

Electron Beam Freeform Fabrication: A Fabrication Process that Revolutionizes Aircraft Structural Designs and Spacecraft Supportability

Karen M. B. Taminger NASA Langley Research Center

ARMD Technical Seminar on May 22, 2008

LaRC EBF³ Team

Technology Lead

Karen Taminger

Researchers

- Rob Hafley
- Marcia Domack
- Eric Hoffman
- Keith Bird
- Sankara Sankaran
- Cindi Lach

Graduate Student

Erik Nelson

Technicians

- Richard Martin
- Jimmy Geiger

Systems Analysts

- David Mercer
- Bill Seufzer

Graphics/Marketing

Susanne Waltz

Partnerships

Susan Cooper

Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space

Outline

- Technology inception
 - Motivation
 - EBF³ process description
 - Benefits
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space

Structural Metals in Aircraft

Motivation

- New metals technology
 - Efficient, lightweight structures
 - Cost-effective
 - Enable new alloys
- Disruptive technology

Metal Deposition Processes

Laser		E-Beam
5-10%	Energy efficiency	95%
Continuous gated pulsed	Beam control	Continuous, rastered
Mirrors or fiber optics	Beam delivery	Magnetically steered
Inert gas	Environment	Vacuum
Powder, 5-85%	Feedstock efficiency	Wire, ~100%
0.5-9 lb/hr	Max dep. rate	> 30 lb/hr

EBF³ Core Technology

- Rapid metal fabrication process
 - Layer-additive process
 - No molds or tools
 - Properties equivalent to wrought
 - Demonstrated on Al, Ti, Ni, Fe-based alloys

EBF³ Process

- Slice CAD drawing
- E-beam creates melt pool
- Add wire to pool
- Translate layer-by-layer

LaRC EBF³ System #1

- 42 kW gun
- 60 kV max
- 6-axis positioning

- 78" x 108" x 100" vacuum chamber
- 24" x 48" x 60" build envelope

LaRC EBF³ System #2

- 3 kW gun
- 30 kV max
- 4-axis positioning

- 36" x 36" x 36" chamber
- 12" x 12" x 8" build envelope

EBF³ Demonstration

Benefits of EBF³

- Near-net shape
 - Minimize scrap
 - Reduces part count
- Efficient designs

 - Lightweight
 Enhanced performance
- Complex unitized components
 - Integral structures
 - Functionally graded materials
- "Green" manufacturing
 - Minimal waste products
 - Energy and feedstock efficient

http://www.nasa.gov

Ti Processing Steps

5 Forge

Billet Slab

Form **Mill Product**

11 Machine

12 Final Product

Direct Fabrication

TiCl₄

2 **Powder**

3 Wire

EBF³ 4

6

5 Machine

Final Product

http://www.nasa.gov

6

Outline

Technology inception

- Characterization
 - Microstructure
 - Mechanical properties
 - Structural integrity
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space

2219 AI Microstructure

0.01 in

0.01 in

2219 AI EBF³ Microstructure

As-deposited

T6 Condition

Rapid cool cast: • Cu segregation • Dendrites

Transformed: • Grain boundaries retained

2219 Al Tensile Data

Yield Ultimate Elongation

 EBF³ tensile properties comparable to handbook data

Functionally Graded Al

Graded Deposit Hardness

Ti-6AI-4V Microstructure

Ti-6AI-4V Tensile Data

EBF³ Ti-6-4 equivalent to annealed wrought product

Unitized Structural Tests

Uniaxial compression buckling tests

Machined

Riveted

Structural Test Comparison

- EBF³ panels
 5% lower than machined
- Reduction due to distortion

Outline

- Technology inception
- Characterization
- Technical challenges
 - Preferential vaporization
 - Process control
 - Residual stress
- Current applications
- Influence on future designs
- Supportability in space

Loss of Al in Ti-6Al-4V

- Al loss in vacuum
- Function of temperature and pressure
- Process repeatability
- Issue with other alloys too

Need for Process Control

- Melt pool changes with temperature
- Monitor for process control

Thermal Imaging of EBF³

- Closed loop process control
- Collaboration with L-M and UTSI

Thermal Residual Stresses

Localized heat induces distortion and residual stress

Residual Stress Distribution

Baseplate Distortion

NASA-Industry Alliance

- Joint-funded alliance
 - Boeing
 - Lockheed-Martin
 - Spirit AeroSystems
 - NASA
 - AFRL
- Develop process standards
- Catalyze growth of supply web
- NASA lead
 - Public benefit without private preference

Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
 - Replace existing parts
 - Potential industries
- Influence on future designs
- Supportability in space

Add Details onto Forgings

- Add features onto simplified preform
- Reduces billet sizes and buy-to-fly ratio

NASA

Cryotank Concept

- Form cylinder
- EBF³ stiffeners
- Tailored stiffener arrays

http://www.nasa.gov

NASA

Complex Shapes

- **Unitized structures**
- Allows internal cavities

Potential Industries

- Aerospace
- Tool & dies
- Automotive
- Medical implants
- Sporting goods
- Repairs in remote locations

Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
 - New unitized structural designs
 - Functionally-graded structures
 - Integrated systems
- Supportability in space

Novel Structural Designs

Curved stiffeners can be optimized for:

- Performance
- Low weight
- Low noise
- Damage tolerance

Design for Acoustics

 Optimize stiffeners to tailor natural resonance frequencies

Functional Gradients

Locally control:

- Chemistry
- Microstructure
- Properties

Build height gradient

Integrated Systems

- Sensors for health monitoring
- Selective reinforcement

"Large Panel Validation of Advanced Metallic and Hybrid Structural Concepts for Next Generation Transport Aircraft," R. J. Bucci, et. Al., AeroMat 2007

Outline

- Technology inception
- Characterization
- Technical challenges
- Current applications
- Influence on future designs
- Supportability in space
 - In-space repair
 - EBF³ in 0-g
 - Space applications

Need for Supportability

- Long duration
 missions
- Support autonomy
- Minimize resupply from Earth
- Fab or repair parts
- Enhances mission success

System Evolution

Height vs. Cooling Path

First layer

After multiple layers

Cooling path influences temperature

Gravity vs. Surface Tension

In 0-g, surface tension dominates

Function of temperature

Microgravity Testing

- NASA JSC's C-9
 - 15-20 sec. at 10⁻² g
 - 1.8 g pullout
 - 40 per flight

Successful 0-g Deposits

Wetting forces attract molten pool

http://www.nasa.gov

Successful 0-g Deposits

0-g deposit comparable to 1-g

EBF³ in 0-g

Surface tension dominates in 0-g

http://www.nasa.gov

Learning in 0-g

Height control required in 0-g

Lunar Surface Repairs

 Concept to support long duration human exploration missions

Automated

Hand-held

On-Orbit Assembly

Concept for fabrication of large space structures

Remote Terrestrial Repairs

Similar self-supportability needs on Earth:

- Navy ships
- Army supply in-theater
- Remote science bases

Summary

- Led by LaRC since inception
- Disruptive technology
- Cross-cutting:
 - Aeronautics
 - Space
 - Other industry sectors
- Enables new structural designs
- Demonstrated in 0-g for use in-space

EBF³ Timeline

