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Abstract 
Recent developments in gas foil bearing technology have led to numerous advanced high-speed 

rotating system concepts, many of which have become either commercial products or experimental test 
articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving 
forces for integrating gas foil bearings into these high-speed systems are the benefits promised by 
removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased 
reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For 
rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion 
system results in a payload benefit. 

Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal 
that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and 
potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot 
section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this 
end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in 
propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft 
engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic 
analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. 

Introduction 
Consideration of gas foil bearing technology has recently been increasing with applications proposed 

or in production in turbochargers, power conversion units, small aero propulsion engines, auxiliary power 
units, and others. 

Foil bearings, similar to the one shown in figure 1, are a special type of hydrodynamic sleeve bearing 
with a compliant surface on the inner diameter of the sleeve. In general, the compliant surface consists of 
two or more layers of superalloy sheetmetal, called foils. One layer provides stiffness (in this case the 
bumps act like springs), and the other is a smooth top layer providing the bearing surface. The gap 
between the top foil and the rotating journal, or shaft, is filled with a fluid. Typically, the fluid is air, but it 
can be just about any gas and some liquids. As the shaft rotates, the fluid becomes pressurized because of 
a wedge geometry that exists due to nonconcentricity of the shaft and sleeve. The pressure in the fluid 
film forces the foils to expand outward and separates the shaft from the top foil surface. The pressure is 
nonaxisymmetric and therefore generates a net force in the direction opposite the weight of the shaft. The 
pressure in the fluid film increases with the speed of the shaft, and eventually supports the full weight of 
the rotor. The compliance of the foil structure allows it to grow radially in response to centrifugal and 
thermal growth of the journal that would otherwise seize a rigid geometry bearing (ref. 1). As motion of  
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the shaft occurs relative to the sleeve, the bump and top foils deflect and rub against each other. The 
stiffness of the bumps controls the amount of deflection, and the rubbing adds Coulomb damping to the 
system (refs. 2 and 3). Thus, the foil structure gives the engine designer the ability to modify the stiffness 
and damping properties of the bearing, within certain limits, to meet the demands of the system 
rotordynamics (ref. 4). As in other Oil-Free applications, the elimination of the lubrication system results 
in higher specific power output, improved reliability, lower emissions, and less maintenance (ref. 5).  

In previous programs intending to integrate gas foil bearing technology into various turbomachinery 
systems, a process has been developed and followed both by NASA and industry partners to bring new 
applications from concept to prototype with decreased risk of failure (ref. 6). The main steps are (1) 
Conduct a feasibility study to determine the potential for success and develop a detailed design, (2) Build 
and test candidate bearings on a component level, (3) Build and test a dynamically simulated version of 
the machine, and (4) Build and test a working prototype. Each step typically involves some iteration to 
arrive at a working design before moving onto the next step. The focus of the current paper is the first part 
of step one, and thus, presents a system level analysis of the feasibility of integrating gas foil bearings 
into a rotorcraft engine core. 

Optimized Engine Concept 
When the entire rotorcraft power train is considered (the turboshaft engine and gearbox) in a systems 

approach, the optimized engine concept can reap the potential benefits of several technologies. Many of 
the previously discussed foil bearing advantages apply mainly to turbomachinery applications. In military 
rotorcraft however, the most significant benefit potentially comes from the optimization of the gearbox 
lubricant. In order to minimize logistical costs and efforts in the battlefield, many military rotorcraft 
routinely utilize the same lubricant in the engine and the gearbox, which is typically a compromise in both 
components. Because the demands (especially high temperatures) of oil lubricated ball bearings are more 
severe than that of gearbox and transmission, the engine requirements usually dictate the lubricant used, 
and the latter half of the power train typically suffers the most. Successful implementation of an Oil-Free 
rotorcraft engine due to advances in foil bearing technology would eliminate the need for engine 
lubrication. This would enable deployment of transmissions with an optimized lubrication system. 

Figure 1.—Foil bearing schematic. 
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Laboratory tests have shown greater than 8-fold improvements in gear surface fatigue life using 
transmission optimized lubrication as compared to standard turbine oil (ref. 7). This concept would 
capture the benefits of a gas foil bearing supported turboshaft engine (lighter, more reliable, and more 
compact) as well as the benefits of longer surface fatigue life of the gearbox and transmission. 

Candidate Engine Architecture 
A typical rotorcraft turboshaft engine layout is configured with a turbine driving a compressor on a 

high-speed rotor, and a lower speed power turbine driving an output shaft coupled to a transmission. 
Figure 2 shows a cartoon of this typical layout. For this conceptual optimized Oil-Free engine, a geometry 
based on a production engine is used to conduct a rotordynamic feasibility study. The purpose of this 
analysis is to build on a previous concept of gas foil bearings at the hot end of both the generator core, 
and the power turbine rotors of a rotorcraft engine (ref. 8). There are several technical challenges, which 
will be discussed later, to be solved before the goal of an entirely Oil-Free optimized engine can be 
successful. For this analysis, it is assumed that these technical challenges will eventually be addressed, 
thus the main objective is to determine if gas foil bearing technology is capable of meeting the 
rotordynamic needs of a typical rotorcraft engine core. 

The first step in determining the potential of foil bearings in an existing engine is to construct a model 
with conventional rolling element bearings that are currently used in the engine. The goal is to build a 
baseline model that closely matches the observed behavior of the engine in terms of critical speeds (both 
natural frequencies and mode shapes) and mass properties (overall mass, polar and transverse inertias, and 
center of mass). The model was built for the candidate engine and checked against these criteria. Figure 3 
shows the engine model in the baseline condition as graphically represented in the rotordynamics analysis 
software (ref. 9). The bearing locations and added masses/disks are shown in the figure. Table 1 lists the 
first three critical speeds and mass of the NASA baseline model along with the corresponding error of 
each compared to the actual engine behavior. The mode shapes are not shown, but they agree well with 
data supplied by the manufacturer. With good correlation between the NASA baseline computer model 
and the actual engine behavior, modifications to the geometry for foil bearing insertion can proceed. 

 

Core bearing locations 

Core rotor (Compressor and Turbine) 

Power turbine 

Power output shaft 

Intershaft coupling 
Transmission 

Figure 2.—Cartoon layout of a typical rotorcraft propulsion system. 
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TABLE 1.—CRITICAL SPEED AND MASS COMPARISONS OF BASELINE MODEL 
TO ACTUAL ENGINE 

 Baseline model predicted values Error compared to actual engine, 
percent 

1st critical speed 6260 rpm 0.6 
2nd critical speed 12700 rpm 3.5 
3rd critical speed 26600 rpm 1.2 
Mass 21.9 kg –1.7 

Rotordynamic Modeling With Gas Foil Bearings 
In preliminary engine studies of this type, there are two main considerations to determine if gas foil 

bearing integration is feasible: adequate load capacity and acceptable rotordynamic behavior. These two 
criteria, taken alone, are not sufficient to proceed with an engine design because they do not consider other 
important design details such as material stress limits, physical space requirements/tradeoffs, secondary 
airflow, and others. However, if the steady-state loads are manageable from a foil bearing perspective, 
vibration amplitudes remain low while traversing the critical speeds, and stability is achieved up to the 
maximum speed, a given application then warrants further consideration and more advanced analysis. 

Two potential configurations were analyzed in this study to determine feasibility. The first is simply 
the same geometry as the baseline rotor (fig. 3) with gas foil bearing properties substituted for the rolling 
element bearing properties of the baseline rotor. To properly size the bearing, the gas foil bearing rule of 
thumb developed previously (ref. 10) is used based upon steady state rotor loads. Based upon the model, 
the predicted steady state bearing loads of the engine are 44.8 N on the fore bearing, and 170 N on the aft 
bearing. Using the load capacity rule of thumb with load capacity coefficient of 1.0 (an advanced bearing 
design), and the 170 N load on the aft bearing, a 76.0 mm diameter by 50.8 mm long bearing would be 
lightly loaded at the minimum operating speed of 30,000 rpm, and the minimum speed for supporting the 
load (lift-off speed, again using the rule of thumb) would be around 2,000 rpm. For the fore bearing, a 
50.8 by 50.8 mm bearing would meet the load requirement and have a lift-off speed for the given load 
around 1,200 rpm. Due to the necessity to sustain dynamic loads under operation, such as maneuver g-
loads, and based upon recently developed power loss models (ref. 11) that suggest light nominal loads are 
more thermally stable, some load capacity margin is desirable. With the bearing sizes chosen above, the 
load capacity requirement is met with extra margin, the lift-off power requirements will be low (due to 
low lift-off speed), and thermal stability is more likely. 

Forward 
bearing 

Rear 
bearing 

Compressor section Turbine section Added mass/disk 

Figure 3.—Rotordynamic model of the baseline engine core configuration. 
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The rotordynamic analyses presented here are based upon linearized gas foil bearing dynamic force 
coefficients calculated using a computer code developed under a NASA grant to Pennsylvania State 
University (refs. 12 and 13). The computer code is used to calculate the stiffness and damping coefficients 
for the bearings with the given radial loads, at three different speeds to feed into the rotordynamic 
analysis software. Table 2 lists the rotordynamic coefficients used for the initial configuration. 
 

TABLE 2.—BEARING DYNAMIC FORCE COEFFICIENTS USED IN THE FIRST 
OIL-FREE MODEL  

[Calculated using carpino (refs. 12 and 13).] 
Kxx(N/m) Kxy(N/m) Kyx(N/m) Kyy(N/m) Speed, 

rpm Cxx(Ns/m) Cxy(Ns/m) Cyx(Ns/m) Cyy(Ns/m) 
Forward bearing (50.8 by 50.8 mm, 44.8 N load) 

6.73E+06 3.84E+05 5.44E+05 7.52E+06 10000 
4.08E+02 –3.13E+01 1.35E+01 3.83E+02 
5.37E+06 1.29E+05 6.89E+05 6.11E+06 30000 
4.21E+02 –7.12E+01 9.75E+01 3.96E+02 
5.18E+06 –3.72E+05 7.09E+05 6.11E+06 50000 
4.68E+02 –1.59E+02 2.51E+02 4.11E+02 

Rear bearing (76.0 by 50.8 mm, 170 N load) 

1.88E+07 1.66E+06 1.80E+06 1.31E+07 10000 
4.46E+02 –8.89E+00 3.73E+01 4.66E+02 
1.41E+07 5.15E+05 1.17E+06 1.22E+07 30000 
4.51E+02 –6.30E+01 1.15E+02 4.80E+02 
1.28E+07 –1.50E+05 1.54E+06 1.12E+07 50000 
5.40E+02 –1.28E+02 2.09E+02 4.96E+02 

 

The critical speed analysis of this configuration indicates that there are two critical speeds below the 
operating speed range. The first is a rigid body critical speed and occurs at around 7,000 rpm. The second 
is a bending critical speed and occurs at around 19,800 rpm. The third critical speed occurs at 140 percent 
of the maximum speed of the engine, so it is not a concern. Since the ground idle speed (minimum 
operating speed) is above the second critical speed, and the third natural frequency is well above the 
maximum operating speed, the entire speed range is clear of natural frequencies. This is desirable because 
foil bearings typically offer less damping than oil lubricated rolling element bearings and squeeze film 
dampers. However, this is not sufficient to ensure the engine configuration can work with foil bearings. 
One must also consider stability. Either of the natural frequencies occurring below the operating speed 
range could become excited within the operating speed range and cause instability.  

The rotordynamic analysis software can also be used to calculate stability. The log decrement is a 
measure of the decay of a transient vibration of the system. If the log decrement is positive, the vibration 
decays in time. If it is negative, the vibration grows in time and is an indication of instability. The 
computer code calculates the log decrement for each of the natural frequencies and plots them as a 
function of speed. The lowest speed at which the log decrement of any of the natural frequencies becomes 
negative is called the threshold speed of instability, and is the maximum speed at which the engine can 
safely operate. Figure 4 shows the log decrement plot for the first rotor configuration. As one can see, the 
log decrement of the first three critical speeds is positive, indicating that the engine is stable throughout 
its speed range. 

The first configuration analyzed, which is the same as the baseline engine, satisfies the criteria 
defined as being feasible and warranting further study. However, one concern with this design that would 
require more detailed consideration in follow-on analyses is the fact that it results in supercritical 
operation. This means that the bending critical speed is below the operating speed. This is important 
because although the natural frequency does not exist within the speed range of interest, and it is a stable 
mode up to the maximum speed, the machine still has to pass through the natural frequency on its way to  
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Figure 4.—Stability plot of the baseline engine core configuration with foil bearings. 
 

 
the operating speed range. The concern is the amplitude of vibration at the compressor and turbine 
locations. Depending upon the amplitude of these vibrations, the required tip clearances could become 
large, thereby adversely affecting engine performance. Amplitude of vibration is a concern when passing 
through any natural frequency, but more so when the mode shape involves bending because the 
displacements at the aerodynamic components are typically larger in bending mode shapes than rigid 
mode shapes. For this reason, it is usually desirable to push the bending natural frequency above the 
operating speed range in foil bearing supported machinery. 

In order to analyze a system with a bending mode shape outside the operating speed range, a second 
model was constructed and is shown in figure 5. In this model, the engine shaft is made stiffer and the aft 
bearing is relocated behind the turbine. Significant layout changes, such as these, are possible only if the 
Oil-Free version of the engine is assumed to be a complete redesign. With that assumption, one has the 
freedom to make the shaft stiffer by reducing the span between the compressor and the turbine, and by 
increasing its outer diameter. This modification required that the aft foil bearing be moved behind the 
turbine because there is insufficient real estate at the old bearing location to accommodate a larger sized 

Forward bearing Rear 
bearing 

Compressor section Turbine 
section 

Added mass/disk 

Figure 5.—Rotordynamic model of the stiffened engine core configuration. 
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bearing. The compressor section is made stiffer as well by increasing the wall thickness. The turbine 
design remains identical to the first model and the baseline engine.  

With these changes, the bearing loads are different, requiring re-sizing of the bearings. The load on 
the front bearing is now 104 N and the rear bearing is now 130 N. With the load more evenly distributed, 
the same size bearings are used in both locations, 64.0 mm diameter by 50.8 mm long. As before, this size 
gives low lift-off speeds of 1900 and 2300 rpm, respectively. The bearings would operate in a lightly 
loaded condition throughout the operating speed range, ensuring dynamic load capacity and thermal 
stability. The new bearing dynamic force coefficients are listed in table 3. 
 

TABLE 3.—BEARING DYNAMIC FORCE COEFFICIENTS USED IN THE SECOND 
OIL-FREE MODEL 

[Calculated using carpino (refs. 12 and 13).] 
Kxx(N/m) Kxy(N/m) Kyx(N/m) Kyy(N/m) Speed, 

rpm Cxx(Ns/m) Cxy(Ns/m) Cyx(Ns/m) Cyy(Ns/m) 
Forward bearing (64.0 by 50.8 mm, 104 N load) 

1.24E+07 1.07E+06 1.21E+06 1.02E+07 
10000 

4.58E+02 –5.37E+01 –1.30E+01 4.55E+02 
9.72E+06 1.71E+05 8.40E+05 9.33E+06 

30000 
4.34E+02 –5.47E+01 1.11E+02 4.32E+02 
8.83E+06 –2.92E+05 1.13E+06 8.66E+06 

50000 
5.21E+02 –1.37E+02 2.29E+02 4.54E+02 

Rear bearing (64.0 by 50.8 mm, 130 N load) 

1.49E+07 1.38E+06 1.52E+06 1.11E+07 10000 
4.38E+02 –2.65E+01 1.02E+01 4.34E+02 
1.11E+07 2.90E+05 9.17E+05 1.01E+07 30000 
4.21E+02 –6.28E+01 1.07E+02 4.37E+02 
9.95E+06 –1.95E+05 1.21E+06 9.22E+06 50000 
4.91E+02 –1.30E+02 2.13E+02 4.48E+02 

 
Analysis of the second model indicates that there are now two rigid body critical speeds below the 

minimum speed of the engine, one at 7,100 rpm, and one at 13,200 rpm. The bending critical speed is 
increased to 51,000 rpm. This gives a 15 percent margin above the maximum operating speed. Like the 
previous configuration, the operating speed range is clear of natural frequencies. However, stability is still 
a concern. Figure 6 is a plot of the log decrements for this configuration’s first three modes. Again, all are 
positive indicating stability throughout the range. As mentioned before, part of a more detailed design 
analysis would need to include monitoring tip clearances when passing through the first two modes, but 
that is less of a concern with this configuration. 

Technical Hurdles 
Several technical hurdles exist that need to be addressed for success of a concept such as an Oil-Free 

engine coupled to an optimized transmission. The most important area is thrust load management. The 
models presented here did not include thrust bearing analysis. Foil thrust bearing technology is not nearly 
as advanced as foil journal bearing technology resulting in thrust bearing designs that have low load 
capacity and suffer from thermal instability problems. Typically, the solution to this problem has been to 
pressure balance the thrust loads of each rotor as much as possible so that the thrust bearings do not have 
to sustain large loads. This is most likely possible in this application for the core shaft. However, to 
realize the full potential of the optimized transmission concept, the entire engine must be oil-free. The 
power turbine shaft has no compressor with which to balance the thrust loads in the turbine. One possible 
solution in a rotorcraft application would be for the transmission to be coupled to the engine with a thrust  
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Figure 6.—Stability plot of the stiffened engine core configuration with foil bearings. 
 
carrying coupling (possible a quill shaft) and let the transmission carry the thrust load of the low-spool 
rotor. However the thrust loads are managed, it remains an area that requires attention.  

Another limiting technology is in bearing analysis tools. The computations to compute bearing 
rotordynamic coefficients are very complex, involving compressible fluid dynamics coupled with 
nonlinear structural dynamics, including frictional contact forces, membrane effects, thermal effects, etc. 
The tools to accurately predict these bearing properties, including all the necessary physics, do not yet 
exist. The current foil bearing prediction models are adequate for preliminary analysis, but are insufficient 
for advanced, detailed design work. Efforts to address this problem are underway, but for now, this 
deficiency forces much empirical based design that is costly and time consuming. 

Elimination of the gear-driven starter/generator is another area that needs attention. The current fleet 
of rotorcraft engines typically use starter motors with bevel gears to drive the core for starting. These gear 
contacts put radial loads on the shaft that would be hard to sustain for a foil bearing supported rotor, 
especially at low speed during starting. Some work has been done on integral starter/generators that 
would be mounted directly on the shaft to eliminate this problem, but more work is needed. 

Conclusions 
The proposed concept of mating an Oil-Free gas turbine engine, using air lubricated foil bearings, 

with a transmission using gearbox specific oil offers potential savings of weight, emissions, and 
maintenance, as well as longer transmission life. A correlated baseline model of an existing rotorcraft 
engine was analyzed in two configurations to determine if foil bearing technology could possibly be used 
based upon loads and dynamic considerations. A more detailed analysis is needed to properly address all 
concerns, but the initial study indicates that the concept is plausible from the standpoint of an Oil-Free gas 
generator section. The radial load capacity of foil journal bearings is adequate for the rotorcraft engine 
size class. The critical speeds can be designed to be outside of the operating speed range. Further, both 
Oil-Free core configurations are predicted to be stable throughout the operating speed range. More 
advanced analysis and testing is needed to generate detailed designs, but there are no obvious roadblocks 
to suggest the concept is not plausible. Considering the potential payoffs of an optimized propulsion 
system, moving forward with this concept is a worthwhile endeavor. 
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