
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 1

A Note on Inconsistent Axioms in Rushby’sSystematic Formal Verification

for Fault-Tolerant Time-Triggered Algorithms

Lee Pike

The author is with the Formal Methods Group, NASA Langley Research Center.

April 1, 2005 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 2

Index Terms

Formal methods, formal verification, time-triggered algorithms, synchronous systems, PVS.

Abstract

I describe some inconsistencies in John Rushby’s axiomatization of time-triggered algorithms that he

presents in these transactions and that he formally specifies and verifies in a mechanical theorem-prover.

I also present corrections for these inconsistencies.

I. I NTRODUCTION

This note’s purpose is to make a few minor corrections to John Rushby’s paper,Systematic

Formal Verification for Fault-Tolerant Time-Triggered Algorithms, appearing in Vol. 25, No. 5

of these transactions [1]. Rushby presents four principle assumptions (or axioms) about the

behavior of time-triggered systems. He describes his use of these axioms in the systematic

formal specification and verification of time-triggered systems in the mechanical theorem-prover

PVS [2]. Two of these four axioms are inconsistent; in fact, one is inconsistent in three separate

ways. Once the axioms are made consistent, one axiom is redundant; it is a corollary of the

other. Finally, a contradiction can be derived from another of the four axioms and some other

minor axioms in the formal specification. These inconsistencies appear in both the printed paper

and the PVS specifications, but when the printed axioms are ambiguous due to being more

informally stated, I defer to the PVS specifications.

I discovered these errors while attempting to interpret these axioms by formally providing

a model using theory interpretations in PVS [3]. When the “canonical model” did not satisfy

the axioms,1 I quickly realized these axioms not only fail to model the domain but are in

fact inconsistent. Once the errors were discovered, it was fairly straightforward to mend them.2

Rushby’s formal proofs do not depend on the inconsistencies. However, these specifications are

intended to be systematic and reusable; in the hands of someone without Rushby’s expertise,

this danger very much exists.

1I would like to thank Paul Miner of the NASA Langley Formal Methods Group for suggesting Axioms 2 and 3 are necessary

to axiomatize a canonical clock. He also pointed out that these changes imply that Theorem 5 holds.

2The mended formal specifications, along with a formal theory interpretation, can be found at<http://here.com >.

April 1, 2005 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 3

This comment does not suggest a failure of formal verification. Rushby is widely considered

to be an expert (if notthe expert) in the mechanized verification of fault-tolerant real-time

systems, particularly in PVS. These errors escaped his attention, despite formally verifying the

theory. They also apparently escaped the attention of the reviewers of these transactions and the

numerous researchers who have cited this work, including this author.3 Because these relatively

elementary errors went unnoticed by both Rushby and his peers, this is further evidence that for-

mal verification is crucial to ensure the correctness of a specification. However, a mechanically-

checked specification and verification is only as sound as one’s axioms. The lesson here is the

axiomatization of real-time systems is extremely difficult, and to ensure that the axioms are

consistent and correctly model the domain, a formal verification should include a demonstration

that some (canonical) implementation satisfies one’s formal specifications.

II. I NCONSISTENCIES ANDCORRECTIONS

I begin by stating Rushby’s definition of inverse clocks and Clock Drift Rate Axiom.

Definition 1 (Inverse Clock):An inverse clock for processp is a total functionCp : R → N.

The domain of an inverse clock is calledrealtime and the range is calledclocktime. The drift

of nonfaulty clocks is bounded by a realtime constant0 < ρ < 1:

Axiom 1 (Clock Drift Rate):(1− ρ)(t1 − t2) ≤ Cp(t1)− Cp(t2) ≤ (1 + ρ)(t1 − t2).

Theorem 1:Axiom 1 is inconsistent.

Proof: Let t2 > t1. Then(1− ρ)(t1 − t2) > (1 + ρ)(t1 − t2).

Axiom 1 can be revised as follows:

Axiom 2 (Clock Drift Rate (First Revision)):Let t1 ≥ t2. Then (1 − ρ)(t1 − t2) ≤ Cp(t1) −

Cp(t2) ≤ (1 + ρ)(t1 − t2).

However, even this is unsatisfiable:

Theorem 2:Axiom 2 is inconsistent.

Proof: Let t1 > t2 such that(1 + ρ)(t1 − t2) − (1 − ρ)(t1 − t2) < 1 and there exists no

n ∈ N such that(1− ρ)(t1 − t2) ≤ n ≤ (1 + ρ)(t1 − t2).

3Rushby’s paper has not only appeared in these transactions since 1999, but an an earlier version appeared in the IEEE

Proceedings of the Sixth Working Conference on Dependable Computing for Critical Applications [4]. The paper has been

well-cited, even in the very recent literature. For example, A quick search on Google Scholar finds 36 citations; the author

knows of at least three citations appearing in work published in 2004.

April 1, 2005 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 4

I weaken the inequality by taking the floor and ceiling of the drifts:

Axiom 3 (Clock Drift Rate (Second Revision)):Let t1 ≥ t2. Thenb(1−ρ)(t1−t2)c ≤ Cp(t1)−

Cp(t2) ≤ d(1 + ρ)(t1 − t2)e .

Even with these revisions, no function satisfying Axiom 3 is an inverse clock, as defined by

Definition 1.4

Theorem 3:No inverse clock satisfies Axiom 3.

Proof: By contradiction. The setN is totally ordered with a least element, so there exists

some t ∈ R such thatCp(t) ≤ Cp(t
′) for all t′ ∈ R. Let t′′ ∈ R, where t′′ < t, such that

b(1 − ρ)(t − t′′)c > 0. By Axiom 3, b(1 − ρ)(t − t′′)c + Cp(t
′′) ≤ Cp(t). However, because

b(1− ρ)(t− t′′)c is assumed to be strictly greater than zero,Cp(t
′′) < Cp(t), contradicting our

assumption thatCp(t) is least.

I therefore extend the range of an inverse clock fromN to Z.

Definition 2 (Revised Inverse Clock):An inverse clock for processp is a total functionCp :

R → Z.

Note that the inconsistencies in Axioms 1 and 2 hold regardless of whether an inverse clock is

defined by Definition 1 or Definition 2.

A second inconsistent axiom is the Monotonicity Axiom. Nonfaulty clocks are monotonic:

Axiom 4 (Monotonicity):t1 < t2 implies Cp(t1) < Cp(t2).

Theorem 4:Axiom 4 is inconsistent (with respect to either Definition 1 or Definition 2).

Proof: Because< is a total order overR, Axiom 4 implies thatCp is an injective function,

but there exists no injection from the reals into the natural numbers (or integers).

A satisfiable revision of monotonicity weakens the antecedent slightly:

Axiom 5 (Revised Monotonicity):t1 < t2 implies Cp(t1) ≤ Cp(t2).

Axiom 5 now becomes a corollary of Axiom 3:

Theorem 5:Let Axiom 3 hold. Prove Axiom 5.

Proof: By Axiom 3, Cp(t2) ≥ Cp(t1) + b(1− ρ)(t2 − t1)c.

The third inconsistency can be derived from the axiomatization of when messages are sent

and received by nonfaulty processes. Letsentp(q, m, t) be a relation that holds if processp

4It should already be intuitive that Definition 1 is incorrect, since, e.g., a canonical inverse clock function like the floor

function does not satisfy Axiom 3.

April 1, 2005 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 5

sends messagem to processq at realtimet. Similarly, let recv q(p, m, t) be a relation that holds

if processq receives messagem from processp at realtimet. The following axiom relates the

delay between when a nonfaulty process sends a message and when a nonfaulty process receives

it. Let the maximum delay be a realtime constant such thatδ ≥ 0.

Axiom 6 (Maximum Delay):sentp(q, m, t) if and only if there exists some realtime delay

0 ≤ d ≤ δ such thatrecv q(p, m, t + d).

Theorem 6:If δ > 0, then Axiom 6, together with other minor axioms and constraints in the

formal specification, is inconsistent.

Proof: (Sketch.) The essential problem is that the existential quantifier is within the scope

of the biconditional operator in Axiom 6. As stated, Axiom 6 implies that for all realtimest,

if there exists a0 ≤ d ≤ δ such thatrecv q(p, m, t + d), then sentp(q, m, t). It can be shown

that there exists somet such thatrecv q(p, m, t + d). Becaused ranges over the interval[0, δ],

there exists a realtimet′ and realtime delay0 ≤ d′ ≤ δ such thatd′ 6= d and t′ + d′ = t + d,

implying that sentp(q, m, t) and sentp(q, m, t′), where the distance betweent and t′ is less

than δ. However, by other constraints, no two separate realtimes withinδ of each other satisfy

sent .

A possible consistent revision is as follows:

Axiom 7 (Maximum Delay (Revised)):There exists some0 ≤ d ≤ δ such thatsentp(q, m, t)

if and only if recv q(p, m, t + d), and there exists some0 ≤ d′ ≤ δ such thatrecv q(p, m, t) if

and only if sentp(q, m, t− d′).

REFERENCES

[1] J. Rushby, “Systematic formal verification for fault-tolerant time-triggered algorithms,”IEEE Transactions on Software

Engineering, vol. 25, no. 5, pp. 651–660, September 1999.

[2] S. Owre, J. Rusby, N. Shankar, and F. von Henke, “Formal verification for fault-tolerant architectures: Prolegomena to the

design of pvs,”IEEE Transactions on Software Engineering, vol. 21, no. 2, pp. 107–125, February 1995.

[3] S. Owre and N. Shankar, “Theory interpretations in PVS,” SRI, International, Tech. Rep. SRI-CSL-01-01, April 2001,

available at http://pvs.csl.sri.com/documentation.shtml.

[4] J. Rushby, “Systematic formal verification for fault-tolerant time-triggered algorithms,” inDependable Computing for Critical

Applications—6, vol. 11. IEEE Computer Society, March 1997, pp. 203–222.

April 1, 2005 DRAFT


