraints. 

There are many network topology parameters that can be tuned which affect the overall accuracy of the damage 
estimation model. Underfitting the model with too few hidden layer nodes results in a loss of accuracy due to the 
inability to find a viable solution, while overfitting with unnecessary hidden nodes can cause the model to 
“memorize” the patterns used during training but not achieve the correct solution when presented with new data that 
were not included in the training patterns. 

The trained ANN serves as the inverse solution to the problem of diagnosing damage. The goal of an effective 
neural network approach is to produce the optimum DDM that is adaptive and has the least error while meeting 
computational time and model size constraints. These criteria are evaluated during the testing and evaluation steps. 

V. Testing and Evaluating the Inverse Solution 
Previous sections have described the generation of the forward solution (FEM models) and the development of 

the inverse solution (the DDM). The inverse solution must be tested and, if necessary, updated with additional 

 

 
Figure 4. Residual voltages for specimen 1. 

 

 
 
   Figure 5. Residual voltages for specimen 2. 

Table 1. Location coordinates and size of damaged regions. 
 

Specimen Distance from 
left edge (x) 

Distance from 
bottom edge (y) 

Size 
(radius) 

1 1.80” 2.20” 0.73” 
2 7.06” 2.86” 0.10” 
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damage scenarios to ensure the accuracy goals are achieved by the damage diagnosis model. The neural network is 
first tested and evaluated against the results of analyses created during the generation of the forward solution, then 
later evaluated against measurements obtained from a physical test article. These steps, as depicted in Fig. 2, are the 
last remaining elements of the offline, ground-based learning components. 

Since experimental evaluation, even in a laboratory environment, is a time-consuming and expensive process, as 
much testing as possible is performed using simulated values. The 20% of damage scenarios reserved during the 
training of the neural network comprise the set of test values used to assess the performance of the neural network. 
The test values (electrical properties) are provided as inputs to the neural network and the resulting outputs (damage 
location and size) are compared with the damage location and size used by the FEM model during the generation of 
the forward solution. The Mean Squared Error (MSE) is computed for all test cases, and the accuracy of the model 
and computational efficiency is compared with the required level of accuracy and execution time constraints. For 
this application, a 5% accuracy and 2 second execution time constraint was used. If the DDM produces results 
outside of either the required accuracy or efficiency levels, adjustments to the neural network configuration, 
additional training, or both may be required. 

Once the model has been tested and meets all requirements using simulated values, the system is ready for 
experimental evaluation. Until this point, the damage diagnosis model has been trained and tested using parameters 
estimated by the FEM models. To evaluate the DDM, the authors used an instrumented test article to measure the 
same electromechanical parameters that were estimated by the FEM models. 

These electromechanical properties are measured on both undamaged and damaged test articles, and these data 
are provided as inputs to the DDM. The estimated location and size of the damage region are compared to the actual 
location and size of damage present in the test article, and the accuracy of the estimate is computed. The model 
accuracy is assessed against application-dependent accuracy requirements and execution time constraints, and the 
model may be further refined if necessary to either increase its accuracy or decrease its execution time. 

The experimental evaluation was performed on the test specimen previously described in the FEM modeling 
section of this paper. The experimental test equipment consists of a Model 2400 Digital SourceMeter, a Model 2750 
Digital Multi-Meter/Switch System, and two Model 7709 Matrix Switch Modules, all from Keithley Instruments, 
Inc. The Model 2400 Digital SourceMeter is a combination current source, voltage source, and single channel 
multifunction measurement instrument, although it was used solely as a current source for this application. The 
Model 2750 Digital Multi-Meter/Switch System combines a digital multimeter (DMM) with an expansion chassis 
for up to five modules for multiplexed data acquisition using standard switch modules. The multimeter supports 
voltage, current, and resistance measurements, and all of these capabilities were used for evaluating and 
demonstrating the damage diagnosis model.  

To obtain the desired combi-
nation of current source, current 
sink, voltage measurement, and 
reference ground points, matrix 
switches were used instead of 
the multiplexer switches 
normally used by measurement 
systems. The Keithley Model 
7709 6x8 Matrix Switch 
Modules consist of 48 double-
pole switches, arranged in a 
matrix of 6 rows by 8 columns. 
By selectively opening and 
closing these 48 independently 
controlled switches, the switch 
modules allow any arbitrary 
combination of eight differ-
ential test article channels to be 
connected to six differential 
instrumentation connections on the Model 2750 digital multimeter. As shown in Fig. 6, these matrix switches can be 
combined together to expand the number of test article channels. 

The authors used two of these modules, yielding the equivalent of a 6x16 matrix switch shown in Fig. 6. The 16 
columns of the switch are connected to the 16 electrodes connected to the test article. Rows 3 and 4 of the matrix 
switch provide the excitation from the current source, and rows 5 and 6 are connected to the digital multimeter 
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Figure 6. Matrix switch configuration for voltage measurement. 



 
American Institute of Aeronautics and Astronautics 

 
 

8

inputs. For voltage measurements, rows 1 and 2 are not 
used. However, later evaluation tests use four wire 
resistance measurements to achieve greater accuracy (by 
compensating for the internal resistance of the wiring) 
than the results obtained by applying a current to the test 
article and measuring the voltages to calculate the 
resistance. In the four-wire resistance mode, the 
additional two wires are connected to rows 1 and 2 of the 
matrix switch module. Figure 7 shows the test article as 
configured for four-wire resistance measurement. 

To evaluate the damage diagnosis model and 
demonstrate proof of concept, the authors developed an 
application using LabVIEW® from National Instruments 
Corporation to independently open and close the 96 
switches in the matrix modules to control the connection 
of the current source and the digital multimeter 
instruments. By closing exactly four of these switches, 
the current source can be switched to all 105 source-sink 
combinations. Similarly, the digital voltmeter can be 
switched to measure the 1365 voltages for each current 
source and sink combination.  

Both the neural network testing results and the experimental test data were compared with the estimated values 
from the FEM models to ensure consistency between the computed values and the experimental test results, as 
discussed in the following section. 

VI. Results and Discussion 
Preliminary results from testing of the damage diagnosis model show this method to accurately diagnose the 

location of the damaged region within 2.5 to 4.0 percent and the size of the damage to within 0.5 to 2.0 percent. 
Figure 8 shows the experimental results, depicting the location and size of the damage predicted by the damage 
diagnosis model compared with the actual damage for the test article shown Fig. 7.  

Identifying only the location and size of the damage is most 
suitable for in-flight estimation of damage; however, a more 
detailed analysis can be performed if time permits, as shown in 
Fig. 9. This detailed method divides the specimen into grid-
shaped regions, and the likelihood of damage is computed for 
each grid element. This method provides the most similarity to 
the Electrical Impedance Tomography method from which it is 
derived and allows for visual imaging of the material specimen 
at the expense of computational efficiency. Figure 9 shows the 
results of the grid method for damage visualization.  

These experimental test results in a laboratory environment 
indicate good correlation between the actual and predicted 
damage. These results demonstrate a proof of concept of the 
authors’ approach using electrical impedance measurements 
combined with an artificial network as an effective method for 
diagnosing structural damage. However, further evaluation is 
warranted to ensure accurate diagnosis under all conditions. 
Since not all mathematical functions have unique inverse 
relationships, inverse solutions may sometimes produce results 
that are mathematically similar but represent very different 
damage scenarios, leading to possible misdiagnosis. In such 
cases, this ambiguity may be resolved by increasing the number 
of measurements, modifying the neural network configuration, 
or by varying the location of the sensors. 

 

 
 

Figure 7. CHO-SEAL 1285 test specimen instru-
mented for 4-wire resistance measurement. 

 

 
 
Figure 8. Comparison of predicted vs. actual 
location and size of damage. 
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The authors’ damage diagnosis method has 
been demonstrated to be a successful method for 
locating and quantifying damage in material 
specimens using finite element models combined 
with an artificial neural network. Electrical 
impedance techniques have been shown to be 
effective for detecting damage in semiconductive 
material specimens, and heat transfer models have 
been demonstrated to be successful for FEM 
modeling of electrical characteristics. The FEM 
models work cooperatively with a neural network 
to provide a complete solution to the problem of 
diagnosing structural damage, with the FEM 
models providing a forward solution which is 
input to an ANN to achieve an inverse solution to 
the problem of diagnosing structural damage.  

VII. Concluding Remarks 
While aviation safety has greatly improved over recent years, there is still a great need for enabling technologies 

for diagnosis of damage. The damage diagnosis method presented in this paper has been demonstrated to be 
effective and computationally efficient. These factors, accuracy and efficiency, are both prerequisites for suitability 
for in situ, in-flight diagnosis of structural damage to aircraft components. The damage diagnosis methodology 
presented in this paper effectively addresses the tradeoff between model accuracy and runtime execution speed. 

The creation, optimization, and evaluation of a damage diagnosis model in a controlled laboratory environment 
is a necessary but not sufficient step towards flight testing using instrumented subcomponents on a sub-scale or full-
scale flight test. While achieving this level of technology readiness is beyond the scope of this research effort, a brief 
mention of the benefits and limitations of flight testing is still warranted. First, subscale or full-scale flight testing 
provides an assessment of the robustness of the damage diagnosis methods in the presence of both acoustic and 
electrical noise. Damage diagnosis is challenging under the best of conditions, and in-flight diagnosis is even more 
challenging.  

 Second, flight tests afford the opportunity to collect flight data to supplement the simulated values used during 
the development of the model, increasing the fidelity of the model with no impact on runtime efficiency. One final 
consideration, however, is that flight testing is expensive and should be performed judiciously. 
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