
Alex Tsow: An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis, Proceedings of The Sixth
NASA Langley Formal Methods Workshop, p.76–78

An Overview of Starfish:

A Table-Centric Tool for Interactive Synthesis?

Alex Tsow

The MITRE Corporation??, Mclean, VA 22102, USA

atsow@mitre.org

Extended Abstract

Engineering is an interactive process that requires intelligent interaction at many levels. My
thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition
that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish,
the software prototype for the design method, implements a table-centric transformation system
for reorganizing control-dominated system expressions into high-level architectures. Based on
the digital design derivation (DDD) system—a designer-guided synthesis technique that applies
correctness preserving transformations to synchronous data flow specifications expressed as co-
recursive stream equations—Starfish enhances user interaction and extends the reachable design
space by incorporating four innovations: behavior tables, serialization tables, data refinement, and
operator retiming.

Behavior tables express systems of co-recursive stream equations as a table of guarded signal
updates. Developers and users of the DDD system used manually constructed behavior tables to
help them decide which transformations to apply and how to specify them. These design exercises
produced several formally constructed hardware implementations: the FM9001 microprocessor, an
SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for inter-
preting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD’s
developers, have subsequently commercialized the design derivation methodology at Derivation
Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-
code processor; they further executed a contract to prototype SPIDER—NASA’s ultra-reliable
communications bus.

To date, most derivations from DDD and DRS have targeted hardware due to its synchronous
design paradigm. However, Starfish expressions are independent of the synchronization mechanism;
there is no commitment to hardware or globally broadcast clocks. Though software back-ends for
design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time
software is not substantively different from targeting hardware.

The separation of concerns—e.g., architecture, behavior, data representation, and interface
coordination—is standard engineering doctrine. In particular, it is futile to expose all aspects

? Many thanks to the NASA Langley Research Center’s generous sponsorship of this work through their Graduate
Student Researcher’s Program, NGT-1-010009. This extended abstract is a revised excerpt from the author’s doctoral
dissertation accepted by the Indiana University Computer Science Department.[1]

?? The author’s affiliation with The MITRE Corporation is provided for identification purposes only, and is
not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions or viewpoints
expressed by the author.

76 Proceedings of The Sixth NASA Langley Formal Methods Workshop



Alex Tsow: An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis

equally well with a single language. Behavior tables represent a compromise between behavior
and architecture: its rows roughly characterize a specification’s control oriented aspects, while the
columns represent its architectural, or structural, aspects.

The behavior table transformations—among other things—allow designers to trade between
these two axes, thereby balancing between the two aspects. It is no surprise, then, that behavior
tables are well suited for deriving architectural components from behaviorally oriented expressions.

Type Management and Data Refinement: Behavior tables operate on arbitrarily abstract
data-types, not just bit-vectors and bounded integers. In this respect, they are far more expressive
than standard hardware description languages. Starfish implements an explicit type system and a
framework for data refinement to support high-level specification with abstract data types.

Demand for explicit typing arose from several areas: the need to limit decision expressions to
finitely branching guards, the need to prevent incompatible signal merging opportunities among
unused slots in table columns, and the desire to increase feedback by disallowing unsound trans-
formations at earlier stages. The type system, which is based on multisorted structures, takes
on a second responsibility: it forms a database of term-level identities. One of the core transfor-
mations applies algebraic identities (e.g., operator commutativity) to terms. While many term
rewrites in DDD are combinator expansions, each algebraic term rewrite requires external valida-
tion. Starfish leverages the type system’s identity database to confirm algebraic rewrites—only
the identity pattern needs external verification.

Since the type system declares function symbols, signatures and identities, it provides a foun-
dation for data refinement. At the simplest level, a system of identities can express one-to-one
homomorphisms between types. While such an identity system transforms abstract terms into
representation terms, the architectural algebra preceding Starfish could not transform abstract
signals into representation signals in a general way. The first attempts to impose signal-level
refinement were ad hoc, but the current refinement process follows from retiming and recursive
identity expansion. In addition to refinement by one-to-one homomorphism, Starfish supports one-
to-many refinements, where there are multiple representations for each abstract type, and stateful
refinements, which represent multiple signals with references to a shared store.

While behavior tables are not useful for defining data refinements, they are useful for exploit-
ing and managing their consequences. Data refinements lead to more detailed specifications and
consequently a wider transformation space. System decompositions, the problem for which behav-
ior tables were developed, may “cut across” a representation that implements an abstract type
with a collection of signals. For instance, suppose a refinement simulates abstract stacks with a
pointer and array; subsequent architectural organization may separate the array from the pointer.
In another case, a stateful refinement may impose serial access on the previously unconstrained
concurrency of abstract operations. Behavior tables and their scheduling aid, serialization tables,
provide an interactive method for integrating the serial requirements into a system’s control and
architecture by scheduling access before and after stateful refinements.

Scheduling and serialization: Starfish introduces serialization tables for scheduling the
evaluation of complex action terms over several steps. Like behavior tables, columns represent
signals and rows represent simultaneous actions which update the signals. Serialization tables are
an organizational aid that helps designers solve the NP-hard problems involved in high-level syn-
thesis; e.g., how to fit an evaluation sequence within a specified number of registers and execution
units. Serialization tables help specify evaluation order and intermediate resource usage for com-
pound actions in a behavior table. As the schedule develops, the serialization tables display partial

Proceedings of The Sixth NASA Langley Formal Methods Workshop 77



Alex Tsow: An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis

symbolic-evaluations of the intermediate actions. This feedback mechanism helps designers specify
actions in the subsequent steps. Starfish validates correctness before integrating the actions into
behavior table expressions.

The DDD algebra views serialization as primarily a behavioral problem. Yet, the goal of
scheduling is often architecturally dictated. One must use a limited set of resources. Register
allocation, functional allocation, and timing are not fully exposed in DDD’s behavioral represen-
tations. Serialization tables display these aspects more clearly than DDD’s co-recursive stream
equations, making them a better suited medium for the schedule specification process.

Retiming: Starfish supports retiming in two ways. One is with serialization tables and local
re-serialization, or adjustment of schedules. The other is with a transformation that converts
combinational signals to sequential signals and vice versa. In schematic terms, the transformation
pushes a functional unit from one side of a register to the other. Although retiming is the critical
step in transforming abstract signals to representation signals, the motivating example in Starfish
was a stack-calculator derivation. The original specification used a combinational top accessor
for the output signal. Any plausible implementation would store the top value in a register. The
exercise of hand-specifying a stack-calculator with a registered top signal was enough to see a
generalizable pattern. Indeed, equivalent transformations have been used in formal synthesis and
microarchitecture algebra.

This talk surveys Starfish’s incorporation of behavior tables, data refinement, serialization,
and retiming into design derivation. Please see my thesis [1] for an in-depth presentation of these
techniques; full text is freely available on the Web.

References

[1] Alex Tsow. Starfish: A Table Centric Tool for Design Derivation. PhD thesis, Indiana University
Computer Science Department, Bloomington, IN, July 2007. Technical Report 650, 272 pages, http:
//www.cs.indiana.edu/pub/techreports/TR650.pdf.

78 Proceedings of The Sixth NASA Langley Formal Methods Workshop




