
Charles E. Niederhaus, Karen L. Barlow, and DeVon W. Griffi n
Glenn Research Center, Cleveland, Ohio

Fletcher J. Miller
National Center for Space Exploration Research, Cleveland, Ohio

Medical Grade Water Generation for Intravenous 
Fluid Production on Exploration Missions

NASA/TM—2008-214999

May 2008



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

 
• CONTRACTOR REPORT. Scientifi c and 

technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 

papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question via the Internet to help@

sti.nasa.gov
 
• Fax your question to the NASA STI Help Desk 

at 301–621–0134
 
• Telephone the NASA STI Help Desk at
 301–621–0390
 
• Write to:

           NASA Center for AeroSpace Information (CASI)
           7115 Standard Drive
           Hanover, MD 21076–1320



Charles E. Niederhaus, Karen L. Barlow, and DeVon W. Griffi n
Glenn Research Center, Cleveland, Ohio

Fletcher J. Miller
National Center for Space Exploration Research, Cleveland, Ohio

Medical Grade Water Generation for Intravenous 
Fluid Production on Exploration Missions

NASA/TM—2008-214999

May 2008

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135



Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 

This report is a formal draft or working 
paper, intended to solicit comments and 

ideas from a technical peer group.

This report contains preliminary fi ndings, 
subject to revision as analysis proceeds.



NASA/TM—2008-214999 1

Medical Grade Water Generation for Intravenous Fluid  
Production on Exploration Missions 

 
Charles E. Niederhaus, Karen L. Barlow, and DeVon W. Griffin  

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Fletcher J. Miller 

National Center for Space Exploration Research 
Cleveland, Ohio 44135 

1.0 Introduction 
This document describes the intravenous (IV) fluids requirements for medical care during NASA’s 

future Exploration class missions. It further discusses potential methods for generating such fluids and the 
challenges associated with different fluid generation technologies. The current Exploration baseline 
mission profiles are introduced, potential medical conditions described and evaluated for fluidic needs, 
and operational issues assessed. Conclusions on the fluid volume requirements are presented, and the 
feasibility of various fluid generation options are discussed. A separate report will document a more 
complete trade study on the options to provide the required fluids. 

At the time this document was developed, NASA had not yet determined requirements for medical 
care during Exploration missions. As a result, this study was based on the current requirements for care 
onboard the International Space Station (ISS). While we expect that medical requirements will be 
different for Exploration missions, this document will provide a useful baseline for not only developing 
hardware to generate medical water for injection (WFI), but as a foundation for meeting future 
requirements. As a final note, we expect WFI requirements for Exploration will be higher than for ISS 
care, and system capacity may well need to be higher than currently specified. 

1.1 Future Exploration Missions 

The Vision for Space Exploration outlined a new direction for NASA, consisting of missions unlike 
those accomplished before. These missions will return astronauts to the Moon and test the technologies 
required for Mars missions. The ISS will be used as a testbed for some of these new technologies. 
NASA’s Exploration Systems Architecture Study presents the design reference missions (DRMs) that are 
being used to facilitate the derivation of requirements for the essential technologies (ref. 1). 

1.1.1 International Space Station (ISS) 

The ISS is planned to expand to a crew complement of six before the shuttle retires in 2010. These six 
astronauts will be from the United States and its international partners. U.S. astronauts will focus on 
validating technologies required for the Lunar and Martian missions. The ISS is the only platform 
currently available with long-duration microgravity to validate medical water generation and mixing. 

1.1.2 Lunar Sortie 

A crew of up to four will be able to explore any site on the Moon for up to 7 days. This includes the ability 
to explore polar regions as well as the equatorial region. No prepositioned infrastructure such as habitat or 
provisions is included. Daily extravehicular activities (EVAs) with all crewmembers are possible. The Lunar 
Sortie DRM includes the capability to return to Earth in 5 days or less at any time from any site. 
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1.1.3 Lunar Outpost 

The Lunar Outpost DRM will establish a continuous presence on the Moon’s surface. A crew of  
up to four will occupy an outpost on an expedition lasting up to 6 months. A new crew will arrive every  
6 months, and the existing crew will return to Earth. The outpost will help validate technologies required 
for Mars exploration. The 5-day, anytime return capability of the Sortie DRM is available for the Outpost 
DRM if the outpost is located at a polar or equatorial site. Remaining on the surface may be required at 
other sites, extending the return time.  

1.1.4 Mars Exploration 

The Mars DRM is for a conjunction-class mission, with 6-month transit to and from Mars, and an  
18-month stay. These missions will be launched when the Earth and Mars are in conjunction, thus 
minimizing radiation exposure by minimizing transit time. A crew of six will be included on this 2.5-year 
mission. No early return is possible in the case of an emergency because of the mission profile. 

1.2 Medical Need for Fluids 

These longer duration missions increase the likelihood of a medical incident and thus the need for 
medical fluids. The patient condition database (PCDB) provides a list of over 400 medical conditions that 
may present and require treatment during ISS missions. These conditions are a subset of possible conditions 
that could be encountered during long-duration, EVA-intensive, Exploration missions. Of the 442 
conditions, approximately 115 may require medical fluids during the course of treatment. Terrestrial 
treatment would typically include fluids such as normal saline (NS) (0.9% NaCl), 5% dextrose, Lactated 
Ringer’s solution (LR), or blood products. Operational constraints such as mass limitations and lack of 
refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. 
Representative conditions that may require fluid treatment include trauma, burns, and hemorrhagic shock. 
Section 2.0 will include a more detailed discussion of these conditions likely requiring IV fluid 
administration. 

1.3 General Issues With Providing Fluids 

Choosing a technology to generate sterile water for injection (SWFI) and produce IV fluids requires 
balancing capabilities with mission and medical requirements. For example, the type, volume, and 
timeline over which IV fluids are required are key drivers in selecting an appropriate technology. 
Additionally, the system must operate in various gravity environments, such as microgravity, lunar 
gravity, and Martian gravity, while also functioning in Earth normal gravity for testing and verification. 
Propulsive thrusting events may also produce an effective gravitational level and could possibly occur 
during fluid production. Successful operation requires maintaining sterility, which can be handled in 
different ways depending on technology. Some technologies might be sealed until use, requiring only seal 
integrity, while other systems may require internal recirculation or periodic maintenance to ensure proper 
operation. Instrumentation will likely be required to verify compliance of United States Pharmacopeia 
(USP) standards of operation of the system. Crew time may be especially limited in an emergency 
situation, and the time needed to deploy, prepare, activate, and operate the system should be taken into 
account. Any system must be relatively simple to use, safe, and reliable. Section 4.0 discusses many of 
these issues in greater detail. 

1.4 Brief Review and Analysis of Previous Work 

In the late 1980s and early 1990s, NASA conducted a detailed investigation to determine the 
possibility of producing IV fluids on orbit as part of the Health Maintenance Facility of what was then 
Space Station Freedom. The Johnson Space Center led this effort, which included contracts with Krug 
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International (Wyle Laboratories since 1997), Sterimatics Corporation, and Baxter Healthcare 
Corporation, culminating in a flight experiment on Space Transportation System (STS)–47 from 
September 12, 1992, to September 20, 1992. Krug International of Houston, Texas, was the prime 
contractor and flight integrator, with subcontracts to specialists Sterimatics and Baxter. The final decision 
at the time was not to produce sterile water on Space Station Freedom, but to use prepackaged IV fluids. 
No flight-ready hardware was fabricated for sterile water production. A brief description of the results 
follows. 

1.4.1 IV Fluids Requirements White Paper 

A white paper titled “An Evaluation of IV Fluids Requirements for the Space Station Freedom Health 
Maintenance Facility Assuming a 10-Day Therapeutic Stay” was written by Gerry Creager of Krug Life 
Sciences in 1991 (ref. 2). This report evaluated six medical scenarios requiring fluids for treatment. The 
scenarios included (1) cardiac arrest with rapid resuscitation, (2) 40 percent body surface burn of full 
thickness, (3) a fracture of the radius and ulna with complications requiring surgical intervention, (4) a 
relatively uncomplicated femur fracture, (5) space motion sickness, and (6) a myocardial infarction 
requiring polypharmaceutical intervention. The basic assumptions in the study were (1) maximum length 
of treatment is 10 days, (2) patient is a 90-kg, 95th percentile American male, (3) IV fluids are packaged 
in 1 L volumes, (4) parenteral (i.e., external to the gastrointestinal tract) nutrition is not included, (5) 
infusible pharmaceuticals can be mixed in one of the solutions provided, (6) no accommodations for 
additional fluids beyond those identified, and (7) entire fluid administration set changeout every 48 hr 
consistent with terrestrial infection control practices. 

Fluid volumes were calculated for each scenario for seven types of solutions. The volume required to 
cover a particular scenario ranged from 11 to 90 L, averaging 37 L. The total volume required to treat all 
individual scenarios in a mission and the minimum volume required to any one individual scenario in a 
mission were also calculated. The total volume of the seven types of solutions required to cover one 
incident of each scenario was 220 L, while 141 L was required to cover any one scenario. The report 
suggested that the minimum was 123 L, but we found an 18 L error in the calculations for the minimum 
amount of NS required. 

1.4.2 Sterile Water for Injection System 

Krug International, as lead contractor for the health maintenance facility on Space Station Freedom, 
contracted with Sterimatics Corporation to develop a sterile water for injection system (SWIS) as part of a 
system to produce IV fluids. The SWIS was a filter/adsorption-based technology to produce WFI. The 
design goal was to be able to use hygiene water, a proposed ISS water designation that was lower in 
quality than potable water. Specifications for hygiene water were not available in the early design stages. 
Therefore, system designers assumed this water would not be more than 10 times worse than the potable 
water specification for all contaminants. System requirements included producing at least 6 L of WFI at 6 
L/hr with a sterile shelf life of 90 days, utilizing a filter with a minimum shelf life of 1 year.  

The SWIS produced WFI utilizing filter and adsorption bed technologies. In order, the process 
included particle prefiltration, carbon adsorption, mixed-bed deionization, ultrafiltration, and sterilizing 
microfiltration. As developed, the SWIS had a dry mass of 2 kg and produced 9 L of WFI from hygiene 
water with contamination levels 10 times the ISS potable water specification. Testing indicated that at 
least 20 L of WFI could be produced from potable water. The flow rates were 6 L/hr at 30 psia and 4 L/hr 
at 20 psia. The SWIS was flown on STS–47 in September 1992 as part of the fluid therapy system (FTS) 
on the Spacelab–J (Spacelab–Japan). The results of this work will be discussed further in Section 1.4.4. 
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1.4.3 Zero-Gravity IV Mixing System 

Krug International contracted with Baxter Healthcare to produce a system for mixing constituents in 
custom IV bags. Baxter worked on developing methods to mix both powders and concentrates, but was 
unable to overcome problems in mixing powders (ref. 3). The development was constrained by a passive 
system requirement, utilizing only water pressure to produce the mixing. The method developed utilized a 
mixing bag separate from the IV bag. The mixing bag contained a serpentine channel similar to blood 
warming bags. The concentrate to be mixed was distributed along the channel and the WFI passed 
through the channel before entering the IV bag. Baxter conducted experiments with a dyed concentrate 
and observed a low degree of mixing, with the heavier, dyed concentrate located on the bottom of the bag 
in 1-g testing. Baxter felt that bag manipulation by hand produced sufficient mixing, but did not quantify 
the mixing. No quantitative mixing studies were completed in normal gravity or microgravity.  

Our brief analysis of the fluid physics suggests that the concentrate would have been flushed out of 
the channels almost immediately, with the subsequent fluid nearly pure water, consistent with Baxter’s 
observations. It is felt that the mixing that was subsequently obtained by Baxter was highly dependent on 
internal waves produced from the density difference between the concentrate and the pure water in a 
gravity field. This type of mixing will be greatly reduced in microgravity. Experiments were conducted at 
NASA Glenn specifically to look at mixing using manual squeezing of the bag as recommended by 
Baxter. Concentrated saline solution was added to a bag filled with distilled water. A fluorescent 
technique (planar laser-induced fluorescence) was utilized to quantify the mixing inside of the bag similar 
to what is being used to characterize magnetic stirrer mixing (ref. 4). Mixing was accomplished by 
manual squeezing of alternate sides of the bag at ~2 Hz while maintaining a horizontal orientation to 
minimize gravity effects. After 5 min of continuous squeezing, over 50 percent of the bag still had pure, 
unmixed, distilled water. It was not until the bag was tilted ±45° at 1 Hz for 1 min that mixing was finally 
achieved. This tilting motion introduces gravity-driven mixing as gravity moves the heavy fluid to 
alternate sides of the bag as it is tilted. A second experiment with vigorous horizontal oscillation for 5 min 
achieved similarly incomplete mixing, with over 50 percent still completely unmixed. These experiments 
demonstrate that it is easy to produce mixing that is gravity-driven, but that these mixing techniques will 
not function in microgravity. 

1.4.4 STS–47 Fluid Therapy System (FTS) 

The Spacelab–Japan Module flew on STS–47 during September 1992. One of the experiments was the 
FTS, testing the equipment and procedures developed thus far for IV generation. The FTS utilized the 
adsorption filters developed by Sterimatics to produce the WFI, and the IV bags and mixing method 
developed by Baxter to produce the final solutions. An infusion pump administered a saline solution into a 
mannequin arm to complete an end-to-end system test. The degree of mixing was not quantified on orbit, 
nor was the solution frozen or fixed in any fashion to preserve the state of mixing on orbit. While later 
analysis on Earth showed that the final solution met the tolerance criteria for solution concentration (±5 
percent of desired concentration), that determination was only a validation of the amount of solute in the 
final solution, not a verification of achieving the in-flight mixing requirements because vibrations from 
landing and handling as well as molecular diffusion would have easily homogenized the sample by the time 
the ground analysis was performed. Ground testing of the produced WFI concluded that it did not meet the 
required total organic carbon requirement. It speculated at the time that this was caused by the bags 
themselves, although NASA Glenn suspects that channeling in the adsorption system is a more likely cause.  

Serious bubble problems were observed by Astronaut Mae Jemison during testing on STS–47. The 
bubbles were sometimes hundreds of very small bubbles in the IV bag, and sometimes many large bubbles. 
The bubble traps in the system were overloaded and failed on multiple occasions. The IV pump also shut 
down from error signals generated by the bubbles. It has been hypothesized that these extreme bubble 
problems were caused by the unique nature of this experiment. The source water was in a pressurized 
container with a bladder. Part of the container held a pressurized gas, which would collapse the flexible 
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membrane and force out the liquid. It is possible that sufficient gas diffused through the membrane and 
saturated the liquid. When the liquid pressure was reduced inside of the IV bag, this solution degassed, 
forming the bubbles. No followup ground testing was conducted to confirm the hypothesis.  

In the 15 years since the hardware was flown, the activated charcoal in ground prototypes exhibited 
noticeable settling. There was some mention of noticeable settling during the timeframe of operations. This 
settling suggests that the fluid phenomenon known as channeling may have occurred. Fluid flow in packed 
beds (containers with loose particles used for chemical reactions) such as employed in the SWIS can 
rearrange the packing, as a result of hydrodynamic forces, into regions of higher and lower packing 
densities. Low packing density regions are preferential for fluid flow and result in voids in the filter media 
that does not filter the water properly. The adsorption material in this region becomes overloaded, while 
other material remains unused. This situation occurs with greater frequency in microgravity packed beds 
because there is no gravity force to help maintain the positioning of the packing. For example, there can be 
no empty space at the top of the reactor in microgravity because in microgravity there is no “top,” and this 
void space is distributed throughout the reactor from hydrodynamic forces that minimize the pressure drop. 
The result is also a reduction of the treatment effectiveness of the reactor (ref. 5). Special precautions must 
be taken to avoid these problems, such as elaborate packing procedures or mechanical compressive forces, 
and it does not appear that such measures were taken. It is possible that channeling is the reason that testing 
of the flight solutions showed that they did not meet the total organic carbon standards. 

1.5 Objectives of This Study 

This study focuses on developing the requirements for IV fluids for NASA’s missions, presents key 
issues in developing any IV generation system, introduces potential generation technologies, and offers 
conclusions on whether generating IV fluids on orbit is preferable to flying prepackaged supplies. The 
profiles of expected missions, as outlined in the Exploration Systems Architecture Study (ESAS) DRMs, 
are described and analyzed for potential emergency medical care needs. These missions are still very 
early in the planning stages, so detailed equipment requirements have not been developed and mission 
scenarios may change. Many of the expected medical care needs are based on current and past mission 
requirements, as well as past advanced planning. 

Potential medical conditions are analyzed to determine whether IV fluids might be required and the 
approximate quantity. The analysis is on a layman’s level to give a rough estimate of fluids requirements. No 
detailed fluid treatment regimes are developed. This review is not intended to be an exhaustive medical 
analysis, but rather a guide to when IV fluids may be required, along with the quantity of such fluids. 

Some of the key questions and requirements that an IV generation system must meet are elucidated. 
Questions include quantities required, production rate and quality requirements, and inspace operation. 
Some potential technologies are critically described. Conclusions are drawn about whether produced or 
stored IV fluids are more appropriate for a given DRM. A later paper will include a detailed trade study 
that compares potential technologies will be made to determine the most appropriate technology for a 
given DRM. The future trade study would develop a more accurate estimate of the weight, volume, et 
cetera, required for the recommended system. 

2.0 Clinical Need for Additional Fluids 
The shelf life of some pharmaceuticals can be improved by lyophilization, or storing them in their 

freeze-dried form (ref. 6). These drugs may need to be reconstituted with potable or sterile water, prior to 
oral or parenteral (e.g., intravenous, subcutaneous, and intramuscular) administration, respectively. Other 
fluids including NS, LR, and colloid solutions are frequently used to treat a variety of illnesses including 
hypovolemia as a result of blood loss and severe burns, anemia, and dehydration. The following sections 
discuss some typical fluids used in clinical treatments, the ISS-approved drugs that require these fluids, 
and the standards for the water used to manufacture them. Furthermore, the major routes of administration 
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of these fluids are defined and the operational challenges that might arise during the employment of these 
treatments in microgravity are briefly discussed. 

2.1 Methods of Administering Fluids 
Often there is a choice of the route by which a therapeutic agent may be given, and knowledge of the 

advantages and limitations of the various routes of administration becomes important. Some 
characteristics of the major routes employed for systemic drug effect are compared in table I (ref. 7). 

 
TABLE I.—CHARACTERISTICS OF COMMON DRUG ADMINISTRATION ROUTES 

Route Absorption pattern Special utility Limitations and precautions 
IV Absorption circumvented 

Potentially immediate effects 
Valuable for emergency use 
Permits titration of dosage 
Usually required for high molecular 
weight protein and peptide drugs 
Suitable for large volumes and for 
irritating substances, when diluted 

Increased risk of adverse effects 
Must inject solutions slowly, as a rule 
Not suitable for oily solutions or insoluble 
substances 

Subcutaneous Prompt, from aqueous solution 
Slow and sustained, from 
repository preparations 

Suitable for some insoluble 
suspensions and for implantation of 
solid pellets 

Not suitable for large volumes 
Possible pain or necrosis for irritating 
substances 

Intramuscular Prompt, from aqueous solution 
Slow and sustained, from 
repository preparations 

Suitable for moderate volumes, oily 
vehicles, and some irritating 
substances 

Precluded during anticoagulant medication 
May interfere with interpretation of certain 
diagnostic tests (e.g., creatine kinase) 

Oral ingestion Variable Most convenient and economical 
Usually more safe 

Requires patient cooperation 
Availability potentially erratic and incomplete 
for drugs that our poorly soluble, slowly 
absorbed, unstable or extensively metabolized 
by the liver and/or gut 

2.1.1 Enterally 

Enteral routes of drug administration refer to all methods where the drug is able to pass through the 
lining of the gastrointestinal tract. The water required for this course of administration should meet 
potable standards, but does not need to meet stricter standards. If the patient is unconscious or cannot 
swallow for any reason, secondary preference routes may be used such as gastric or duodenal feeding 
tubes, and rectally via suppository or enema. Since enteral administration does not require sterile water, it 
will not be further discussed in this paper.  

2.1.2 Parenterally 

Parenteral drugs are introduced by routes outside of the gastrointestinal tract including subcutaneous, 
intramuscular, and IV injection. All methods require sterility of both the drug, and any additives 
(including water) necessary for administration. Problems may occur with this method of administration if 
an air embolus is injected into the patient’s circulatory system, a potentially fatal condition (ref. 8), so air-
bubble removal prior to injection is critical. Bubble removal is difficult in microgravity fluid systems; a 
bubble trap in the injection line may suffice if the total bubble volume is relatively small. In microgravity 
and partial gravity, the system to administer parenteral drugs must employ a force to drive the solution 
into the blood vessel rather than the standard gravity-driven devices used in terrestrial applications. Other 
requirements for all parenteral drugs are the sterility and purity of the injected fluid, as nonsterile 
injections will cause infection and lack of purity can introduce toxins. 

2.2 Medications That Need IV Administration 

Though oral drug administration is often the preferred method, parenteral injection of drugs has distinct 
advantages. In some instances, parenteral administration is necessary for the drug to be absorbed in active 
form. When given parenterally, the bioavailability of a drug is usually more rapid and more predictable than 
when a drug is given through the gastrointestinal tract, so the therapeutic dose can be more accurately 
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selected. In emergency therapy, parenteral administration is particularly useful. If a patient is unconscious, 
uncooperative, or unable to retain medication given orally, parenteral therapy is required. 

The issues involving absorption are avoided by IV injection of drugs in aqueous solution; for example, a 
drug that is absorbed from the stomach and intestine must first pass through the liver before it reaches the 
systemic circulation. If the drug is metabolized in the liver or excreted in the bile, some of the drug will be 
inactivated and diverted before it can reach the general circulation and be distributed to its sites of action. 
With IV injection, the drug is administered directly into the general circulation, and the desired concentration 
of a drug in blood is obtained with an accuracy and immediacy not possible by any other procedure. Also, 
certain irritating solutions can be given only in this manner, since the blood vessel walls are relatively 
insensitive, and the drug, if injected slowly, is greatly diluted by the blood (ref. 7). 

2.2.1 Current ISS Medications 

The ISS medical kit includes eight drugs that require intravenous fluid (IVF) administration. Table II 
describes the use and quantity of drug needed for a full course of treatment, and quantity of IVF required 
for one dose. The drugs that have no available units on ISS are those that have been approved by the 
Space Medicine Configuration Control Board (SMCCB) for future ISS missions. Precisely determining 
how much IVF is required for one full course of treatment for some drugs is difficult because the length 
of treatment and amount of required fluid changes according to severity of the illness and patient response 
to the medication.  

 
 

TABLE II.—SMCCB APPROVED FOR ISS FLIGHTS 
Medications that require IV fluid  
(unit concentration) 

Class Use No. of 
units on 

ISS 

Ideal quality for one full 
treatment course 

Amount of base IVF 
required for each dose 

Primaxin  
(500 mg) 

Antibiotic Lower resp. tract infection; 
UTI (complicated and 
uncomplicated); Intra-
abdominal infections; 
gynecologic infections; 
bacterial septicemia; bone 
and joint infections; skin 
and skin structure 
infections; endocarditis; 
polymicrobic infections 

1 Up to 4 g/day depending on 
severity of infection 

100 mL 

Rocephina  

(1 g) 
Antibiotic  1 10 days, 1 to 2 g/day 100 mL 

Dilantin IV  
(50 mg/mL; 2mL) 

Antiseizure Seizures 10 1gm = 1 loading dose slated 
for removal with Carpuject 
change 

500 mL 

Amikacina  

(250 mg/mL; 2mL) 
Antibiotic  4  100 mL 

Acyclovir  
(50 mg/mL IV fluid, 20 mL) 

Antiviral Systemic viral infection 
(shingles, etc.) 

0 Max. 800 mg, 3 times a day 
for 10 days 

For IV infusion, dilute 
concentrate containing 
acyclovir 25 or  
50 mg/mL with a 
compatible IV fluid (NS, 
D5, LR) to a 
concentration of  
7 mg/mL or less 

Azithromycin  
(500 mg for IV use; dry powder 
for reconstitution in  4.8 mL 
sterile water) 

Antibiotic Infections above the 
diaphragm 

0 500 mg IV once a day for 2 
days (followed by 8 days of 
oral dosing) 

250 mL NS 

Procainamide Antiarrhythmic  0   
Pyridoxine  
(100 mg/ml,  
1 ml vials) 

Antidote Antidote for hydrazine 
poisoning 

0 25 mL of 25 mg/kg  Administer into running 
IV 

aCan also be administered intramuscularly. 



NASA/TM—2008-214999 8

2.2.2 Potential Lunar/Mars Medications 

This report assumed that the list of medications for lunar and Mars missions will be similar to that for 
the ISS, discussed in Section 2.2.1, though limited storage and mass requirements of the Crew 
Exploration Vehicle, Orion, may require flight surgeons to truncate the ISS list by choosing only the 
medications that are applicable to the most likely ailments that might occur for a particular mission. 
Quantities of each medication should be chosen based on the number of crew in Orion, as well as other 
factors such as mission length and profile. According to the NASA’s 2005 ESAS report, Orion will 
accommodate four crewmembers for Lunar missions, while being reconfigurable to hold up to six 
crewmembers for future Mars missions (ref. 1).  

2.3 Types of Fluid and Operational Challenges 

On average, fluid constitutes 60 percent of the adult human body weight. Body fluid contains water 
and two types of solutes: electrolytes and nonelectrolytes. Nonelectrolytes are molecules that remain 
intact in the body and consist of dextrose, creatine, and urea. Electrolytes are molecules that break down 
into charged particles, or ions, and serve two major functions: By osmotic pressure, they control the 
allocation of water volume to the intracellular and extracellular compartments of the body, and maintain 
the proper pH (potential of hydrogen (a measure of acidity)) balance of the body. Parenteral fluids are 
classified according to the osmolality of the fluid in relation to normal blood plasma, which has an 
osmolality of 290 mOsm/L (milliosmoles). Fluid that approximates 290 mOsm/L is considered isotonic. 
IV fluids with an osmolality greater than 340 mOsm/L or less than 240 mOsm/L are generally considered 
hypertonic and hypotonic, respectively (ref. 9). Injuries such as burns result in fluid loss; similarly, 
dehydration is caused by fluid loss or electrolyte imbalance. Fluid maintenance in such situations is 
critical in providing nutrients such as water, electrolytes, dextrose, vitamins, and protein. There are 
currently 200 types of commercially prepared parenteral fluids available (ref. 9). Sections 2.3.1 to 2.3.6 
will focus on a few of the most common types of fluid and the therapies for which they are used to treat 
illnesses pertinent to Exploration missions. 

Aside from fluid in the form of plasma, which includes components other than electrolytes, whole 
blood contains red and white blood cells, and platelets. The main function of red blood cells is to transport 
oxygen to all of the tissues and cells of the body. Loss of red blood cells, depending upon how severe, 
may result in a range of disorders from anemia to tissue necrosis and death. White blood cells, 
specifically granulocytes, are important in the immune response, are transfused in rare cases when an 
infection is unresponsive to antibiotics. Platelets are cellular fragments that form in the bone marrow and 
serve a major role in the clotting cascade. Platelet transfusions are generally given to people with 
hematological disorders, such as leukemia patients, and for the purposes of this discussion we will assume 
that a new diagnosis of leukemia or other form of bone marrow disease will be beyond the scope of the 
mission’s medical system. Massive blood loss as a result of trauma may require transfusion therapy in 
order to restore the circulation of oxygen in the system. Sections 2.3.7 and 2.3.8 discuss blood products 
and alternatives currently in development, respectively, along with any issues that are apparent in 
application to Exploration missions. 

2.3.1 Terrestrially Available Fluids 

Table III compares the storage requirements of IV fluids that are typically required for a broad 
spectrum of medical treatments. The data do not show any difference in shelf life of the different fluids 
for a given vendor, but there is a 40 percent shelf life difference between the two vendors, mainly for 
reasons discussed later in Section 2.3.9. However, even this longer shelf life is insufficient for missions to 
Mars when loading and launch time are considered. Hence, NASA must either develop the capability to 
generate these fluids in flight or undertake a program to develop ways to extend the shelf life. Given 
constraints of spaceflight, the mass required for prepackaged IV fluids may be excessive. 
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TABLE III.—COMPARATIVE STORAGE REQUIREMENTS FOR COMMON MEDICAL FLUIDS 

Treatment Shelf  
life 

Storage 
temperature.,

°C 

Various 
uses/indications,  
μg specific 

Other  
considerations 

IV fluid 
 Baxtera B. Braunb   
0.9% sodium chloride 18 mo. 30 mo. 25 
LR 18 mo. 30 mo. 25 
5% dextrose 18 mo. 30 mo. 25 
SWFI 12 mo. 30 mo. 25 

Dehydration, burns, 
blood loss, wound 

irrigation, drug 
administration 

PVC (Baxtera IV bags) degrades when exposed 
to gamma radiation; chemical alteration of PVC 
may produce harmful byproducts. PVC also 
reactions with some drugs 

Transfusion therapy 
Whole blood 35 days 4 Use of whole, packed, or frozen red blood cells 

(RBCs) requires the storage of O-type blood 
Packed RBCs 42 days 4  
Frozen RBCs 10 yr –80 Frozen RBCs must be deglycerolized and 

resuspended using various fluids 
Hemopure (Biopure): 3 yr 2 to 30 Blood substitutes 

Oxygent (Alliance 
Pharmaceuticals) >1 yr 

5 to 10 

Still in FDA trials; used as a “bridge” until 
blood available/regenerated. Due to shorter 
intravascular half-life than RBCs 

Plasma, fresh frozen 1 yr –20  
Plasma, lyophilized N/A 25 

 
 
 
 

Blood loss and 
complications 

Requires reconstitution in SWFIs; reduced 
clotting rate 

Cryoprecipitate 1 yr –20 N/A Mainly used in hemophilia patients 
Platelets 5 days 20 to 24 N/A Mainly used in cancer patients 
aBaxter IV bags are made of Viaflex plasticized polyvinyl chloride (PVC). 
bB. Braun bags are made of Excel ethylene and polypropylene (latex-, PVC-, and NEHP-free). 

2.3.2 WFI 

The USP denotes categories of water suitable for parenteral use. WFI is water purified by distillation or 
other suitable methods that remove chemicals and microorganisms (currently, only distillation and reverse 
osmosis are approved methods for generating WFI). USP standards for WFI limit endotoxin concentration, 
which are released when gram-negative bacteria die, to 0.25 USP units/mL. The standards allow WFI to be 
used for producing parenteral solutions if they are used immediately following production and meet USP 
solution standards. This includes all parenteral solution discussed in Section 2.0. 

Bacteriostatic water for injection (BWI) is produced from WFI with the addition of an antimicrobial 
agent, typically benzyl alcohol. BWI must contain no more than 0.5 USP endotoxin units (EUs)/mL and 
is appropriate for parenteral applications provided the antimicrobial agent is compatible with any drugs or 
other solutes that are added. However, typical crystalloid solutions of NS, dextrose, and LR must contain 
no antibacterial agents, according to USP standards, and thus cannot utilize BWI. 

USP standards for SWFI allow no antimicrobial agents, less than 0.25 USP EUs per mL, and no other 
added substances. SWI meets all standards of WFI, but must also meet additional standards for sterility, 
pH, particulates, and trace contaminants. Following USP standards, when generating fluids from 
packaged water, SWI is the only fluid that can be used to generate all of the intravenous fluids discussed 
in Sections 2.3.3 through 2.3.8. Additionally, SWI may be used for all other medical applications where 
lesser grades of water, such as water for injection, or potable water are suitable. In most cases, potable 
water is suitable only for enteral treatments.  

2.3.3 NS Injection 

NS is an electrolyte used to replenish intravascular fluid volume and provide hydration and  
medication delivery. It is a relatively simple composition that has an osmotic pressure close to blood. 
Matching osmotic pressure is critical because osmotic pressure differential is what drives fluid exchange 
through cell walls. NS is a 0.9% (w/v) (or in mEq/L: 154 Na+, 154 Cl–) aqueous solution of sodium 
chloride, which has an osmolality of 308 mOs/L. The osmolality of NS is slightly higher than blood 
plasma, which averages 290 mOsm/L (refs. 9 and 10). NS at 0.9% is also acidic with a pH of 5.6, 
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compared to normal blood pH of 7.4. Various medications, blood sugar level, and oscillations in plasma 
osmolality, which can increase due to dehydration, could require alternate solutions for patient treatment 
including: ½ NS (0.45%NaCl/5% D-glucose); ¼ NS (0.22%NaCl/5% D-glucose); and dextrose 
(0.18%NaCl/4% D-glucose, 250mOsm/L); and LR as discussed in Section 2.3.4.  

2.3.4 LR Injection 

LR injection is an electrolyte with an osmolality of 273 mOsm/L. This fluid is categorized as an 
alkalizing fluid and is often used to treat or prevent mild acidosis, which is often associated with acute 
fluid loss such as in the event of a trauma. The solution contains 0.6% NaCl, 0.31% sodium lactate, 
0.03% KCl, and 0.02% CaCl2 (or in mEq/L: 130 of Na+, 109 of Cl–, 28 of lactate, 4 of K+, and 3 of Ca2+). 
The electrolyte concentration of LR closely resembles that of the extracellular fluid, so it may be used to 
replace fluid loss from burns or as fluid lost as bile and diarrhea (ref. 9). LR is not an appropriate fluid to 
administer in the same IV line with blood, as it may cause coagulation, though some recent studies 
concluded that there was no difference in coagulability between NS and LR (refs. 11 and 12).  

In spite of the theoretical advantages of LR, evidence in the medical literature does not support the 
view that it is a superior fluid. According to a National Academies Press metareview, LR and NS are 
equally effective at maintaining intravascular volume after hemorrhage (ref. 13). Additionally, there was 
no difference between the two fluids in mortality rate or pulmonary function. While those findings are 
neutral with respect to fluid choice, the National Academies did note that LR increases neutrophil 
activity, meaning that this fluid can exacerbate systemic immune response following injury. Such a 
response can produce acute respiratory distress syndrome (ARDS) and multiple organ dysfunction 
syndrome (MODS). Finally, some studies recommended that D-lactate be removed from LR and lower 
levels of L-lactate be used to reduce potential toxicity of LR (ref. 13). 

2.3.5 Dextrose Injection 

When glucose is part of parenteral injections, it is usually referred to as “dextrose,” a designation by 
the USP for glucose of required purity. Dextrose is available in concentrations of 2.5, 5, 10, and 20 
percent, of which 5 percent dextrose is the only isotonic solution. Dextrose fluids are used in patients with 
dehydration or electrolyte disturbances (i.e., high potassium or sodium levels), and can also be used as 
vehicles for drug delivery and nutrition. Dextrose can be mixed with electrolytes in various 
concentrations when both nutrition and electrolytes need to be replenished, or in certain cases of 
hypovolemia. Dextrose fluids should not be administered in the same IV line with blood, as it may cause 
hemolysis and/or agglomeration, as stated on commercial storage containers. 

2.3.6 Colloids 

When used to treat hypovolemia, crystalloid solutions, such as NS or LR, perfuse into the interstitial 
and intracellular tissues because of the minute size of the ions in these solutions. After such diffusion, 
osmotic pressure will draw fluid out of the vasculature and into the interstitial space, and the hypovolemia 
will only be partially corrected. Typically only 20 to 30 percent of the injected fluid volume will remain 
in the vascular system after 1 hr. This ratio does increase with large volume injections (ref. 14). In this 
case, or when blood is not available, some physicians prefer using colloid solutions of large molecules 
that are unable to pass into the cellular and interstitial regions. These large molecules are able to remain in 
the intravascular space until they are cleared by the liver, which often takes a matter of days during which 
the patient is able to replenish their blood supply. Concentrated colloid solutions can even draw fluid 
from the interstitial space, with a vascular volume increase of greater than 100 percent of the injected 
volume, although typical concentrations provide a 100 percent vascular volume increase. Common 
colloid solutions include albumin and synthetics such as Dextran and hetastarchs Hespan and Hextend. 
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Although albumin has been used for over 50 years, and synthetic colloids seemed to have promise, 
clinical trials have not conclusively proven the benefits of colloids over crystalloids. They may reduce the 
fluid volume requirements on Exploration missions, but there could be additional concerns with the effect 
of radiation on these solutions. While these fluids have theoretical advantages for maintaining vascular 
volume, metastudies of these fluids found that mortality is not reduced when these fluids are used  
(ref. 15). A large Australian study found that the mortality rate for albumin and NS was the same in an 
emergency room setting (ref. 16). Another study found that there were no differences between colloidal 
and crystalloidal fluids, with the exception of albumin, which was found to increase mortality (ref. 17). 

2.3.7 Blood and Blood-Derived Products 

Whole blood and its apheresis components have a wide range of shelf lives and various storage 
temperature requirements (table III). If part of the emergency medical supplies provided for space 
Exploration missions, whole blood, and packed or frozen red blood cells (RBCs) should be type O-
negative in order to be compatible with every crewmember’s blood type. Dried blood plasma was used in 
the military during World War II (ref. 8), while current research is focusing on the development of 
lyophilized plasma and blood substitutes for both military and commercial use (refs. 18 and 19). One 
disadvantage of lyophilized plasma is a reduction in clotting rate when compared to fresh plasma, because 
of a significantly lower fibrinogen concentration (ref. 20).  

As is evident from the information presented in table III, blood and its apheresis products are not 
sufficiently stable for Exploration class missions without refrigeration and/or freezing. Therefore, if 
appropriate risk reduction for the chosen Exploration architecture requires these fluids, NASA must take 
steps to ensure that they are available in the proper quantities with appropriate efficacy.  

2.3.8 Blood Substitutes 

Three types of blood substitutes are currently in advanced clinical trials. Hemopure (hemoglobin-
based oxygen carrier (HBOC)–201) by Biopure Corporation (Cambridge, MA), and PolyHeme by 
Northfield Laboratories Inc. (Evanston, IL), contain chemically modified bovine and human hemoglobin, 
respectively. Both products are universally compatible. Hemopure  is stable for 3 years when stored at 2 to 
30 °C, and PolyHeme can be stored at room temperature and has a shelf life of 1 year. However, because 
these products have a short 24-hr intravascular half-life, the product is best used as an intermediary until 
blood becomes available or the patient regenerates their own RBCs (refs. 21 and 22). PolyHeme can be 
stored at room temperature and has a shelf life of 1 year. Oxygent by Alliance Pharmaceutical 
Corporation (San Diego, CA) is a perfluorodecyl bromide (perflubron)-based oxygen-carrying emulsion. 
Also universally compatible, this blood substitute is stable for >1 yr at 5 to 10 °C. At 4 days (ref. 23) its 
half-life is longer than that of Hemopure. While useful as interim measures, none of these therapies last as 
long as a blood transfusion, since transfused RBCs can persist in circulation for several weeks.  

2.3.9 Possible Storage Material Concerns 

Two of the major manufacturers of IV fluids include Baxter Healthcare Corporation (Deerfield, IL) 
and B. Braun Medical Incorporated (Irvine, CA). Baxter provides solutions contained in Viaflex 
polyvinyl chloride (PVC) bags that typically contain 30 to 40 percent of the plasticizer di-(2-ethylhexyl) 
phthalate (DEHP). Because DEHP is not chemically bound to PVC, leaching may occur when the 
material is heated or comes into contact with blood, drugs, or IV fluids (ref. 24), though toxicity in 
humans has not been well established. The PVC polymer has been shown to produce low acute toxicity 
(ref. 25) in addition to the fact that vinyl chloride has been recognized as a potential carcinogen (ref. 26). 
While these PVC effects are known, the effect of ionizing radiation on PVC is unknown. For example, 
when PVC is exposed to gamma radiation, (~25 kGy (gray) dose) the mechanical, physical, and chemical 
properties of PVC (refs. 27 and 28) may be changed and harmful byproducts produced. In order to avoid 
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possible problems with the use of PVC-containing medical devices such as IV bags, using bags made 
from a different material may be prudent. Possible substitutes include the IV bags manufactured by  
B. Braun, Inc. Those bags are composed of a proprietary three-layered polymer laminate composed of 
biologically inert ethylene and polypropylene. As well as having no known interaction with drugs, this 
material is 28 to 48 percent lighter than PVC (ref. 29) and contains no plasticizers. B. Braun advertises a 
30-month shelf life for their IV fluids, in contrast to Baxter’s IV fluids, which are quoted to have a 12- to 
18-month shelf life (ref. 30). Possible PVC health issues aside, the prolonged shelf life and reduced mass 
of the B. Braun IV bags make them the best commercial option for Exploration missions.  

2.4 IV Fluids Summary 

Because so many IV fluids of various compositions and concentrations exist, and because NASA has 
not yet formulated medical care requirements for Exploration missions, we do not focus on providing fluid 
for any possible parenteral medication. Instead, a few of the most commonly used fluids for the 
administration of the drugs selected for Exploration missions, as well as the medical conditions requiring IV 
fluids most likely to occur during Exploration missions were analyzed. Using the SMCCB drug list, the 
choice of fluid is generally chosen based on the drug(s) administered (table IV). If necessary, lower 
concentrations of sodium chloride injections may be formulated by diluting NS. Refrigeration may prolong 
the viability of these premixed solutions; however, this resource may be unavailable during Exploration 
missions. The standard IV fluids that will be considered are NS, dextrose, LR, and variations of these. 
Colloids will be considered, but their storage and efficacy concerns will not be examined. Current mission 
and hardware concepts will not have the refrigeration capability to safely carry blood or blood-derived 
products, and blood substitutes are not sufficiently developed at this time to consider. 

 
TABLE IV.—COMPATIBLE IV FLUIDS FOR SMCCB-APPROVED DRUGS 

Medications that require IV fluid  
(unit concentration) 

Class Compatible fluids 

Primaxin  
(500 mg) 

Antibiotic As supplied in single use infusion bottles: 
0.9% sodium chloride injection 
5 or 10% dextrose injection 
5% dextrose and 0.9% sodium chloride injection 
5% dextrose with 0.225 or 0.45% saline solution 
5% dextrose with 0.15% potassium chloride solution 
5 and 10% mannitol 

As supplied in single dose ADD-Vantage vials: 
0.9% sodium chloride injection 
5% dextrose injection 

Rocephina  

(1 g) 
Antibiotic 5% dextrose injection 

0.45 or 0.9% sodium chloride injection 
10% invert sugar 
5% sodium bicarbonate 

  5 or 10% mannitol 
Dilantin IV  
(50 mg/mL; 2mL 

Antiseizure 0.9% sodium chloride injection 
  LR injection 

Amikacina  

(250 mg/mL; 2mL) 
Antibiotic 5% dextrose injection 

5% dextrose and 0.2, 0.45, or 0.9% sodium chloride injection 
  LR injection 

Acyclovir  
(50 mg/mL IV fluid, 20 mL) 

Antiviral Do not use biologic or colloidal fluids such as blood products or protein    
solutions. 

Azithromycin  
(500 mg for IV use; dry powder for 
reconstitution in 4.8 mL sterile 
water) 

Antibiotic 0.9 or 0.45% sodium chloride injection 
5% dextrose 
LR injection 
5% dextrose in 0.45% sodium chloride with 20 mEq potassium chloride 
5% dextrose in LR  

 5% dextrose in 0.3 or 0.45% sodium chloride 
Procainamide Antiarrhythmic  5% dextrose 
Pyridoxine  
(100 mg/ml, 1 ml vials) 

Antidote Compatible fluid information could not be identified. 

aCan also be administered IM. 
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Because the effects of radiation on PVC IV bag material during Exploration missions are unknown, it 
would be prudent to consider using alternate materials such as those discussed in Section 2.3.9. Whatever 
material is chosen, the compatibility of that material with the SMCCB-approved drugs listed in table IV 
should also be considered.  

3.0 Medical Conditions Requiring Fluid Treatment 
The ISS PCDB was mined to determine which potential conditions may require fluid treatment, as 

semirepresentative of treatable conditions on Exploration missions. The list is not exhaustive, and there 
are other potential patient conditions as well. Of the 442 listed patient conditions that may be encountered 
while onboard the ISS, approximately 115 may require IV fluid treatment. These conditions may also 
occur on other Exploration missions, possibly with a different probability of occurrence. These possible 
conditions have been grouped into major areas where the reason for fluid treatment is approximately the 
same. The required treatment is developed only at the top level, following standard medical practices. 
Individual patient situations and physician preference may change the preferred fluid treatment.  

From the point of view of providing WFI for Exploration missions, the most demanding scenario is 
treating a 100-kg male. While NASA does not have official astronaut weight standards, the maximum 
height allowed is 76 in., and the maximum Air Force pilot weight at 76-in. height is 102 kg. The main 
goal in this study is to determine the overall volume of fluids required, and which solutions are generally 
preferred. These results will be used to define and size an IV fluid generation system. Actual fluid 
requirements for an operational system will be determined by the Space Medicine Division. A summary 
of the results can be found in Section 3.6.  

3.1 Severe Burn 

Serious burns result in increased capillary permeability, causing fluid to shift from the vascular 
system into the surrounding interstitial space. This shift occurs in thermal burns of second and third 
degree, as well as severe chemical, electrical, and radiation burns. For thermal burns, fluid treatment is 
based on the size of the burned surface area. Burn surface area calculations include areas with second- 
and third-degree burns, but not first-degree burns. Burns covering more than 15 percent total body surface 
area (TBSA) require fluid treatment to replace the lost intravascular volume. In these cases, prompt fluid 
treatment is critical to survival. There are many guidelines for fluid treatment, but the most widely 
recognized is the Parkland formula (ref. 31). Most guidelines recommend fluid treatment for 24 hr, and 
then lesser treatment for the next 24 to 48 hr, with fluid intake levels approaching normal maintenance 
requirements. 

3.1.1 Standard Fluid Treatment Regimen 

The Parkland formula recommends 4 mL/(kg %TBSA) of LR in the first 24 hr, with half of that 
amount given in the first 8 hr. These times are relative to the moment of injury, and a delay in treatment 
requires a corresponding increase in fluid delivery rate. Other formulas recommend similar volumes, but 
sometimes utilize NS and/or small volumes of colloids. The fluid treatment is required to make up the 
intravascular fluid loss, and cannot be taken orally. Large volumes of fluid can be required with time-
critical delivery, and oral administration is insufficient for extensive burns. LR is generally preferred over 
saline because of the large volumes required and the fact that LR more closely approximates extracellular 
fluid, especially pH. Dextrose is not given in the initial 24 hr except for in children.  

Fluid resuscitation is normally complete after 24 to 30 hr, but many terrestrial guidelines continue IV 
delivery for up to an additional 48 hr. Larger burns typically require more time for capillary permeability to 
return to normal. Subsequent treatment can include colloids to replace lost protein, as well as dextrose and 
other crystalloids for maintenance requirements. The total volume recommended in the second 24 hr ranges 
from half to nearly the same as the first 24 hr. Colloids of 5 percent albumin are sometimes recommended at 
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0.3 to 0.5 mL/(kg %BSA) in 24 hr for the second 24 hr, possibly continuing for the third 24 hr. One 
treatment guideline for the second 24 hr calls for LR at 2 mL/(kg %TBSA), colloids at 2 mL/(kg %TBSA), 
and 2 L of 5 percent dextrose in water (D5W). Another common terrestrial approach would be 2 L of 5 
percent albumin, synthetic colloid, or plasma in the second 24 hr plus any maintenance requirements (~4 L) 
(ref. 31). Synthetic colloids such as pentastarch and hetastarch are new options that are being investigated. 
Colloids are not universally utilized for burn treatment, especially in the first 24 hr. Colloid use is more 
common for burns of greater than 40 percent TBSA because that therapy better maintains blood volume 
(ref. 32). For Exploration missions, fluids after the first 48 hr may be taken orally if the patient is physically 
able, but pain medication and ongoing activities may make it more conducive to continue IV delivery. 

For this paper, the recommendations contained in The United States Naval Flight Surgeon Handbook, 
2nd edition (1998) will be utilized (ref. 33). These guidelines were based on recommendations from Brooke 
Army Medical Center. The handbook recommends 2 to 4 mL/(kg %TBSA) of LR in the first 24 hr, with 
half of that amount given in the first 8 hr. Recommendations for the second 24 hr are 0.5 mL/(kg %BSA) of 
5 percent albumin in LR (200 cc 25 percent albumin in 800 cc of LR) and D5W at 2 to 4 mL/(kg %TBSA), 
which is the same fluid hourly infusion rate as the first 24 hr. Albumin is not recommended for inclusion in 
Exploration missions because of uncertain efficacy, storage life concerns, and radiation concerns (see 
Section 2.3.8). 

A 100-kg male with second- or third-degree burns over 40 percent of his TBSA is considered a worst-
case burn scenario. In this situation, there are three risk factors for death. Burn area greater than  
40 percent is one of these risk factors, with the other two risk factors being an age of 60 or older and 
inhalation injury (ref. 34). The mortality rate is 0.3 percent with no risk factors present, 3 percent with one 
factor, 33 percent with two factors, and 87 percent with three factors. Inhalation injuries are more 
common with burn victims in closed environments, which will generally be the case during Exploration 
missions. In applying those numbers to Exploration missions, while the astronauts probably will be 
younger than 60, any fire scenarios in a closed exploration vehicle are likely to cause inhalation injuries, 
virtually guaranteeing the presence of two risk factors. Hence, the mortality rate may be 33 percent for a 
burn injury greater than 40 percent TBSA. The level of care provided during Exploration missions will 
also not be as high as given in the study, which would increase the mortality rate. In addition, there are 
also severe constraints on the extra supplies to treat severe burns. Because of these considerations, this 
document assumes that a 40 percent TBSA burn is an upper bound on what NASA would attempt to treat, 
thus driving requirements for the production capacity of an IV fluid generation system. 

When following recommended medical practices, a 100-kg male with a 40 percent burn surface area 
would require 16 L of LR in the first 24 hr according to the Parkland and Naval formula (8 to 16 L 
Naval), with 8 L given in the first 8 hr. The second 24 hr would require 8 to 16 L of D5W and 2 L of  
5 percent albumin according to Naval guidelines. As mentioned above, this study does not recommend 
including albumin for Exploration class missions. The D5W rate is adjusted by monitoring urine output, 
but these tests may not be available on Exploration missions. Fluid treatment beyond 48 hr would only be 
required if the patient is physically unable to eat and drink. The maximum total fluid requirements would 
be 16 L of LR and 16 L of D5W, for a total of 32 L. Additional fluid requirements if the patient is 
physically unable to eat or drink after the second 24 hr are covered in Section 3.6. Note that the metabolic 
rate of burn patients can increase by a factor of 2 to 3 (ref. 35). 

3.1.2 Alternative Treatments 

Crystalloid fluid treatment is considered essential for the first 24 hr of burn treatment. The Parkland 
formula recommends fluid levels that are on the high end of the many guidelines, although actual hospital 
use can be significantly greater. The low end of Naval guidelines is 8 L in the first 24 hr for the described 
scenario. Colloid use is not always recommended, and albumin use and storage raises concerns. Some 
guidelines recommend greatly reduced or no fluid treatment beyond 24 hr. Fluid treatment for the first  
24 hr only would require 8 to 16 L, and would probably incur minimal increased risk assuming the patient 
is able to eat and drink. A reasonably safe alternative treatment requires 12 L of LR and 12 L of D5W 
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over 48 hr. The minimum treatment would be 8 L of LR over 24 hr. NS could also be utilized instead of 
LR. NS is utilized in some hospitals, and reducing the fluid types provided on Exploration missions 
would have logistical benefits. 

3.2 Hemorrhagic Shock 

Hemorrhagic shock due to blood loss requires fluid treatment to maintain the intravascular volume. 
The blood loss can occur from a major laceration, blunt trauma, penetrating trauma, or other causes. 
Crystalloids are the appropriate treatment for moderate volume loss, but blood transfusions should 
normally be considered after 2 L of crystalloids. The general terrestrial rule of thumb is 1 unit of blood for 
every 3 units of crystalloid. Hemoglobin-based oxygen carriers (HBOCs) are a potential alternative for 
whole blood in cases of severe blood loss, assuming a sufficient supply while the body regenerates the red 
blood cells. Blood loss of 40 percent or greater (Class IV shock) requires prompt resuscitative measures 
to avoid patient demise, and therefore should be considered nonsurvivable in our operational 
environment. 

Typical hemoglobin concentration levels are 15 g/dL. Although levels below 7 g/dL are generally felt 
to require blood transfusion, a study of patients refusing blood transfusions on religious grounds found 
few deaths attributed to anemia if the concentration remained above 5 g/dL (ref. 36).  

3.2.1 Standard Fluid Treatment Regimen 

Hemorrhagic shock generally utilizes only 2 L of crystalloids before considering blood or HBOC 
transfusion, although for the 100-kg male 3 L of crystalloids would provide the same dilution. NS is the 
most commonly used solution in emergency rooms. If the hemoglobin level is allowed to decrease from 
15 to 7 g/dL without oxygen-carrier transfusion, 53 percent of the blood volume could be replaced with 
fluid. Males have a blood weight fraction of 7.5 percent, while females have a weight fraction of 6.5 
percent. Given a blood specific density of 1.06, a 100-kg male has 7.1 L of blood, compared to the typical 
70 kg male with 5 L of blood. These volumes do not account for any possible changes due to chronic 
hypogravity or hypoxic cabin environments. 

A 100-kg male could receive 4 L of fluid while maintaining a hemoglobin concentration above  
7 g/dL, and 5 L of fluid and maintain a hemoglobin concentration of 5 g/dL (ref. 36). Because crystalloids 
tend to leave the vascular system and diffuse to the interstitial volume, additional fluid is required to 
maintain proper intravascular volume while the patient recovers. Assuming a 30 percent intravascular 
volume loss is acceptable, a maximum 66 percent blood loss to maintain sufficient hemoglobin, and a  
20 percent intravascular crystalloid retention, a maximum 12 L of NS would be required for the worst 
case. A patient would be physically unable to survive without an oxygen-carrier transfusion if the blood 
loss was more severe. Only 3 to 5 L would be delivered immediately, with the remaining amount delivery 
as the crystalloid leaves the intravascular volume and blood pressure drops. Infusing 12 L of crystalloid 
could introduce other serious problems, and should be considered an absolute worst case, to be used only 
if blood or HBOCs are not available. 

3.2.2 Alternative Treatments 

LR solution can also be used to treat hemorrhagic shock. While LR has a pH and osmolality closer to 
blood than NS, there are no definitive studies demonstrating superior clinical performance, and ERs 
generally use NS as a matter of cost and expediency. Colloid solutions can also be used to treat 
hypovolemia and have intravascular volume retention of 60 to 100 percent versus 20 to 30 percent for 
crystalloids. Based on the potential reduction in the size of spacecraft volume required for fluid 
generation capability, synthetic colloids such as hetastarch solutions may be considered. Conversely, 
those savings may well disappear when the additional resources required for an additional fluid type are 
considered. Because the medical literature reports little or no improvement of clinical outcome with 
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colloid use (refs. 14 and 37), at this time colloids are not recommended to treat hemorrhagic shock on 
Exploration missions. 

3.3 Drug Delivery 

Certain medications specify delivery by IV fluid. This restriction is often due to the need for a 
prolonged delivery timeline, and may be avoided in some emergency situations by a time course of 
injections. The ability to provide drugs by IV does have procedural advantages, eliminating the 
requirement for multiple injection sites, and providing versatility in controlling the drug introduction rate. 
Currently four drugs that are on the ISS require some volume of IV fluid for delivery, and four more are 
under consideration. Longer duration missions with no chance of timely transport will presumably carry 
more such drugs. There are many conditions in the PCDB that may require IV drug delivery, from severe 
conditions such as cardiac arrest to less life-threatening conditions such as various forms of infections. To 
provide a quick method for administering medicines if needed, starting an IV line upon arrival is standard 
procedure for serious conditions in most terrestrial emergency rooms. NS is often preferred as it avoids 
any potential problems with excess glucose, and LR cannot be injected at the same site with blood 
because of interactions with stabilizing chemicals (refs. 11 and 12). 

3.3.1 Standard Fluid Treatment Regimen 

Many of the drugs requiring IV delivery would be administered in one dose, or given over a relatively 
short duration. They would require only 1 to 2 L of fluid for injection. Conditions requiring long-term IV 
drug delivery, such as pain medication, typically require 1 to 2 L per day, with NS as the generally 
preferred diluent (ref. 14). 

3.3.2 Last Resort Treatments 

Fluid requirements could be reduced by utilizing higher drug concentrations at lower injection rates. 
For cases of immediate drug delivery, it may be possible to utilize only 1 L of solution, assuming 1 L 
increments. This reduces flexibility in changing drug dosages if multiple drugs are required. Terrestrial 
infection control practices include changeout of the entire fluid administration set every 48 hr, which 
implies the long-term fluid delivery rate could be as low as 0.5 L per day given appropriate drug 
concentration. Other fluids such as LR and D5W can also be utilized in most situations, although the use 
of D5W is more limited. 

3.4 Bone Fracture 

Fractures of major bones of the body such as the femur, radius, or hip may require fluid treatment. 
Fluid therapy may also be required for open or multifragmentary fractures of other bones. Major blood 
vessels could be severed, resulting in blood loss and hemorrhagic shock. In closed fractures, the blood 
loss is generally internal to the body. Treating severe fractures may require open reduction and 
realignment; these procedures may be simple enough for consideration on Exploration missions. This 
minor surgery would entail additional blood loss. A fracture of the femur is more severe, with major 
arteries subject to severing. A femur fracture can cause internal blood loss as high as 2 to 3 L, with 
compartment syndrome a major concern (refs. 14 and 38). Compartment syndrome occurs when bleeding 
within a muscle compartment causes swelling and dramatically increases the pressure within the 
compartment, producing capillary collapse, which may eventually lead to tissue necrosis. If not treated 
promptly, compartment syndrome can cause loss of limb or life. Treating of severe cases may require 
major surgery to avoid loss of life (refs. 14 and 39). 
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3.4.1 Standard Fluid Treatment Regimen 

Fractures of the long bones in the arms and lower legs may cause internal blood loss and 
sequestration, but generally do not require fluid treatment. A worst-case scenario for these fractures that 
also includes open reduction may require up to 2 L of NS. Fractures of the femur can be far more severe. 
If a fasciotomy is not attempted to reduce intracompartmental pressure and avoid tissue necrosis, the 
treatment fluid volume required is bounded by the need to prevent excessive hemodilution while 
preserving adequate blood pressure. This internal blood loss limit is lower than that of the external blood 
loss case discussed in Section 3.2, hemorrhagic shock. An estimate of the maximum amount of fluid 
required to treat a femur fracture without a fasciotomy is 8 L of NS (ref. 13). 

3.4.2 Last Resort Treatments 

LR could be utilized instead of NS. In certain conditions, D5W could also be used, but is generally 
not due to the added potential of a glucose imbalance. 

3.5 Fluid Maintenance 

Humans require water to replace that which is lost during the day through bodily waste, through the 
skin as a heat regulation mechanism, and through the lungs because of evaporative losses during 
breathing. Normally water replacement is ⅔ from drink and ⅓ from food. A patient physically unable to 
eat or drink must have water, electrolytes, and caloric requirements replaced intravenously. The most 
common method to calculate requirements is the Holliday-Segar Method. This method is widely 
accepted, but was developed from pediatric studies in patients up to 70 kg in weight, and has not been 
verified for hypobaric environments. Hypogravity is known to at least temporally affect body fluid levels, 
and a low-pressure cabin might affect the fluid loss through respiration. For humans >20 kg, the daily 
requirements are 1500 kcal + 20 kcal/kg over 20 kg, 1 cc water/kcal, 3 mEq Na/100 cc water, 2 mEq 
K/100 cc water, and 2 mEq Cl/100 cc water (ref. 40). 

A close match to the electrolyte requirements is D5 ¼ NS with an additional 20 mEq KCl/L added. A 
solution of D5 ½ NS with 20 mEq KCl/L is generally used instead to promote renal function and 
excretion. This solution only provides 1/6 of the caloric requirements, and is generally not utilized for 
more than 10 days. Dextrose is not used at the concentration required to provide total nutrition because 
the resulting osmotic pressure is several times higher than blood. For long-duration use, total parenteral 
nutrition (TPN) is required. TPN utilizes solutions with dextrose, amino acids, and electrolytes. The total 
fluid volumes are the same as before, but the solution is still hyperosmotic, and requires additional care 
and monitoring. The injection site is rotated because of the vein damage that occurs because of wound 
inflammation, as well as the acidity and osmolality of the solution being infused. 

A common terrestrial approach to providing nutrition to patients unable to swallow is tube feeding. 
Enteral feeding is done by tubes inserted into the stomach (gastric or G-tubes), into the small intestine 
(jejunostomy or J-tubes) through the nose and into the stomach (nasogastric or NG-tubes) and through the 
nose and into the small intestine (nasojejunum or NJ-tubes). Special formulations are utilized that have a 
consistency and viscosity that permits transport through the tubes. The tube is flushed before and after 
with water to ensure it remains unobstructed. The water provided does not have to meet WFI 
requirements. This procedure may be considered for long-term nutrition in lunar or Martian gravity, but it 
has not been proven in microgravity. Tube feeding in terrestrial settings requires that the patient is 
upright, no less than 30°, during the feeding and for 30 to 60 min after feeding. This is to minimize the 
risk of regurgitation and aspiration. This also implies that gravity is necessary to prevent the food from 
traveling up the esophagus. When tube feeding, the lower esophageal sphincter is unable to completely 
seal against the feeding tube, and the liquid would migrate up the esophagus from capillary forces without 
gravity to keep it down. NG-tubes are used in a horizontal position in terrestrial emergency settings, such 
as to avoid spinal movement. Aspiration is a concern and monitored carefully. Often suction is used to 
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avoid and/or treat aspiration, but may not be available in Exploration missions. The more invasive G-tube, 
inserted directly into the stomach through the abdomen, would not have the regurgitation problem, but 
involves minor surgery and an increased risk of infection. G-tube surgery in microgravity is more 
complicated because of the unknown influence of microgravity on anatomical positions of intra-
abdominal organs, the unclear physiological processes due to microgravity or hypogravity, and other 
factors. 

3.5.1 Standard Fluid Treatment Regimen 

A 100-kg male would require 3.1 L of fluid per day according to the Holliday-Segar formula. The 
solution would typically be D5 ½ NS + 20 mEq KCl/L. This should continue for no longer than 10 days 
before alternative treatments would be required because of the lack of calories and other trace chemicals. 
Assuming the patient would be treated with fluids only for 14 days, 44 L of fluid would be required. The 
upper limit is 14 days because beyond that the condition is considered nonsurvivable without TPN or tube 
feeding. Tube feeding would not require medical water generation, and TPN is not considered as likely on 
an Exploration mission. 

3.5.2 Alternative Treatments 

D5 ¼ NS + 20 mEq KCl/L is a commonly utilized treatment that better meets sodium requirements. 
Because of normal spaceflight restrictions, NASA may elect to specify only one maintenance fluid to be 
provided onboard. In order to minimize solution types, treatment utilizing 2 to 4 L of D5W to every 1 L 
of NS supplemented with KCl would provide the appropriate sodium ion, potassium, and chloride ion 
intake, but with reduced caloric intake. The daily intake of D5W could be increased to raise the caloric 
intake, resulting in increased urine output. 

Short-term treatment could potentially use just D5W and NS without potassium supplements. 
Potassium is primarily an intracellular ion, with 98 percent of the potassium found inside cells. Despite 
this, the blood potassium level generally reflects total body potassium. A blood potassium level of 3.5 to 
5.0 mEq/L is considered normal, with levels below 2.8 mEq/L causing concern (ref. 41). A healthy person 
in a terrestrial environment can survive 10 days before the potassium level became dangerously low, if a 
short-term potassium drop of 20 percent is considered acceptable in an emergency. This is derived from 
blood potassium levels dropping from 3.5 to 2.8 mEq/L, a normal total body potassium level of 120 g, 
and a daily requirement of 2.5 g (refs. 40 and 41). 

3.6 Medical Treatment Summary 

Five different generic patient conditions were described and fluid requirements developed. Terrestrial 
care facilities employ a wide variety of treatment options, using several different types of crystalloid and 
colloidal solutions. Little evidence in the medical literature supports one treatment option over the other. 
Because of the multiple treatment options, and the lack of clear guidance from evidence-based medicine, 
it is recommended that no more than three types of fluids be provided, and consideration should be given 
to only providing the option of two fluids during a mission. The three recommended fluids are LR 
solution, NS, and a dextrose-based solution D5 ¼ NS + 20 mEq KCl/L that will be referred to as D5KS. 
If only two fluids are provided, D5KS and NS are recommended.  

D5KS is a standard maintenance fluid that provides the recommended amounts of sodium and 
potassium according the Holliday-Segar Method. It also provides the maximum amount of dextrose while 
still maintaining a near-normal osmotic pressure. D5KS would provide one solution that would be utilized 
for both maintenance requirements and burn treatment. Electrolytes are sometimes avoided in burn 
treatment during the second 24 hr (where D5W treatment is common), but some treatment regimens 
include electrolytes (ref. 31). The saline level is low enough in D5KS that concerns of excessive sodium 
levels would be minimal. D5KS also contains the appropriate levels of potassium, which would reduce 
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concerns if long-term maintenance is required. The recommended fluid treatment for these generic patient 
conditions is given in table V. The medical community may develop their own set of recommendations, 
but it is expected they would be similar to these, especially with respect to the maximum volume 
required. 

 
TABLE V.—FLUID REQUIREMENTS FOR GENERIC  

PATIENT CONDITION TREATMENT 
Condition Fluid treatment Discussion 
40% TBSA burn 16 L LR; 16 L D5KS Section 3.1 
Hemorrhagic shock 12 L NS Section 3.2 
Drug delivery 2 L NS initially, 2 L NS/day Section 3.3 
Fracture 8 L NS Section 3.4 
Maintenance fluids 3.1 L D5KS/day Section 3.5 

 
LR and NS are nearly interchangeable solutions, with usage often based on historical or clinician 

preference. LR is considered to be closer to physiological normal, but there is little evidence of benefits over 
NS in most clinical or emergency settings. LR is generally preferred during surgeries, with some evidence 
of its benefits over NS (ref. 42). However, major surgeries are not being planned for in Exploration 
missions. LR is the preferred solution for burn treatment, but there have been no major studies comparing 
LR to NS in burn patients. NS is quite common in emergency room settings, and even large dosages do not 
cause problems, especially in initially healthy adults (ref. 14). Carrying one type of electrolyte solution 
would reduce logistics, as well as potentially providing better emergency response. Because the two fluids 
are nearly interchangeable, recommendations for fluid generating capacity will be given for three cases: LR 
and NS not interchangeable, LR and NS completely interchangeable, and NS only. 

4.0 Exploration Mission Fluid Requirements 
NASA is currently considering and planning a wide variety of missions that vary in duration from 

several days to many months in the case of a Martian voyage. The missions also differ from one another 
by the ease with which a patient can be returned to Earth. These two factors, duration and ease of return, 
dictate different fluid generation and mixing requirements for each mission, even for the same set of 
patient conditions. There will also be considerable differences in the mass allotted for medical supplies to 
treat patient conditions. In this section we outline treatment timelines and fluid needs for four different 
missions, one to ISS, a Lunar visit, a Lunar habitat, and a trip to Mars. 

4.1 ISS 

The ISS currently has a crew of three, with a planned increase to six crewmembers in the future. There 
will be some major physical activities during the ISS construction stage, and occasionally during maintenance. 
During operations, the ISS will be continually manned, with crews serving for 6-month missions.  

4.1.1 Treatment Timeline 

The long-duration nature of the mission allows for some flexibility in the treatment timeline. The 
time, space, and potentially the supplies required are available to treat the patient in situ. Patients could be 
allowed to stabilize after major injury prior to transport to Earth. The transport time would be a matter of 
hours, but loading time may be extended because of issues of moving the patient. For a worst-case 
condition, the patient could be stabilized for up to 2 weeks prior to transport. 

4.1.2 Critical Fluid Patient Conditions 

The critical fluid patient conditions for an ISS mission are severe burns, hemorrhagic shock, major 
fractures, and IV maintenance. It is expected that most medical events would involve only one patient, but 
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a major fire could encompass multiple crewmembers. The potentially long stabilization time makes 
maintenance the largest potential fluid requirements event. 

Femur fractures and hemorrhagic shock would likely be encountered by only one patient, and would 
require a maximum of 12 L of NS, and possibly 3 days of maintenance requiring 9 L of D5KS. An 
infection or other minor illness or trauma requiring medication delivery or maintenance fluid may arise in 
one patient. It is envisioned that such treatment would not extend beyond 7 days for a patient requiring 
only drug delivery, or 3 days for a patient requiring maintenance. In these cases the fluid volume 
requirements would be 16 L of NS (2 L/day + 2 L initially) and 4 L NS + 9 L D5KS (initial treatment + 
maintenance), respectively. A major fire could involve more than one crewmember. For planning 
purposes, this document assumes one 100-kg crewmember with 40 percent TBSA full-thickness burns, 
and a second 100-kg crewmember with 20 percent TBSA full-thickness burns. There would be a 
combined requirement of 24 L of LR and 24 L of D5KS in the first 48 hr of treatment. 

The fluid maintenance requirement would be in addition to any treatment for the condition that 
caused the debilitation. The worst-case scenario for IV fluid requirements would be for maintenance 
treatment subsequent to a burn. The assumption will be that one crewmember will require maintenance 
for 12 days beyond the initial treatment, and the second 5 days beyond the initial treatment. This would 
require a total of 53 L of D5KS in addition to that required in the first 48 hr. The fluid requirements for 
the described events are given in table VI. 

 
TABLE VI.—FLUID REQUIREMENTS TO TREAT TWO CREWMEMBERS  

WITH MAJOR INJURIES/ILLNESSES ON THE ISS 
Burn Major long bone fracture Trauma with hemorrhagic 

shock 
Illness will drug 

delivery 
Trauma or illness with 

maintenance 
24 L LR 8 L NS 12 L NS 16 L NS 4 L NS 
77 L D5KS  9 L D5KS  9 L D5KS 

4.1.3 Overall Fluid Requirements 

The events described can be broken into two categories: major events that would most likely result in 
an evacuation and termination of the mission, and minor conditions that might be treated without 
evacuation. The capability should exist to handle any major event after the occurrence of a minor event if 
evacuation does not take place or supplies are not replenished. Prior to Orion availability, if the ISS crew 
complement expands to six, a partial evacuation could be conducted if the envisioned two Soyuz lifeboats 
are present. Partial evacuation could not take place if the only lifeboat was one Orion capsule. In all 
likelihood, any burn serious enough to require fluid treatment (>15 percent TBSA) would require 
evacuation, as well as any major fracture where bone mending in microgravity would be a concern. These 
two patient conditions would be considered major events. An infection or other minor illness requiring 
medication delivery or maintenance would be considered a minor event. A combination of these minor 
events or a chronic minor event could require more fluid than a mission-terminating major event. A 
severe hemorrhagic shock event may or may not require mission termination, but will be considered as 
both a major and minor event as it results in a larger fluid volume requirement. 

Table VII gives the fluid requirements to handle missions with varying combinations of medical 
situations. The volume requirements are based on handling multiple events prior to restocking the 
supplies, and include missions with any one event, any one minor event and any one major event, and any 
two minor events and any one major event. The volumes listed are dependent on whether LR or NS are 
considered interchangeable and if only NS is provided (see Section 3.6). Based on these volume 
requirements and the near-complete interchangeability of LR and NS, it is our recommendation that while 
LR and NS may be considered interchangeable during emergencies, and both fluids should be provided 
onboard. This reduces the volume requirements and allows some flexibility for unique situations. It is not 
anticipated that the production of LR will be substantially different than NS, but this recommendation is 
subject to change dependent on findings of the relative suitability for production. The total volume 
required for any one minor event and any one major event would be 126 L as 20 L LR, 20 L NS, and  
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86 L D5KS. The total volume required for any two minor events and any one major event would be 151 L 
as 28 L LR, 28 L NS, and 95 L D5KS. 

Given the nature of emergent events and the length of time that may be required to stabilize the situation 
and begin to operate water generation equipment, enough fluid should be on hand to treat any emergency 
situations for 8 hr prior to producing more solutions. Femur fractures and hemorrhagic shock would likely 
be encountered by only one patient, and would require a maximum of 12 L of NS in a short timeframe. 
Medication delivery and maintenance requirements would consume substantially less fluid in the first 8 hr. 
The major fire scenario would have a combined requirement for both patients of 12 L of LR in the first 8 hr. 
It is recommended that 2 L of D5KS be immediately available for other minor treatments that require a 
dextrose solution. Note that with the recommendation to treat LR and NS as interchangeable, the 8-hr 
contingency requirement of 12 L of crystalloid to treat either a severe burn or a hemorrhagic shock event is 
the same as a 2-hr contingency requirement of crystalloid to treat a hemorrhagic shock event. The water 
production system should have the ability to produce an additional 22 L of D5KS over 24 hr to satisfy the 
burn requirement, and a long-term production rate of 6.2 L/day over 14 days maximum to satisfy the 
maintenance requirement assuming 2 crewmembers require support. The system would have to be able to 
produce 12 L of LR or NS over 16 hr to satisfy the burn scenario. 

 
TABLE VII.—OPTIONS FOR FLUID TYPES AND AMOUNTS NEEDED ON THE ISS 

Event LR and NS not 
interchangeable 

LR and NS 
interchangeablea 

NS only 

24 L LR 12 L LR 24 L NS 
16 L NS 12 L NS 77 L D5KS 

77 L D5KS 77 L D5KS  

Any one event 

117 L total 101 L total 101 L total 
24 L LR 20 L LR 40 L NS 
28 L NS 20 L NS 86 L D5KS 

86 L D5KS 86 L D5KS  

Any one minor event 
and any one major event 

138 L total 126 L total 126 L total 
24 L LR 28 L LR 56 L NS 
44 L NS 28 L NS 95 L D5KS 

95 L D5KS 95 L D5KS  

Any two minor events 
and any one major event 

163 L total 151 L total 151 L total 
12 L LR 6 L LR 12 L NS 
12 L NS 6 L NS 2 L D5KS 

2 L D5KS 2 L D5KS  

8-hr contingency fluid 
storage 

26 L total 14 L total 14 L total 
aInterchangeable means that while both fluid types should be available, and one may be preferentially used, 
substitutions are envisioned. 

4.2 Lunar Sortie 

A lunar sortie mission will include four crewmembers for up to 7 days on the surface. EVAs will be 
accomplished in pairs, with potentially all four members on the surface at once. The crew will be 
conducting many EVAs during the mission, with an increased potential for physical injury when 
compared to the ISS. The low gravity and normal bone mass (for short-duration missions) will tend to 
mitigate physical injuries from personal events such as minor falls. The unique operating environment 
and mission parameters may make major events such as a low-speed motor vehicle accident or landslide 
more probable than operation on Earth because of the lack of knowledge and experience. Orion and the 
lunar lander will operate with a low-pressure, high-oxygen-level atmosphere, which increases the risk of 
fire. EVA suits will operate at similar conditions or lower pressures with even higher oxygen levels. 

4.2.1 Treatment Timeline 

The short duration of the mission limits the potential time for patient stabilization prior to Earth 
return. It also lessens the chance of multiple events during the mission. A maximum of 7 days can be 
spent on the surface, and transport back to Earth can occur from any site at any time in 5 days or less. 
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Medical events that happen during the initial transit to the Moon can utilize the free-return abort mode as 
in Apollo 13, limiting the maximum total treatment time to 6 days for an event in the early stages of the 
mission when a direct-return is not possible. The limited supplies in these missions will restrict the time 
allowed for stabilization prior to starting return. Requirements in this document assume that transport will 
begin 24 hr after any major incident. 

4.2.2 Critical Fluid Patient Conditions 

The critical fluid patient conditions are burns, hemorrhagic shock, and major fracture. Total 
maintenance fluid requirements are lower than for the ISS mission because of the fewer days of treatment  
(6 versus 14). Severe illness or infections that would require long-term drug delivery are not considered 
likely on these short-duration missions if astronauts are effectively prescreened for health conditions. 

A major fire could affect more than one crewmember, but such a large fire has a strong potential to 
damage the spacecraft enough to prevent return. The requirements in this document will assume a fire in 
the spacecraft or spacesuit involving one 100-kg crewmember with a 40 percent TBSA full-thickness 
burn. This scenario would require 16 L LR and 16 L D5KS for treatment in the first 48 hr. If return 
transport begins 24 hr after the fire, a treatment duration of 6 days is required, with an additional 12 L of 
D5KS over the last 4 days of treatment in this worst-case scenario. EVA contingency planning may 
handle accidents where an astronaut sustains fractures or lacerations. A suit breach may occur and require 
patching as well. However, medical treatment could not occur until the astronaut is back in the lander, 
increasing the blood loss when compared to a terrestrial setting. A hemorrhagic shock event could require 
up to 12 L of NS + 9 L D5KS over 3 days for treatment, while a fracture could require up to 8 L of NS. A 
minor event that may occur such as space motion sickness (SMS) could require initial drug treatment and 
maintenance over 2 days, requiring an initial 2 L NS and 6 L D5KS maintenance fluid. The fluid 
requirements for the described events are given in table VIII. 

 
TABLE VIII.—FLUID REQUIREMENTS TO TREAT TWO 

CREWMEMBERS ON THE LUNAR SORTIE 
Type of injury or illness Fluid needed 
Burn (1 patient) 16 L LR 

28 L D5KS 
Major long bone fracture 8 L NS 
Trauma with hemorrhagic shock 12 L NS 

9 L D5KS 
Trauma or illness with maintenance 2 L NS 

6 L D5KS 

4.2.3 Overall Fluid Requirements 

Medical events for lunar sorties can also be categorized as major events that terminate the mission 
immediately, and minor events that allow the mission to continue. For a lunar sortie, only a full-thickness 
burn with TBSA greater than 15 percent and a severe hemorrhagic shock event are considered major. 
Bone mending would not be a concern for the short-duration mission, although incapacitation of part of 
the crew may require mission termination. A fracture and an illness are considered minor events. Because 
of the relatively short nature of the mission, only scenarios involving up to two events are considered. 

Table IX gives the fluid requirements for a lunar sortie mission. It is recommended that only NS be 
provided as a crystalloid to reduce mass, volume, and inventory. If only one fluid is provided, a total of 
44 L of fluid would be required to treat any one event. Also, 52 L of fluid would be required to treat any 
one minor event and any one major event. The 8-hr contingency storage is 14 L. Note that with LR and 
NS considered interchangeable, the 8-hr contingency requirement is the same as a 2-hr contingency 
requirement for one medical event, driven by the hemorrhagic shock requirement. The water production 
system should have the ability to produce approximately 0.5 L/hr for 40 hr to satisfy the burn treatment 
requirement, and 3.1 L/day to satisfy maintenance requirements for one crewmember. 
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TABLE IX.—OPTIONS FOR FLUID TYPES AND AMOUNTS NEEDED TO TREAT CONDITIONS ON 
THE LUNAR SORTIE WITH VARYING LEVELS OF SEVERITY 

Fluid type Conditions 
LR and NS not 
interchangeable 

LR and NS 
interchangeablea 

NS only 

Any one event 16 L LR 8 L LR 16 L NS 
 12 L NS 8 L NS 28 L D5KS 
 28 L D5KS 28 L D5KS  
 56 L total 44 L total 44 L total 

16 L LR 12 L LR 24 L NS 
14 L NS 12 L NS 37 L D5KS 

37 L D5KS 37 L D5KS  

Any one minor event and any 
one major event 

67 L total 61 L total 61 L total 
8 L LR 6 L LR 12 L NS 

12 L NS 6 L NS 2 L D5KS 
2 L D5KS 2 L D5KS  

8-hr contingency fluid storage 

22 L total 14 L total 14 L total 
aInterchangeable means that while both fluid types should be available, and while one may be preferentially 
used, substitutions are envisioned. 

4.3 Lunar Habitat 

The lunar habitat missions currently envisioned will require a crew of four occupying an outpost for 
up to 6 months. A continuous human presence on the Moon will be accomplished by crew rotation. The 
supplies available for medical treatment may well be increased over the short-duration missions, but exact 
parameters have not been established. The vehicles developed for the lunar sortie will be used for crew 
rotation. This implies a maximum 5 days from return decision to touchdown. One of the purposes of this 
class of missions is validating technologies required for Martian exploration, including medical 
capabilities. These missions are the best opportunities for evaluating medical technologies and procedures 
for Mars missions when no return will be possible. 

4.3.1 Treatment Timeline 

This study assumes that the treatment timeline is similar to that outlined for the ISS. The facilities 
available will allow time for patient stabilization prior to transport if that is the best course of action. 
Because of the relatively long transportation time with limited facilities, in situ treatment may produce 
better outcomes than evacuation. Requirements in this document envision that a patient could be 
stabilized for up to 14 days prior to a 5-day evacuation. Not considered are potential mission scenarios 
with an extended-duration rover away from the habitat for several days. 

4.3.2 Critical Fluid Patient Conditions 

The envisioned scenarios are assumed to be similar to that described for the ISS, albeit with a 
potentially longer treatment timeline. The likelihood of a particular incident may be different. Femur 
fractures or hemorrhagic shock for a single patient could require a maximum of 12 L of NS, and 3 days of 
maintenance with 9 L of D5KS. An infection or other minor illness or trauma requiring medication 
delivery or maintenance fluid may arise in one patient. Requirements presented in this document presume 
that such treatment would not extend beyond 7 days for drug delivery, or 3 days for maintenance. The 
fluid volume requirements would be 16 L of NS (2 L/day + 2 L initially) and 4 L NS + 9 L D5KS (initial 
treatment + maintenance), respectively. A major fire could involve more than one crewmember; this 
document will assume one 100-kg crewmember with 40 percent TBSA full-thickness burns, and a second 
100-kg crewmember with 20 percent TBSA full-thickness burns. The combined requirement would be 24 
L of LR and 24 L of D5KS in the first 48 hr of treatment.  

The fluid maintenance requirement for any condition would be in addition to any treatment that 
caused the debilitation. The worst-case scenario requires maintenance fluids after a burn event. The 
assumption is that one crewmember will require maintenance for 12 days beyond the initial treatment plus 
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5 days treatment during transport, with the second crewmember requiring 5 days maintenance beyond the 
initial treatment. The total fluid requirement is then 68 L of D5KS in addition to that required in the first 
48 hr. The fluid requirements for the described events are given in table X. 

 
TABLE X.—FLUID REQUIREMENTS TO TREAT TWO 

CREWMEMBERS DURING A LUNAR HABITAT MISSION 
Condition Required fluid 
Burn (two patients) 24 L LR 

92 L D5KS 
Major long bone fracture 8 L NS 
Trauma with hemorrhagic shock 12 L NS 

9 L D5KS 
Illness with drug delivery 16 L NS 
Trauma or illness with maintenance 4 L NS 

9 L D5KS 

4.3.3 Overall Fluid Requirements 

The events described can be broken into major events that would most likely result in an evacuation and 
termination of the mission and minor conditions may potentially be treated without evacuation, as was done 
with the ISS events. The system should still have the capability to handle any major event after a minor 
event occurs, even if evacuation does not occur. Burns and long bone fractures will be considered major 
events; drug delivery and maintenance will be considered minor events. An episode of severe hemorrhagic 
shock will be considered as both a major and a minor event as it results in a larger fluid volume requirement. 

Table XI gives the fluid requirements to handle missions with varying combinations of medical 
situations. While LR and NS are interchangeable in many situations, this document contains requirements 
for both fluids due to the slight advantage LR has in fluid resuscitation for 40 percent full thickness burns.  

 
TABLE XI.—OPTIONS FOR FLUID TYPES AND AMOUNTS NEEDED TO TREAT CONDITIONS  

DURING A LUNAR HABITAT MISSION WITH VARYING LEVELS OF SEVERITY 
 LR and NS not 

interchangeable 
LR and NS interchangeablea NS only 

Any one event 24 L LR 
16 L NS 

92 L D5KS 
132 L total 

12 L LR 
12 L NS 

92 L D5KS 
116 L total 

24 L NS 
92 L D5KS 

 
116 L total 

Any one minor event and any 
one major event 

24 L LR 
28 L NS 

101 L D5KS 
153 L total 

20 L LR 
20 L NS 

101 L D5KS 
141 L total 

40 L NS 
101 L D5KS 

 
141 L total 

Any one minor event and any 
one major event 

24 L LR 
44 L NS 

110 L D5KS 
178 L total 

28 L LR 
28 L NS 

110 L D5KS 
166 L total 

56 L NS 
110 L D5KS 

 
166 L total 

Any one minor event and any 
one major event 

12 L LR 
12 L NS 

2 L D5KS 
26 L total 

6 L LR 
6 L NS 

2 L D5KS 
14 L total 

12 L NS 
2 L D5KS 

 
14 L total 

aInterchangeable means that while both fluid types should be available, and one may be preferentially used, substitutions are 
envisioned. 

 
Treating any one minor event and any one major event would require 141 L as 20 L LR, 20 L NS, and 

101 L D5KS. Treating any two minor events and any one major event would require 166 L as 28 L LR, 
28 L NS, and 110 L D5KS. The 8-hr contingency requirement is 14 L as 6 L LR, 6 L NS, and 2 L D5KS. 
Again, with LR and NS considered interchangeable, the 8-hr contingency requirement is the same as a  
2-hr contingency requirement. The water production system should have the ability to produce 
approximately 1 L/hr for 40 hr to satisfy the burn treatment requirement, and 6.2 L/day to satisfy 
maintenance requirements for two injured crewmembers. 
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4.4 Mars Exploration 

Mars Exploration is planned as a conjunction-class mission, with a 6-month transit to and from Mars, 
and an 18-month stay. A crew of six will be included on this 2.5-year mission. No early return is possible 
in the case of an emergency. All medical conditions must be treated onsite with available resources. This 
mission will include extended time in both microgravity and 0.38g. A predeployed surface habitat, and a 
predeployed Mars lander will precede crew launch. Separate medical equipment may well be provided for 
the transfer vehicle and the habitat. 

4.4.1 Treatment Timeline 

The inability to transport injured crew to Earth facilities requires that all medical conditions, except 
those at the very beginning or end, must be treated to recovery, supply exhaustion, or death of the patient. 
The total mission length is equivalent to the combination of two continuous ISS expeditions in 
microgravity and three continuous lunar habitat expeditions in partial gravity. The medical conditions that 
may be encountered on the Martian surface are similar to those for the lunar habitat. The microgravity 
transit will presumably not include any construction activities like on ISS, but may include repair EVAs. 

4.4.2 Critical Fluid Patient Conditions 

The medical conditions that may be encountered on the Martian surface are similar to those for the 
lunar habitat. The microgravity transit will presumably not include any construction activities as on ISS, 
but may include repair EVAs. The fluid requirements for a Mars mission could be either greater or less 
than that for a lunar habitat mission depending on basic assumptions. For instance, while saving a patient 
with 40 percent TBSA full-thickness burns may be possible in the short term, carrying the supplies to 
treat the patient for the complete time required for recovery may be impractical. While the decision to 
treat such a chronic condition will affect the total amount of medical water required, requirements for 
other medical supplies may be so great that the condition will not be treated. In that case, the additional 
medical water will not be needed. To develop an appropriate envelope for fluid requirements, this report 
will assume that treatment is attempted in such patients. The increased crew size, long duration, and 
extreme environment all increase the probability of more severe medical conditions. As a result, the fluid 
requirements will reflect the potential for increased treatment duration. 

The largest fluid requirement again results from a fire, which may injure multiple crewmembers 
because of the closed environment. Such a fire may not damage the equipment beyond crew survival. 
Requirements in this document assume that one patient suffers a 40 percent TBSA full-thickness burn, 
and requires 28 days of maintenance fluids, and a second patient suffers a 20 percent TBSA full-thickness 
burn, requiring 12 days of maintenance fluids. This scenario would require 24 L of LR and 148 L of 
D5KS. A total treatment time of 30 days maximum is chosen because of a low probability of survival 
beyond that point on maintenance fluids alone. Maintenance fluid treatment provides only 1/6 of the 
calories and none of the trace elements required for nutrition. Treatment beyond 30 days would require 
nutrition from tube feeding or total parenteral nutrition. Such treatment would generally begin after 1 to 2 
weeks if available, and 30 days is considered an upper limit on survival on IV fluids alone. An incident 
resulting in a femur fracture could require 8 L of NS for treatment. A trauma that also includes 
hemorrhagic shock could require 12 L of NS and 16 L of D5KS for 5 days of maintenance. An illness 
requiring drug treatment for 10 days would require 22 L of NS (2 L initially + 2 L/day). A trauma or 
illness that requires fluid maintenance for 5 days would require 4 L NS and 16 L D5KS. The fluid 
requirements for the described events are given in table XII. 
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TABLE XII.—FLUID REQUIREMENTS TO TREAT TWO CREWMEMBERS  
WITH MAJOR INJURIES/ILLNESSES DURING A MARS MISSION 

 Type of incident 
 Burn  

(tow patients) 
Major long bone 

fracture 
Trauma with 

hemorrhagic shock 
Illness with drug 

delivery 
Trauma or illness 
with maintenance 

Fluid required 24 L LR 
148 L D5KS 

8 L NS 12 L NS 
16 L D5KS 

22 L NS 4 L NS 
16 L D5KS 

4.4.3 Overall Fluid Requirements 

All medical situations arising on a Mars mission must be treated until resolution because of the 
inability to transport for further care. As with other mission scenarios, a serious fire produces the largest 
need for medical fluids. Driven by the possibility of long-term fluid maintenance requirements, fluid 
requirements are developed that consider one fire event in combination with other events. 

Table XIII gives the fluid requirements to handle missions with varying combinations of medical 
situations. A mission with up to three medical events is analyzed because of the extreme duration of the 
mission. The question of whether LR and NS are interchangeable has less relevance because of the 
grouping of event types. A burn is the only situation where LR is medically preferred. Including LR 
results in no difference in total fluid requirements when compared to multiple events where burns are not 
treated. Therefore, this document requires both LR and NS be provided onboard at the volumes 
recommended with LR and NS not considered interchangeable. This changes only the relative amount of 
LR and NS (increasing NS) and does not increase the total volume. Nevertheless, as is common in most 
emergency rooms, the 8-hr contingency requirement should be met by assuming the LR and NS are 
interchangeable, to reduce the requirement by 50 percent. The total volume required to treat any two 
minor events and a major burn event would be 248 L as 24 L LR, 44 L NS, and 180 L D5KS. The total 
volume required to treat any three minor events and a major burn event would be 286 L as 24 L LR, 66 L 
NS, and 196 L D5KS. The 8-hr contingency recommendation is 14 L as 6 L LR, 6 L NS, and 2 L D5KS. 
As in the other DRMs, the 8-hr contingency requirement with LR and NS considered interchangeable, at 
least in the short term, is the same as a 2-hr contingency requirement. The water production system 
should have the ability to produce approximately 1 L/hr for 40 hr to satisfy the burn treatment 
requirement, and 6.2 L/day to satisfy maintenance requirements for twocrewmembers. 

 
TABLE XIII.—OPTIONS FOR FLUID TYPES AND AMOUNTS NEEDED TO  

TREAT CONDITIONS (VARYING LEVELS OF SEVERITY) DURING A MARS MISSION  
Scenario LR and NS not 

interchangeable 
LR and NS  

interchangeablea 
NS only 

Any one event 24 L LR 
22 L NS 

148 L D5KS 
194 L total 

12 L LR 
12 L NS 

148 L D5KS 
172 L total 

24 L NS 
148 L D5KS 

 
172 L total 

Any one minor event and one 
burn event 

24 L LR 
22 L NS 

164 L D5KS 
210 L total 

23 L LR 
23 L NS 

164 L D5KS 
210 L total 

46 L NS 
164 L D5KS 

 
210 L total 

Any two minor events and one 
burn event 

24 L LR 
44 L NS 

180 L D5KS 
248 L total 

34 L LR 
34 L NS 

180 L D5KS 
248 L total 

68 L NS 
180 L D5KS 

 
248 L total 

Any three minor events and one 
burn event 

24 L LR 
66 L NS 

196 L D5KS 
286 L total 

45 L LR 
45 L NS 

196 L D5KS 
286 L total 

90 L NS 
196 L D5KS 

 
286 L total 

8-hr contingency fluid storage 12 L LR 
12 L NS 

2 L D5KS 
26 L total 

6 L LR 
6 L NS 

2 L D5KS 
14 L total 

12 L NS 
2 L D5KS 

 
14 L total 

aInterchangeable means that while both fluid types should be available, and one may be preferentially used, substitutions are envisioned. 
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4.5 Fluid Requirements Summary 

Potential medical conditions were hypothesized for Exploration missions, and the fluid treatment 
requirements developed. Total mission fluid requirements were developed based on treating various 
combinations of medical events. It is recommended that LR and NS be considered nearly interchangeable 
electrolytes to reduce the overall volume requirements (as discussed in Section 3.6). 

Table XIV gives the final recommended volumes for the various missions. The longer duration 
missions include fluid to treat multiple medical events. Mass constraints may limit the fluid provided on 
missions, so a minimum fluid recommendation is also included. NS, whether premixed or mixed on-board 
during an emergency, is the only electrolyte included in the minimum recommendations. The ISS 
minimum recommendation would be sufficient to treat any one medical event excluding maintenance 
fluids (dextrose is carried to meet the 48-hr fluid requirement for burns). The lunar sortie minimum 
recommendation would cover any one event except a burn event, and excluding maintenance fluids. It 
would provide the minimum volume recommendations for a 100-kg patient with 30 percent burns, 
although not the caloric intake provided by D5KS and not any fluids beyond the first 48 hr. The lunar 
habitat minimum recommendation would treat any one event, excluding maintenance requirements. The 
minimum recommended for a Mars mission is more generous. It would cover the initial fluid 
requirements of the burn event with two patients, and the initial requirements of any other one event. 
Maintenance fluids for a total of 15 days are also included to treat the 3 potential patients. 
 

TABLE XIV.—FLUID VOLUME RECOMMENDATIONS FOR EXPLORATION MISSIONS 
Mission Recommended event coverage Fluid volume recommendation Minimum fluid recommendation 
ISS Any one minor event and any 

one major event 
20 L LR 
20 L NS 

86 L D5KS 
126 L total 

24 L NS 
24 L D5KS 

 
48 L total 

Lunar Sortie Any one event 8 L LR 
8 L NS 

28 L D5KS 
44 L total 

12 L NS 
 
 

12 L total 
Lunar Habitat Any one minor event and any 

one major event 
20 L LR 
20 L NS 

101 L D5KS 
141 L total 

24 L NS 
24 L D5KS 

 
48 L total 

Mars Exploration Any two minor events and one 
burn event 

34 L LR 
34 L NS 

180 L D5KS 
248 L total 

36 L NS 
69 L D5KS 

 
105 L total 

5.0 Considerations For Creating Water for Injection 
There are many questions that need to be answered when developing a WFI production system for 

NASA’s Exploration missions. The unique operational environment raises additional challenges not 
encountered when developing a ground-based system, which will require special consideration. In addition, 
the initial water source supplied to the system may have important differences from the water that ground-
based systems typically employ. The gravity level, radiation level, and sealed environment all raise concerns 
about microbial contamination and how to maintain sterility of the system in conditions not previously 
encountered by WFI systems. These concerns are in addition to the normal NASA concerns on weight, 
volume, power, and reliability. 

5.1 Water Quality Requirements 

The requirements for WFI and SWFI are set out in the United States Pharmacopeia–National 
Formulary (USP–NF), currently USP 29–NF 24 issued in 2006. That document contains specific 
requirements that must be met, as well as general requirements that can be difficult to quantify. The 
general, unquantified requirements could be problematic with a unique system specific to NASA’s needs. 
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For example, USP standards for WFI, covered in Section 5.1.4, require distillation, reverse osmosis (RO), 
or a system that provides equivalent or better performance. A more stringent reading of the USP standard 
might lead to the conclusion that only distillation and RO are approved methods for producing WFI, 
limiting the technology choices but perhaps making validation easier. 

NASA’s needs may be better met by a new type of system, but defining equivalent performance of 
existing systems could be a challenge. As an example, the USP standard requires that source water meet 
Environmental Protection Agency (EPA) potable water standards. The EPA does not have standards on 
all possible contaminates, such as iodine and silver because biocides are not normally a problem with 
public water systems. Biocides are not allowed in water for injection and must be removed. Silver is used 
by the Russians as a biocide and remains in the potable water at 0.50 mg/L, while iodine is used as 
NASA’s biocide and is removed at the point of use. The EPA does not have a primary standard for silver, 
but does have a secondary, nonenforceable guideline of 0.10 mg/L. NASA’s ISS MORD (Medical 
Operations Requirement Document) has a requirement of 0.50 mg/L for silver and 0.05 mg/L for iodine at 
point of use. The Food and Drug Administration (FDA) recommended daily allowance for iodine is 0.150 
mg. The USP standards for the solutions of interest indicate that no antimicrobial agents are allowed, but 
were written assuming processing that starts with public water sources. Iodine and silver are present in 
groundwater at low levels. The USP standards require iodine and silver removal equivalent to distillation 
or RO. This may require determining a proven USP WFI production system performance for silver and/or 
iodine removal. The Exploration Life Support group is currently looking at alternative biocides that could 
remain in the potable water, with silver high on the list, and a WFI system would have to be designed to 
remove those as well with performance equivalent to that of distillation and/or RO.  

5.1.1 FDA Medical Standards 

The USP is a not-for-profit private organization founded in 1820. The Federal Food, Drug, and 
Cosmetics Act recognizes the USP–NF as the official compendia for medicines marketed in the United 
States. The FDA supervises the development of new drugs, while the USP–NF provides the standards for 
production and distribution. The standards in the USP–NF are legally enforceable. The current standards 
for IV fluids are given in USP 29–NF 24 (ref. 49). Packaged parenteral solutions require water meeting 
WFI standards as outlined in the Official Monographs and then rendered sterile. Alternatively, the 
parenteral solution can use water meeting SWFI standards if protected from subsequent microbial 
contamination. WFI is prepared from water meeting EPA regulations or comparable regulations of the 
European Union or Japan. It contains no added substance. There are specific requirements that WFI and 
SWFI must meet, as well as the requirements for the parenteral solution. Sodium chloride injection and 
dextrose injection must include no less than 95 percent and no more than 105 percent of the labeled 
amount of solute. LR injection has similar requirements on the individual solutes, although the tolerance 
is ±10 percent for most solutes in LR.  

USP–29 provides inconsistent direction on whether a technology other than distillation or RO is 
permitted for WFI production. The Official Monograph for WFI begins by stating, “Water for Injection is 
water purified by distillation or a purification process that is equivalent or superior to distillation in the 
removal of chemicals and microorganisms.” This statement clearly allows for alternative technologies to 
be used in WFI production. However, in Chapter 1231, “Water for Pharmaceutical Purposes,” there is a 
contradictory statement that WFI water that “is finally subjected to distillation or RO. A later sentence in 
the chapter states “Other technologies such as ultrafiltration may be suitable in the production of Water 
for Injection, but at this time, experience with this process is not widespread.” The best conclusion is that 
other technologies are permitted in WFI production, but must have performance equivalent to or better 
than distillation. 

Nevertheless, distillation cannot stand alone to produce WFI. As noted elsewhere in the USP, “For 
distillation, due consideration must be given to prior removal of hardness and silica impurities that may 
foul or corrode the heat transfer surfaces as well as prior removal of those impurities that could volatize 
and condense along with the water vapor…In spite of general perceptions, even the best distillation 
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process cannot afford absolute removal of contaminating ions and endotoxin. Most stills are recognized as 
being able to accomplish at least a 3 to 4 log reduction in these impurity concentrations.” Hence, even if 
distillation were to be chosen for a spaceflight system, additional filtration elements would be required to 
produce WFI, just as is the case in terrestrial settings. 

5.1.2 EPA Potable Water Standards 

The EPA regulates the quality of drinking water in the United States. Water meeting USP standards 
must be prepared from water meeting the EPA National Primary Drinking Water Regulations (NPDWRs 
or primary standards). The primary standards regulate the levels of microorganisms, disinfectants, 
disinfection byproducts, inorganic chemicals, organic chemicals, and radionuclide contaminants that can 
be found in drinking water. The primary standards apply to public water systems and are legally 
enforceable. There are also National Secondary Drinking Water Regulations (NSDWRs or secondary 
standards) that are nonenforceable guidelines regulating contaminants. These secondary standards cover 
contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects 
(such as taste, odor, or color) in drinking water. Individual states may adapt the secondary standards as 
legally enforceable. A list of both primary and secondary standards may be found in EPA 816–F–03–016 
(ref. 43). The EPA also maintains the contaminant candidate list (CCL) as prescribed by the Safe 
Drinking Water Act. The CCL contains 51 contaminants that are under investigation for possible 
regulation. Aluminum and many solvents, potential NASA contaminates, are included in the CCL. The 
complete list is found in EPA 815–F–05–001 (ref. 43). 

5.1.3 NASA Potable Water Standards 

NASA has developed its own standards for potable water contaminants. These standards reflect the 
unique contaminates possibly present in spacecraft systems. The EPA standards are primarily concerned 
with contaminants potentially found in ground water used by public water systems. First-use potable 
water in NASA missions would be produced from terrestrial ground water as well, although stored and 
used in systems different from terrestrial systems. Long-duration missions, however, would produce 
potable water from wastewater. The wastewater is composed of condensate recovered from the air, 
hygiene water, and urine. These water sources have vastly different contaminates than those covered by 
EPA standards. An ersatz formulation of wastewater expected on a Mars transit mission (based on ISS 
data) includes significant amounts of sodium, chloride, ammonium, sulfate, and potassium (ref. 45). Of 
these contaminants, only chloride and sulfate are covered under EPA secondary standards, and none by 
EPA primary standards. NASA’s potable water standards cover all except sodium. NASA’s standards for 
ISS potable water are covered in Space Shuttle Program (SSP) 41000 (ref. 46), and can also be found in 
JSC–38571C (ref. 46) and SSP–50260 (ISS MORD) (ref. 47). These standards also include acceptable 
microbial levels. 

NASA potable water does not necessarily meet EPA primary standards. Water that does not meet 
EPA standards requires acceptance testing or qualification testing (ref. 49). If available water does not 
meet EPA standards, treatment prior to making WFI is required. Alternatively, the produced WFI would 
have to demonstrate equivalent or better removal performance on those unmet initial conditions than a 
qualified distillation or RO-system-fed water meeting EPA standards. This alternative interpretation is not 
covered in the USP standards or FDA guidance. 

5.1.4 WFI Versus SWFI 

There has been confusion in past work on whether SWFI or WFI is needed for a medical water 
system. Descriptions of SWFI and WFI are given in USP 29–NF 24 under the official monographs and 
under the general information chapter Water for Pharmaceutical Purposes 1231. WFI is “intended for use 
in preparation of parenteral solutions” and “an excipient in the production of injections” (ref. 50). SWFI is 
“prepared from water for injection that is sterilized and suitably packaged” and “intended for 
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extemporaneous prescription compounding and is distributed in sterile units” (ref. 50). Official 
monographs for sodium chloride injection, Ringer’s injection, Ringer’s lactate injection, dextrose 
injection, et cetera, all state that they are “a sterile solution of <solute> in water for injection” (ref. 50). 
The conclusion is that only WFI is needed for immediate production of solutions such as sodium chloride. 
SWFI may be used for immediate production of these solutions as well, but is required if using 
prepackaged water. The decision to produce WFI or SWFI depends on if there are other potential uses of 
the Medical Water System. SWFI is only required if it is to be stored in unmixed form for later use. 

SWFI has many additional requirements beyond those of WFI. Some of these requirements are similar 
to those for the final solutions, but others are not. These additional requirements for SWFI include limits on 
pH, particulate matter, ammonia, calcium, carbon dioxide, chloride, sulfate, and oxidizable substances. 

Finally, WFI “produced on site for use in manufacturing” does not have to meet a bacterial 
endotoxins test, but the final solution does have to meet the bacterial endotoxins test associated with the 
fluid produced. As an example, the maximum bacterial endotoxin level for packaged WFI is 0.25 EU/mL, 
while for 0.9 percent sodium chloride and 5 percent dextrose it is 0.5 EU/mL. The complete requirements 
for the solutions and their solid components are found in table XV. 

 
TABLE XV.—REQUIREMENTS FOR SOLUTIONS FROM USP 29–NF 24 

Requirements 
Contaminants WFI SWFI 0.9%  

saline 
5.0% 

dextrose 
LR 9.0 g NaCl 50.0 g 

dextrose 
LR  

components 

Bacterial endotoxins ≤0.25 EU/mL    
(packaged only) 

≤0.25 
EU/mL 

≤0.50 
EU/mL 

≤0.50 
EU/mL 

≤0.50 
EU/mL   ≤0.50 EU/mL 

Total organic 
carbon ≤0.50 mg/L 

≤0.50 mg/L  
(produced 
from WFI) 

      

Water conductivity ≤1.3 μS/cm 
≤1.3 μS/cm  
(produced 
from WFI) 

      

Sterility  Passes test Passes test Passes test Passes test   Passes test 

pH  
5.0 to 7.0 

with buffer 
solution 

4.5 to 7.0 
3.2 to 6.5 

with buffer 
solution 

6.0 to 7.5   6.0 to 7.5 

Particulate matter 
(light obscuration 
test) 

 

≥10 μm:  
≤25/mL    
≥25 μm:  
≤3/mL 

≥10 μm: 
≤25/mL   
 ≥25 μm:
 ≤3/mL 

≥10 μm:  
≤25/mL    
≥25 μm:  
≤3/mL 

    

Ammonia  ≤0.3 mg/L       
Calcium  
(derived from  
USP 21) 

 ≤0.5 mg/L      54.5 mg 

Carbon dioxide 
(derived from  
USP 21) 

 ≤4.0 mg/L       

Chloride  
(derived from  
USP 21) 

 ≤0.5 mg/L    5.46 g ≤9 mg 3.88 g 

Sulfate  
(derived from  
USP 21) 

 ≤0.5 mg/L       

Oxidizable 
substances  Passes Test       

Iron   ≤2.0 mg/L   ≤0.018 mg   

Heavy metals   ≤0.09 mg/L 
as Pb 

≤0.25 mg/L 
as Pb 

≤0.3 mg/L 
as Pb 

≤0.045 mg  
as Pb 

≤0.25 mg 
as Pb 

≤0.066 mg/L 
as Pb 

5-(hydroxymethyl) 
furfural and related 
substances  
(284 nm light 
absorbance) 

   Passes test     

Antimicrobial 
agents 

None  
allowed 

None 
allowed 

None 
allowed 

None 
allowed 

None 
allowed 

None  
allowed 

None 
allowed None allowed 
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5.2 Water Sources 

While using potable water as the source to generate WFI is obvious, other potential sources exist. 
Short-duration missions may use a fuel cell as does the shuttle, with the resulting high-purity water a 
potential source. Moderate-duration missions may use water to produce cabin oxygen using electrolysis. 
The oxygen generation water is usually potable water with an additional deionizing bed to remove the 
iodine biocide. This water may also provide a starting source to generate WFI. A generic emergency 
water source to be used for oxygen generation, medical emergencies, or replenishing potable water stores 
may be a viable option for moderate to long-duration missions. Water obtained from in situ resource 
utilization would presumably go through processing to bring quality up to potable water standards.  

5.2.1 Potable Water 

Potable water on the ISS is used for drinking and hygiene. NASA potable water must meet requirements 
as set out in SSP 41000, which is different than EPA standards. There is some overlap in the two standards, but 
NASA’s standards cover contaminants specific to spacecraft water, and do not have requirements to eliminate 
contaminants commonly found in public water systems. Overlapping contaminant standards are generally 
stricter in NASA’s requirements, but this is not true for all substances. 

Potable water contaminants are specific to the water source. From 2003 to 2006, most of the water on ISS 
was transported via Russian Progress cargo ships. Therefore, the water meets Russian standards. Russian water 
is mineralized for taste, and uses silver as a biocide. Prior to that time, the main source of ISS water was 
usually shuttle deliveries of fuel cell water, NASA potable water for drinking, and water for the oxygen 
generation system. NASA potable water uses iodine as a biocide and does not contain added minerals. The 
European Space Agency Automated Transfer Vehicle is capable of delivering both Russian and NASA 
potable water and is scheduled for its inaugural launch in 2008. 

ISS water is also recovered and processed in the Russian condensate recovery system, delivered through a 
system separate than the transported water system. NASA is also planning to launch the water recovery system 
(WRS) within the next few years, which will recover water from hygiene water, condensate, and urine. The 
WRS will produce water meeting NASA requirements, but will have contaminant levels different than those 
from fuel cell, transported potable, or condensate water. 

5.2.2 Oxygen Generation Water 

Oxygen production requires higher purity water than NASA potable water. The oxygen generation system 
(OGS) flight hardware generates oxygen via electrolysis and was flown to ISS on STS–121 this year. This 
system is designed to utilize NASA potable water provided by the WRS. An internal deionizing bed removes 
the iodine biocide, as well as other ions (ref. 51). This treated water remains internal to the OGS, and is not 
normally available for other uses. There is an internal system designed to reject this treated water if gas is 
present. This system is currently finished, flight qualified, and on station. It will not become operational until 
2007 because station modifications are required for it to operate in the new location in the Destiny lab module 
instead of its design location in Node 3. Modifications in orbit to allow for access to the deionized water are 
unlikely. Nevertheless, the system could potentially be modified with new software and an additional outlet so 
that water could be generated in an emergency. On the other hand, integration and operational challenges may 
preclude this as an efficient source for generating WFI precursor water for ISS use. 

5.2.3 Fuel Cell Water 

At the time of generation, fuel cell water has high purity, and shuttle fuel cell water is used directly on ISS. 
Fuel cells are generally only used on short-duration missions such as Shuttle. No fuel cells are present on ISS. 
The ESAS study recommended solar panels over fuel cells for Orion electrical production because of the  
6-month quiescent state required during ISS and lunar outpost missions. Fuel cells are being investigated as 
potential replacements for batteries to store energy over the day/night solar cycle and as backup power. Such 
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fuel cells are closed systems, with the water recycled internally. Fuel cell water is a possible source on NASA 
missions to the Moon and Mars, though in long-duration, closed-loop systems, the water quality is unknown at 
this time. 

5.3 Production Timeline 

The choice of a system to produce WFI is critically tied with the timeline over which water would be 
available. Systems that produce water more slowly must have some sort of stored capacity to meet potential 
requirements for an initial bolus in the case of an emergency. Such a contingency may be at odds with the 
general WFI philosophy to eliminate the mass of stored water. Production timelines for various systems are 
described below. 

5.3.1 Instant On-Demand 

An on-demand system would require a high production rate in order to meet the initial needs, on the order 
on 4 L/hr. This high production rate may preclude certain technologies from consideration. For instance, a 
distillation system would most likely be unreasonably large for an on-demand system. In addition, producing 
the fluids immediately would heighten the crew workload, which would not be desirable during an emergency. 
Nevertheless, such a system would eliminate or greatly reduce fluid storage requirements. 

5.3.2 Limited Stores 

Stowing limited supplies on the order of 2 to 10 L to handle the initial needs, and then producing fluids at 
a moderate rate to keep the supplies replenished is an alternative to a large capacity on demand system. Typical 
IV fluid maintenance rates are 4 L/day, although certain conditions could require more fluids in the short term. 
There is a tradeoff between production rate and the amount of stores required to handle the initial needs. If the 
WFI system is used to replace the stores as they expire, sterility may be an issue. 

5.3.3 Always-Available Production 

An online system available for production at any time, or a limited use system that produces a fixed 
quantity of fluid before requiring consumable replacements is another option. Typical lab systems such as RO 
or distillation are always available and may require consumable replacements after months and/or thousands of 
gallons of production. Similar to the system outlined in Section 5.3.2, online systems will require monitoring 
and maintenance to ensure the sterility of the system. 

5.3.4 One-Time Use 

Cartridge-type systems use consumables to remove and store the contaminants. Cartridge systems 
typically treat limited quantities of fluid, on the order of 10 L. Such systems could be developed for one-time 
use, where a cartridge is rated for a certain volume of fluid for a limited time duration. At least one cartridge 
would be used per emergency, and potentially several if an astronaut suffers a severe injury or multiple 
astronauts require fluid simultaneously. The cartridge and all associated hardware could be sterilized and 
sealed prelaunch, eliminating maintenance during the mission. There may be increased mass and/or volume 
requirements with a cartridge-type system. 

5.4 Solution Production 
5.4.1 Constituent Form 

The final product for ultimate use will be a medical solution. This requires adding and mixing the 
constituents, such as sodium chloride, glucose, or other pharmaceuticals. The physical state of the constituents 
directly affects the mixing method and indirectly affects the water production method. Powders weigh less and 
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generally have a longer shelf life than concentrated liquids. However, powders take longer to dissolve and mix 
and are more difficult to handle in microgravity. Liquid concentrates take much less time to mix and are 
potentially easier to add to WFI, but weigh more and have a limited shelf life. Liquid concentrates may be 
required for unique technologies such as forward osmosis (FO). 

5.4.2 Mixing Method 

The mixing time also influences the delivery timeline. Time to treatment can be critical in an emergency. 
To fit within a therapeutic window, longer mixing times reduce the time available for WFI production. A long 
mixing time may require a large-capacity production system to decrease the WFI production time. Mixing time 
is less critical for a system with emergency stores. 

The method appropriate for mixing the solution to final form is the subject of an ongoing project at NASA 
Glenn. The initial trade study that evaluated potential technologies is available in NASA/TM⎯2007-215000 
(ref. 52) . Two methods were chosen for further study, a vibrating wall method and a magnetic stirrer bar 
method. The magnetic stirrer bar was ultimately chosen as the preferred solution and is undergoing further 
testing and qualification. Normal-gravity experiments to quantify and correlate the degree of mixing with time, 
stir bar dimensions, and rotation rate are ongoing. Microgravity testing in drop towers and aircraft will evaluate 
the effect of microgravity on mixing time and the effect of bubbles in the system. 

5.5 Hypogravity Production Challenges 

Microgravity poses operational challenges for any fluid system. Potential problems in an IV system arise 
in all phases of operation, from production to storage to handling. There are also potentially unique sterility 
issues arising from microgravity operation. Addressing challenges induced by hypogravity issues should be 
tackled early in the design phase, rather than attempting to add ad hoc solutions later in the development 
process. Design challenges due to altered gravity are frequently of such magnitude that they can only be 
effectively addressed in the design phase. In general, partial gravity systems are somewhat easier to design and 
test, but still require careful analysis. 

5.5.1 Production 

Many of the microgravity fluids issues arise when a liquid-vapor interface is present. The interface may be 
present by design, or as an off-nominal condition. All production methods are potentially affected by the 
presence of bubbles in the system. The location of bubbles in microgravity is much more difficult to predict 
because, unlike normal gravity, the system has no top. Thus, mitigating bubble problems is harder in 
microgravity. Bubbles can cause pump problems such as loss of prime, which may be mitigated by less 
susceptible positive displacement pumps. Adsorbent media such as charcoal filters or ion-exchange resins are 
only effective when water is able to pass through them. Such media are rendered ineffective when dry because 
the gas bubbles effectively channel the flow around a volume, resulting in a stagnant flow, which can then 
become a bacterial breeding ground. Filters and membranes can be rendered ineffective for similar reasons. 

Priming systems for operation in microgravity are fundamentally different than in normal gravity. One 
cannot rely on trapped air rising upward to an outlet from gravity. Priming in microgravity is dominated by 
capillary forces, and can be enhanced by proper design. Poor priming will result in large volumes of trapped 
air with many significant problems as described. Proper priming will be more critical in replaceable cartridge-
type systems, which must be primed after each replacement.  

Distillation, the standard for terrestrial production of WFI, is also probably the technique most affected by 
microgravity. Distillation systems boil the incoming water and condense the resulting steam, leaving many 
nonvolatile contaminants behind. The boiling process itself is fundamentally different in microgravity and not 
completely understood at this time. In normal gravity, vapor bubbles form on the heated surface, and once the 
bubbles reach a certain size, buoyant forces detach the bubble and it rises to the surface. The steam then travels 
through a vapor space, usually at the top of the apparatus, and into a condensing coil. The vapor is condensed 
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and the condensate drains to the bottom of a recovery container. Phase separation occurs at both the bubble 
detachment and the liquid condensate drainage and explicitly depends on a gravitational field. Bubble 
detachment in microgravity is particularly problematic and not well understood. The simple distillation 
systems used in laboratories will not physically work in microgravity, and no simple addition will allow them 
to function in microgravity. 

Distillation units have been conceived that work in microgravity for advanced life support, and they rely 
on rotating machinery to produce a centrifugal force that substitutes for gravity in the critical components (refs. 
53 and 54). Alternatively, the lower production rates required for WFI could allow a capillary action 
distillation system to be developed. For either method, a microgravity distillation system could be developed, 
but might be substantially more complex than typical units. While these constraints may seem to eliminate 
distillation systems from consideration, distillation (in addition to RO) is one of only two methods proven and 
accepted in WFI production per the USP standards. 

5.5.2 Storage 

Many ground-based systems, and some proposed microgravity systems have a storage vessel for limited 
WFI storage. Storage may not be required for an on-demand system, but a system designed for gradual 
replacement may perform better by storing small volumes of WFI prior to filling IV bags. Filling, venting, and 
removal from containers in microgravity is complicated by ensuring the proper location of the liquid and vapor 
present. Capillary devices are often used for liquid management. 

Capillary liquid management devices often use narrow channels or sharp acute corners to induce liquid 
flow, and screens to trap bubbles. Such devices will function in a WFI system, but raises sterility concerns. A 
general rule of thumb for WFI systems is to maintain smooth surfaces and avoid regions of low flow velocity. 
Smooth surfaces eliminate attachment points for microbial growth as well as eliminating small regions of low 
wall shear stress. The liquid shear stress prevents buildup and growth of biofilm in stagnation regions. Acute 
corners and narrow channels have low velocities as well as surface properties conducive for microbial 
attachment. Screens also break both of these design rules by having a low relative velocity through them and 
providing many attachment points for biofilms. Such concerns can be mitigated, but they must be considered. 

Another means of providing positive gas and liquid separation is to utilize a collapsible reservoir, either a 
flexible bag-like reservoir or a bellows-type reservoir. The reservoir is completely liquid filled, and the volume 
of the device passively changes to accommodate the required liquid volume. Such a reservoir is simple and 
effective in normal operation. A collapsible reservoir, or bladder, is often used for one-time or limited-duration 
use. Water is transferred from shuttle to ISS using collapsible reservoirs. However, long duration use for WFI 
raises issues. The bladder material must remain flexible, inert, and sealed for the entire mission duration. 
Another concern is that certain sections of the bag may have relatively stagnant flow that also may provide an 
optimal location for bacterial growth.  

Unanticipated bubbles are another potential concern. A bladder can act as a bubble trap, containing these 
bubbles for a time, but may potentially release a large bubble later when unexpected and overwhelm a bubble 
trap countermeasure located downstream. 

5.5.3 Handling 

Microgravity handling challenges arise from potential bubbles in the system. Devices may be required at 
various stages to trap and remove the bubbles. Bubble traps may be required to remove inlet bubbles from 
source water prior to entering the WFI production system, prior to any storage container, the mixing device, 
and prior to actual use. These traps may require constant use, such as the inlet trap, be required only during a 
priming operation, or require monitoring and action if the closed system is breached and a bubble enters the 
system. Some production methods, such as distillation, may require more rigorous bubble control methods. 

The relatively low flow rates in a WFI system tend to favor passive bubble traps. Screens are simple 
bubble traps that prevent passage, but they do not remove the bubbles from the system. Screen or membrane 
traps generally have long-term sterility difficulties as noted above.  
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There may also be microgravity-handling issues with particulates in the system. The filter-based 
technologies may have particulates released from the media that may be more readily transported in 
microgravity, depending on filter orientation. Particulate handling also varies with the size of the particles. Fine 
particles may be trapped in different locations in microgravity, or overload filters designed to remove them. 
When released from packed beds, fine particulates have been an issue in microgravity systems; one spaceflight 
water recovery system test failed because of an unexpectedly large release of fine particulates (ref. 55). 

5.5.4 Sterility 

Maintaining sterility of a medical water generation system is critical to its ultimate performance. This task 
is challenging under normal gravity, and presents some unknown issues in microgravity. The environmental 
effects of microgravity and increased radiation may cause differences in microbial growth, as well as 
potentially increase mutation. Cell culture experiments on shuttle and ISS have shown measurable differences 
in microgravity, but operational experience on Mir and ISS has not shown noticeable microbial differences 
with gravity level. It is not expected that microgravity operation will present any additional sterility challenges, 
but it is possible. 

Recent papers describing ISS potable water test results have described the presence of microorganisms 
(refs. 56 to 59). While no microorganisms found to date were unusual, the microgravity environment did not 
prevent growth. The ISS water source SRV–K has a pasteurization unit at 82 to 85 °C designed to destroy 
bacteria, and a potable water outlet (SRV–K/HOT) at ~80 °C. Water from this outlet has had measurable 
microbial content, although at lower levels than other sources (ref. 58). This result is not unexpected given the 
relatively low pasteurization temperature. There is evidence that some microorganisms found on the ISS enter 
a viable but nonculturable state when exposed to the iodine levels used on ISS for disinfection (ref. 60). Once 
the iodine is removed, these microorganisms can grow, although the rate is slower than what would be 
expected for a culture that had not been exposed to iodine. Hence, results from the standard 48-hr test can be 
misleading. 

Experiments have been conducted on microorganism growth in microgravity. Pseudomonas aeruginosa, 
an opportunistic pathogen of humans, was successfully cultured on STS–95 from October 29 to November 7, 
1998. No discernible differences in the morphology of the microgravity-grown biofilms were seen when 
compared to those formed under conditions of normal gravity (ref. 61). 

Microgravity produces a different fluid environment that may inhibit bacterial growth in seldom-used 
systems. Microorganisms in terrestrial water purification systems tend to grow in regions with low shear stress, 
which allows formation of a biofilm on a surface. Such regions are usually in corners and fluid motion dead 
zones such as rarely used outlets. A biofilm must still have some transport of nutrients for growth, which can 
be provided by internal natural convection. Because buoyancy is driven by density differences within a 
gravitational field or other accelerating system, microgravity will nearly eliminate fluid flow due to buoyancy. 
Nevertheless, spacecraft vibrations will still produce some convective transport in the system. Buoyancy-
driven convective transport can also be fairly low in 1-g systems with confined geometry such as piping 
without flow. Species transport will also be present from molecular diffusion, albeit at much lower levels than 
caused by convection. Microbial growth occurs on the order of hours to days, while typical diffusive transport 
is probably on the order of days in microgravity (ref. 62). Hence, the microbial growth rate is probably reduced 
in microgravity, but not eliminated. Adherent microorganisms that prefer to grow attached to surface may have 
a reduced opportunity to contact a surface and begin colonization because reduced transport will present a 
reduced probability of coming into contact with a wall within the vessel. However, ground-based systems 
often experience biofilm growth on upper surfaces despite the settling tendency of microbes and associated 
reduced probability to contact those surfaces. 

6.0 Potential Production Technologies 
There are a variety of commercially available technologies for purifying water, some of which may be 

suitable for producing water for injection for Exploration missions. Additionally, there are some new water 
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purification techniques that are still in the research stage that should be considered by NASA. These 
technologies are described in the following Sections 6.1 to 6.9 and are summarized in table XVI at the end of 
this chapter. 

6.1 Distillation 
Distillation is a process widely used by industry to remove nearly any contaminant from water. The water 

is first heated to drive off components that boil at a lower temperature, and then is itself boiled and 
recondensed leaving behind salts, solids, bacteria, and bacterial endotoxins. This process produces ultrapure 
water that is suitable for injection. The latter (and most common) part of the process is illustrated simplistically 
in figure 1.  

Normally distillation requires a significant amount of energy to produce pure water due to the needs of the 
boiling process, but if heat recapture is employed the amount of energy needed can be reduced. As an example, 
the latent heat of water is 2260 kJ/kg at 100 °C, which is approximately 2260 kJ/L (ref. 63). A new distillation 
unit producing 25 gal/hr (much more than would be needed for WFI applications) does so using a proprietary 
process for about 50 kJ/L (ref. 64).  

Commercial distillation units use gravity to separate the vapor and liquid phases, as shown in  
figure 1, rendering them inoperable in microgravity. There has been some research, however, into the use of 
centrifugal separators in distillation units for reclaiming water on spacecraft (ref. 65). Such a separator requires 
more power and moving parts, which would add complication to the device for producing WFI. Starting with 
urine or similar fluids, 97 percent of the minerals and microbes can be removed, which is not yet good enough 
for WFI, but it is likely that the starting fluid would be purer. In summary, despite distillation being the method 
of choice for producing WFI in normal gravity, challenges in terms of energy use and separation make it 
difficult to apply in microgravity and further development is needed. 
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6.1.1 Vendors Working in the Field 

GreenShift Corporation 
535 West 34th Street, Suite 203 
New York, NY 10001 
Phone: 888–895–3585 
Fax: 646–792–2636 
E-mail: info@greenshift.com 
http://www.greenshift.com/news.php?id=86 
 
HyClone 
925 West 1800 South 
Logan, UT 84321 
Phone: 1–800–HYCLONE (492–5663) 
Domestic: 435–792–8000 
Fax: 435–792–8001 
E-mail: info@hyclone.com 
http://www.hyclone.com/media/wfi_system.htm 
 
Mediatech, Inc.  
13884 Park Center Road 
Herndon, VA 20171 
Phone: (800)CELLGRO 
E-mail: custserv@cellgro.com 
http://www.cellgro.com/shop/customer/home.php?cat=363  

6.2 Reverse Osmosis 

To better understand the applicability of reverse osmosis (RO) to generating medical water, the physical 
process of osmosis will first be described. Osmosis is the diffusion of fluid through a semipermeable 
membrane from an area of high water concentration to an area of low water concentration until the 
concentration is the same on both sides of the membrane. The membrane stops particles and large molecules, 
while allowing water and smaller molecules to pass through. Osmosis generates a pressure differential across 
the membrane, with the higher pressure on the side into which the water flowed. 

In RO the pressure is increased on one side of the membrane to the point where the diffusive flow is 
stopped and reversed, so that the water actually flows from the lower water concentration side to the higher 
side (see fig. 2). In this case, sufficient pressure on the salt water side will drive pure water to the fresh water 
side. The same behavior is obtained regardless of the solute, so that all impurities that cannot pass through the 
membrane are effectively removed. 

RO is commonly used in home water purifiers to remove salts, chlorine, and other compounds from 
drinking water. Units of varying sizes are commercially available. The FDA also approves RO for producing 
water for injection if two units are used in series (ref. 66). Often the water needs to go through processing prior 
to RO, such as filtering or pH balancing, depending on the source. Bacteria have been shown to grow in RO 
water, so some effort is required to keep the downstream tubing and valves clean. Periodic disinfection is 
required, but that may not be an issue for short-term emergency use. RO membranes are sensitive to chemical 
degradation and fouling. Long-term terrestrial use requires chemical pretreatment to protect the membrane. 
This treatment may or may not be required for NASA use, depending on how long the membrane would be 
chemically exposed. RO systems also require a wastestream of the contaminant-concentrated water. The 
wastewater could be stored or retreated in the main water recovery system in Exploration missions. 
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In 1999, a project at NASA Kennedy Space Center (KSC) investigated the possibility of using RO to 
create SWFI (ref. 67). The project, called FLUID (filtering liquids for use in IV devices), sought to 
demonstrate that RO could purify gray water to the point where IV bags could be safely filled on orbit, 
thereby eliminating the need for taking prefilled IV bags into space. The system worked by pulling water 
first through a 10-µm chlorine filter, then into an electric water pump, through the RO membrane, through 
a 0.5-µm filter, and finally through another 0.5-µm polishing filter. 

Shower water using the actual soap used on the ISS formed the gray water. The researchers measured 
the microbial content, pH, chloride content, chemical composition, conductivity, and endotoxin levels of 
both the source and the RO product. Bacteria, endotoxin, chloride content, and pH levels met USP 
standards using the system they tested. Conductivity did not fall within USP standards, which 
investigators attributed to a low pump pressure (120 psi rather than the 220 psi desired). They did not 
describe why the lower pressure produced higher conductivity values. 

NASA KSC is currently involved in Project Clearwater, a new collaborative effort to produce a RO-
based WFI system. The current version has three separate loops, each of which can treat 200 L of water to 
USP grade sterile water. The separate loops are advantageous in that each loop remains sterile until 
activated. The system also has adsorption filters in the system and is designed to have no reject water. 

6.2.1 Vendors Working in the Field 

US Filter 
800–875–7873 ext. 5000 
 
Dialysis: 
http://www.usfilter.com/en/Product+Lines/High_Purity_Water_Products/High_Purity_Water_Pro
ducts/hipurity_Hemodialysis_prd_MED_RO_RX.htm 
 
Ultra pure for medical lab use: 
http://www.usfilter.com/en/Product+Lines/High_Purity_Water_Products/High_Purity_Water_Pro
ducts/PURELAB_Ultra_Laboratory_Water_Purification_System.htm 
 

US Filter was the only vendor located that mentioned medical use of their RO water, but there are 
many vendors working in the drinking water arena. 
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6.3 Adsorption 

Adsorption systems utilize chemical or ionic affinity to remove contaminants from the water feed 
stream. The contaminants are trapped inside a cartridge that is later disposed. Activated carbon is a 
common adsorbent that removes many types of chemicals. Ions typically require a different adsorbent. 
Multiple adsorbents are commonly employed together to remove all desired contaminants. The adsorbents 
generally have a high surface-area-to-volume ratio to enable efficient removal. A low flow rate in the 
cartridge is utilized to ensure a high residence time in the system, which allows for efficient contaminant 
removal. Cartridge lifetime is limited by the maximum amount of contaminant it was designed to adsorb. 

Adsorption systems are simple devices, requiring only low pressures to drive the fluid through the 
media (see fig. 3 for an example). There are no moving parts or electronics required. They generally have 
a limited lifetime, but some systems can be renewed by flushing with cleaning chemicals. Adsorption 
systems have several advantages for medical water generation for NASA’s missions. They can be a 
simple, self-contained system that remains sterile prior to use. There are limited shelf-life concerns, and 
no special storage is required. The WFI volume required is relatively low for some missions, so the 
limited useful life may not be a concern. Adsorption systems are not suited for large-volume production 
because of the consumable mass. 

The SWIS tested in STS–47 (see Section 1.4.2) was primarily an adsorption system, with additional 
filters to remove particulates. Prismedical has developed a filter/adsorption-based system that produces  
3 L of USP Sterile Purified Water from highly contaminated water in a 0.5-kg package. It has not been 
approved for parenteral administration, but does meet the endotoxin requirement. It is a purely passive 
system, relying on gravity feed to provide a flow rate of 75 mL/min; in microgravity a pump would 
obviously be required. Potential problems with the filter media are particle fine generation and flow 
channeling in microgravity. 
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6.3.1 Vendors Working in the Field 

Prismedical 
118 Dodd Court 
American Canyon, CA 94503 
Phone: 707–556–5000 
E-mail: info@prismedical.com 
http://www.prismedical.com/sterile/index.html 

6.4 Filter 

An example of a filter for purifying water is given in figure 4. Filters operate by forcing the water 
through a sieve with many small holes or past bundles of very small fibers that prevent the passage of 
contaminants while allowing the water to pass through. Filters normally operate on a mechanical basis by 
limiting the size of a particle or molecule able to pass through, though there may be some chemical 
affinity for certain species that cause them to adhere to the filter (see previous section). Filters are 
normally combined with an adsorbent media to remove molecular-scale impurities to produce high-purity 
water. 

Filters have the advantage of not having moving parts or electrical power requirements themselves, 
though they do need a source of pressurized water, and therefore power for a pump. This power can be 
supplied by a person, as in the case of water filters designed for backpackers to purify drinking water. As 
an example, a filter over-pressure of about 5 psi is needed to obtain a flow of 0.7 L/m through a medium 
capsule filter described below.  

Filters come in a variety of sizes. By using fiber packing or pleated membranes, a large surface area 
can be packaged in a small volume. Depending on the circumstances, the option of considering the filter 
disposable could be advantageous. For short-duration missions it may be best to have several small filters 
in hermetically sealed packages and open one as needed. This avoids the need to sterilize the filter since it 
will not be reused, though that can be achieved through chemical or heat treatment if necessary.  

A disadvantage to filters is that they cannot remove all water-borne contaminants. The better filters 
can generally remove all bacteria, endotoxins, solids, and some other chemicals. Depending on the type of 
filter, molecular-scale impurities and smaller viruses may be able to pass through. The total amount of 
water that can be treated by a filter depends on the contaminant loading in the feed water and would need 
to be tested for various water sources considered for use on the Orion. 

As an example of a filter appropriate for creating WFI, consider the FiberFlo filter described in 
language taken from their brochure (ref. 68): “FiberFlo ultrapure water filters are manufactured using a 
unique, patented, Polyphen polysulfone hollow fiber providing high flow rates, low extractables and a 
wide range of chemical compatibility. The asymmetric hollow fiber provides absolute micron removal 
ratings. FiberFlo water filters are available in 0.05-, 0.1-, and 0.2-μm pore sizes and a variety of inlet and  
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outlet connections and system sizing. FiberFlo capsule filters have easy-to-use, dual upstream vents 
(whose operation in microgravity would need to be proven) that allow sanitization of the filter using 
Minncare Cold Sterilant.  

FiberFlo water filters are designed and manufactured in accordance with an ISO 9000 Quality 
Management System. For easy identification and traceability each capsule is labeled with a lot number, 
catalog number, pore size, and serial number. FiberFlo capsule vent filters are 100 percent integrity tested 
during the manufacturing process. All FiberFlo filter devices are manufactured and tested nonpyrogenic 
by limulus amebolysate (LAL). 

6.4.1 Vendors Working in the Field 

Minntech Filtration Technologies Group 
14605 28th Avenue North 
Minneapolis, MN 55447 
Phone: 800–328–3345 
E-mail: ftginfo@minntech.com 
http://www.minntech.com 

6.5 Forward Osmosis 

Forward osmosis (FO) for water purification is used by at least one manufacturer (ref. 69) of outdoor 
equipment for soldiers and hunters. In this process, a filter with pore sizes of 3 to 5 angstroms (0.3 to  
0.5 nm) separates the contaminated water from clean water that has a sport drink or other solute at high 
concentration dissolved in it (ref. 70). The osmotic pressure alone (see figs. 2 and 5) drives water from the 
contaminated side to the side with the desired solute. For the flow to occur, the solute side must have a 
higher concentration of particles (labeled “nutrients” in fig. 5) than the contaminated side. Thus, the 
method is not useful to produce totally pure water, but is appropriate for creating IV fluids starting from a 
sterile IV concentrate. 

The company has various products meant for producing drinks; the maximum rate is 1 L/hr of drink. 
The osmotic pressure of NS is on the order of 57 psi, whereas the pressure for sports drinks is 
approximately 70 psi. Using a simple ratio predicts generating NS at the rate of 0.8 L/hr. While that is too 
slow to produce IV fluid in an emergency situation, it is sufficient to generate fluids for long-term IV 
maintenance therapy. The surface area could be increased to increase the production rate, and fluid 
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mixing on the product side would also increase the production rate by maintaining a higher concentration 
gradient at the membrane. Most medical fluids such as Ringer’s Lactate and dextrose have similar 
osmotic pressures and are chosen to be compatible with blood osmotic pressure.  

Hydration Technologies is currently working with NASA Ames on a potential emergency water 
purification system for use in lunar missions. There has already been testing on the removal efficiency of 
the membrane, and other membranes are also being investigated at NASA Ames. 

6.5.1 Vendors Working in the Field 

Hydration Technologies, Inc. 
2484 Ferry St SW 
Albany, OR 97322–7801 
P.O. Box 1027 
Albany, OR 97321 
Phone: 541–917–3335 
Fax: 541–917–3345  
Product inquiries: b.schmieg@hydrationtech.com 
http://www.hydrationtech.com/ 

6.6 Membrane Distillation 

A conceptual schematic of the membrane distillation process is shown in figure 6. The use of 
membrane distillation for large-scale salt-water desalination is a current research topic, though small-
scale applications such as personal drinking water generation appear not to be widely pursued. Hot (not 
necessarily boiling) water gives off vapor that is selectively allowed through a membrane driven by 
diffusion and the vapor is condensed on the other side. In the absence of gravity, a method to collect and 
remove the liquid condensate is needed, perhaps with a capillary flow effect. Depending on the geometry, 
some of the heat given off during condensation could be recaptured and used to heat the incoming water. 
The system is relatively simple, removes nearly all contaminants, and is not subject to fouling like a 
traditional filter. The technology has been proposed by at least one company under a currently funded 
NASA Small Business Innovation Research (SBIR) grant to generate medical grade water for IV fluids in 
space (ref. 71). 
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6.6.1 Vendors Working in the Field 

T3 Scientific LLC 
1839 Noble Road 
Arden Hills, MN 55112–7834 
Phone: 612–378–4985 
E-mail: Andy.Tsai@t3sci.com 

6.7 Osmotic Distillation 

Rather than using concentration gradients as a driving force as is done in FO in the liquid phase, 
osmotic distillation uses the differences in vapor pressures of the contacting liquid phases. This is 
illustrated in figure 7. Water moves across the osmotic distillation (OD) membrane by evaporating, 
diffusing through the pores, and condensing on the other side of the pores. The pore sizes of the 
membrane are designed so that capillary forces prevent liquids from entering the membrane. Design 
factors include surface tension, contact angle, capillary pressure, and pore radius. The heat of vaporization 
is supplied by conduction or convection from the upstream liquid through the membrane. The temperature 
gradient across the membrane is typically less than 2 °C making the process nearly isothermal (refs. 72 
and 73). 

As in FO, the side to which the water is diffusing must contain a solute. The technique cannot be used 
to generate pure water. However, forming NS, Ringer’s Lactate, or Dextrose solutions from a concentrate 
is possible. A two-stage system using osmotic distillation with an RO system can be used to produce pure 
water (ref. 74). A big advantage is that the RO membrane only sees an osmotic fluid chosen for chemical 
compatibility, typically sodium chloride, and does not have fouling concerns. This type of system is being 
developed as a potential space water recovery system, and has the potential to be very lightweight. 

6.7.1 Vendors Working in the Field 

Dr. Tzahi Cath at the University of Nevada in cooperation with Sherwin Gormly at the National 
Space Grant Foundation, and Michael Flynn at NASA Ames Research Center are vendors working in the 
field. 
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6.8 Nanofiltration 

Nanofiltration is a new experimental technique of removing contaminants from fluids being 
developed for artificial kidneys and other specialized applications (ref. 75). The filter is fabricated on 
silicon or a similar substrate using lithography processes developed for making integrated circuits. An 
array of slit channels is cut into the silicon that only allows particles or molecules of a certain size to pass 
through. The control of channel size afforded by lithography is greater than that offered by other 
techniques and filters types such as packed fibers. This particular filter is also much thinner than 
membrane or other filters at 1 µm thick versus 30 µm for a membrane filter. The reduced thickness 
greatly reduces the pressure drop across the filter. 

The small channels on the current device are about 4 nm across and 50 µm long, with 50 nm of 
separation between channels using the best lithography processes (fig. 8). By making a multitude of 
channels and packing the wafers together the pressure drop is kept low across a larger device. The 
prediction for a 300 ml size device indicates a flow rate of 30 ml/min with a 1 psi pressure drop. This 
flow rate may not be sufficient to make water in an actual emergency, but it is sufficient if the 
recommended contingency stores are also carried as provided in Section 5.0. 

For the artificial kidney application the channels are coated with various materials to reject proteins, 
which carry a slightly negative charge. For water purification, such coatings could be used to attract or 
repel certain species in the water to remove them. The filter would operate both mechanically by 
excluding larger particles or molecules, and chemically by removing smaller ones. 

The disadvantage of the nanofilter is that the current generation has a 50 percent probability of fracture, 
though a new design promises to lower that to 10–4. The filter is also not yet readily available and more 
research needs to be conducted, but the technology could potentially be available within the next 2 years. 

6.8.1 Vendors Working in the Field 

Dr. Shuvo Roy of the Lerner Research Institute at the Cleveland Clinic Foundation in Cleveland, 
Ohio is developing the technology mentioned in this section. 
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6.9 SBIR Research on Medical Water Generation 

NASA funded a Phase I SBIR to create IV fluids in space using membrane distillation (see Section 
6.6). A second SBIR award, this to the Umpqua Research Company, is currently investigating using 
microwaves to generate medical grade water (ref. 76). As described in the summary: 

“An innovative microwave system is proposed for the continuous production of medical grade water. 
This system will utilize direct absorption of microwave radiation to rapidly heat potable water well above 
normal autoclave conditions, achieving equivalent microbial lethality in much shorter times. High thermal 
efficiencies will be gained by placement of the microwave antennae directly in the flowing water stream 
allowing very efficient volumetric coupling of microwaves. The sterilized water stream will then pass 
through a regenerable endotoxin filter to achieve WFI purity standards. This filter will remove endotoxins 
by selective adsorption. The combined system will enable the energy efficient and practical production of 
WFI aboard spacecraft or planetary habitats under microgravity or hypogravity conditions with a low 
equivalent system mass (ESM). In the Phase I research, sterilization chambers and endotoxin filters will 
be designed, assembled, and tested. The Phase II program will deliver a fully instrumented, computer-
controlled system with a low ESM whose performance is well documented. This technology will form the 
basis for multiple applications in commercial sterilization markets.” 

During Phase I, Umpqua invented and demonstrated a microwave antenna sterilization system that 
meets most of the constraints of Exploration missions. This system will be further developed and 
demonstrated, as Umpqua has recently been awarded a Phase II contract. 

6.10 Multipurpose: Drinking, Experimental, WFI 

Developing an integrated system that provides water meeting several different specifications is 
possible. When properly integrated, such a system can have an overall lower mass than the total for 
separate systems. ISS originally considered a system that would produce both hygiene water and potable 
water, but this concept was not implemented. Some laboratory-sized water treatment systems have both 
high-purity and medium-purity outputs. Such systems are commonly dual-pass RO systems, with the 
medium-purity water passing through only one RO membrane and the high-purity water passing through 
both RO membranes. Equivalent systems produce high-purity water by passing the medium purity water 
through additional deionizing beds, membranes, UV sterilizers, or similar treatments. 

There is potentially little need for water of intermediate quality between potable and WFI in future 
NASA missions. The ISS will have far fewer experiments than originally planned, lowering the potential 
need for experimental water. The experiments most affected by the change in mission, including cell-, 
plant-, and animal-science experiments, were the biggest potential users of experimental grade water. 
Other disciplines are less likely to consume water, and if such water were needed, it would have to be 
well characterized. Future lunar and Martian missions are also not likely to need experimental water. 
While there is the possibility of in situ clinical laboratory testing, procedures are either evolving away 
from wet testing, or using much smaller fluid volumes. Most of the testing could also be completed on 
Earth by transporting relatively small samples. 

The remaining question is whether there are benefits to producing a combined potable-WFI system. 
Since the volume of WFI required is much less than potable water, the requirements of potable water 
would drive the design of the main purification system. WFI production would be an addition to the main 
system. There are benefits in have the WFI system collocated with the potable water system. Some 
technologies, such as RO, do not treat the entire water stream and the waste stream could be handled by a 
combined wastewater system. Given the relatively small water volume requirements for WFI, this benefit 
is relatively small. There are potential plumbing benefits, but any WFI system could be located along the 
plumbing path of other water users. The IV mixing and distribution would also have to be integrated into 
the combined system. Drawbacks include the extra engineering effort to integrate the systems, as well 
testing and verification complications. Combined systems also present potential difficulties in technology 
insertion to upgrade one or the other system.  
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6.11 Water Purification Technology Summary 

Table XVI gives a summary of the technologies discussed that could be used to generate WFI during 
an emergency and for subsequent maintenance needs (note that the SBIR-level technologies are not 
included in the table and the reader is referred to Section 6.9 for those). Only two technologies are 
currently approved for WFI, distillation, and RO. Unfortunately, both suffer from disadvantages that 
make them difficult to adapt to spacecraft use. Distillation requires a large amount of energy, a cooling 
surface, and gravity or other means of separating the gas from the liquid. RO, meanwhile needs a 
relatively high-pressure water source, and faces sterilization issues for repeated use. 

 
TABLE XVI.—EFFICACY OF VARIOUS METHODS OF PURIFICATION 

Method characteristics Water  
generation 
method 

Contaminants removed In use now for 
WFI 

Rate of  
generation 

Energy 
needed for 
generation 

Sterilization Other needs or 
limitations 

Distillation Essentially everything Yes High; many 
gallons per 
hour 

13 Wh/L May need to 
sterilize cold 
lines 

Need a cool surface 
for condensation. 
Conventional 
separation requires 
gravity to work 

Reverse  
osmosis 

Bacteria, endotoxins, 
viruses, large 
molecules, solids, 
salts to some extent 

Yes; also was 
tested by KSC 
for space use 
and met most 
USP standards 

Several 
gallons/day 

Need 
pressurized 
water (120 psi 
or more) 

Need to sterilize 
membrane and 
whole system 
periodically 

 

Adsorption Most contaminants can 
be removed, but 
adsorber(s) must be 
chosen for specific 
contaminants 

No Depends on 
size of 
cartridge; 
4.5 L/hr is 
available 

Need low 
pressure 
water of a 
couple psi 

Cartridge can be 
stored sterile, but 
only used once 

Current cartridge 
can treat 3 L,  then 
dispose 

Filtration Bacteria, endotoxins, 
solids 

No Varies with 
filter; 0.7 L/m 
for 5 psi 

Need 
pressurized 
water source 

Chemical 
treatment or 
disposal 

 

Forward  
osmosis 

Same as reverse 
osmosis 

No 0.8 L/hr None Use once, then 
dispose 

Cannot produce 
pure water, only 
concentrated 
solutions 

Membrane 
distillation 

Essentially everything, 
but still under 
development 

No Not yet tested Lower than 
traditional 
distillation 

Not yet tested Need a cool surface 
for condensation 

Osmotic 
distillation 

Essentially everything No N/A, but likely 
slow 

Low Not yet tested No high pressure as 
in RO; cannot 
produce pure water, 
only solutions 

Nanofiltration Still in the 
experimental phase; 
actually being 
developed to cleanse 
blood 

No N/A, but 
similar to 
kidney 
function 

Low-pressure 
fluid needed 

N/A; probably 
need to dispose 

No large-scale 
device ever made 

 
Currently the technology next closest to meeting USP standards is a combination of filtration (to remove 

larger contaminants) and adsorption to remove specific molecular and living species (i.e., viruses). While 
not yet approved for parenteral use, vendors are making improvements that may allow this use in the future. 
FO could likely be approved for parenteral use, given that RO is approved, but is limited to producing 
concentrated solutions and not nearly as flexible as technologies that produce pure water from which the 
desired solution can be made. FO may find a niche application in WFI. The remaining three technologies, 
membrane distillation, osmotic distillation (which, like FO, can only produce concentrated solutions), and 
nanofiltration offer some potential advantages of weight and power, but are still in the development stage 
and would require more extensive work to produce WFI in space. 

A future trade study is planned to identify, evaluate in more detail, and draw conclusions about these 
potential WFI production methods. The trade study will select the method most appropriate for the 
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various DRMs, and provide estimates of expected performance. Other technologies may be identified 
during the trade study and included as well. The potential technologies will be quantitatively evaluated to 
present a nonbiased ranking. The selection criteria will include parameters such as production rate, 
sterility, mass, consumables, hypogravity confidence, operations, and development ease. 

7.0 Discussion and Recommendations 
NASA’s Vision for Space Exploration has initiated new efforts to determine what technologies will 

be required for exploration of the Moon and Mars, and to define how these technologies will be 
developed and validated. Medical requirements and capabilities are being developed as part of this 
process. In particular, the necessity and required volumes for medical IV fluids are developed in this 
report. A similar effort was conducted in the late 1980s when the ISS planning was in its preliminary 
stages. A need for in situ IV fluid production was foreseen, and a development effort commenced. The 
SWIS was developed and tested on STS–47 in 1992 as part of the Spacelab-Japan Mission. This previous 
work still has relevance today, especially in systems involving adsorption and filtration. However, it must 
be remembered that the solutions produced on STS–47 did not meet total organic carbon requirements, 
had serious bubble issues in microgravity that may or may not be understood. The authors of this work 
have serious concerns about the mixing method proposed. 

Terrestrial hospitals have a wide variety of fluids for medical use, but the mass and storage 
requirements limit what NASA may carry. In particular, human blood or blood products cannot be 
provided on Exploration missions as stored products because of limited storage life and refrigeration 
capabilities. HBOCs are under development as a substitute, but have not reached sufficient maturity to be 
included in NASA’s planning at this time. Colloids are also commonly used for terrestrial medical 
treatment, but recent research questions the efficacy of colloids over crystalloids. It is recommended that 
three types of fluids be available for use in NASA’s Exploration missions: LR (LR); NS (0.9%) (NS); and 
5% dextrose with ¼ NS and 20 mEq KCl (D5KS). These are the most common fluids used for burns, 
trauma, and medication and maintenance requirements, respectively. LR and NS are often considered 
nearly interchangeable during treatment, and it is recommended that they be considered fully 
interchangeable for high-volume, medical fluid treatments during Exploration missions to reduce the 
overall volume requirements. It is also recommended that the medical community evaluate whether the 
LR and NS requirements can be met by one electrolyte to further reduce the logistics requirements. 

The requirements for medical fluids were developed by evaluating the patient conditions in the 
PCDB. Five generic situations were identified to quantify fluid requirements, rather than develop fluid 
requirements for each specific condition. These five conditions were second- and third-degree skin burns, 
hemorrhagic shock, drug delivery, major bone fracture, and fluid maintenance. A major bone fracture is 
actually a subset of hemorrhagic shock, but its potential severity justified a separate examination. Actual 
medical events can require fluid treatment for several of these generic conditions. Table V in Section 3.6 
summarizes the maximum fluid requirements for these generic conditions. 

Typical medical events were postulated and analyzed to determine fluid requirements for the various 
Exploration missions. The maximum fluid requirement scenario for each mission was always a major fire, 
possibly injuring two crewmembers, requiring fluid treatment followed by maintenance fluids as the 
patient(s) recover(s). This scenario is often considered as either the driver for fluid volume requirements, 
or so severe as to preclude any treatment beyond the most basic. Space exploration has already had 
several fire or explosion events (Apollo 1, Apollo 13, and Mir NASA–3) and prudence dictates planning 
for the possibility. Additionally, the planned low-pressure, oxygen-rich environment in the new spacecraft 
increases the fire hazard over ISS, and surface exploration is EVA intensive in a pure-oxygen spacesuit 
environment (ref. 77). 

The recommended fluid volumes are detailed in table XIV in Section 4.5. These recommendations 
should be considered as an upper bound of what would be required. Mission constraints may limit the 
supplies provided onboard, while accepting the subsequent increase in risk. The requirements are similar 
for the ISS and lunar habitat missions, with somewhat increased requirements for a Mars mission. The 
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lunar sortie requirements are substantially less and may require a different type of fluid production system 
if fluids are provided.  

7.1 Fluid System Requirements 

It is recommended that a system capable of generating 130 L of fluid for two time-separated events 
should be developed for ISS and lunar habitat missions. The water generation system should have the 
capability of generating 100 L of medical water at a rate of at least 1 L/hr, at any time after one minor 
event, or have the capability to produce and store sufficient solutions immediately after the first event. 
Concentrate or powder and associated supplies should be available to produce 15 L LR, 15 L NS, and 100 
D5KS. An 8-hr contingency supply of 6 L LR, 6 L NS, and 2 L D5KS should be carried as stores. Note 
that when LR and NS are considered nearly interchangeable as recommended, the 8-hr contingency 
supply is the same as a 2-hr contingency supply for all of the DRMs. The system would preferably have 
the ability to produce new contingency stores with a shelf life of 6 months after a minor medical event 
occurs, otherwise new stores will have to be shipped to ensure a sufficient supply. The least mass a 
system could have, based on powder mass and 50 g/bag, is 12 kg, exclusive of the 12 L of contingency 
stores. The KSC IVF system currently weighs ~25 kg with three circuits producing 200 L each. A rough 
estimate of a refined, scaled system with two circuits producing 100 L each would be 10 kg. Adding 1 kg 
for a lightweight mixer, and the total weight would be approximately 23 versus 139 kg for stored fluids. 
A current trade study looking at various optimized systems indicates the mass may be less than 10 kg. 
Such a system may also be capable of further development to meet the Mars mission as well, possibly as 
two systems with one on the transit vehicle and one in the prepositioned surface habitat. A Mars fluid 
system would have the additional requirement of being capable of generating replacement contingency 
stores with at least a 6-month shelf life. 

The lunar sortie has a much reduced volume requirement, and less concern with long-term sterility. It 
is probably not realistic to carry an 8-hr contingency supply, so a 1-hr supply of 4 L NS is recommended. 
The ability to produce 40 L of solution as 8 L LR, 4 L NS, and 28 L D5KS to handle any one event is 
recommended. Such a system may or may not utilize similar technology as the ISS and Habitat system. A 
filter/adsorption-based system could potentially be developed that masses 10 kg or less inclusive of 
supplies to produce this 40 L. The least a system could mass, based on powder mass and 50 g/bag, is  
3.5 kg, exclusive of the 4 L of stores. A commercial adsorption-based device to produce purified water 
from stream water weighs 0.5 kg to produce 3 L of water. Assuming a similar system could produce 5 L 
from potable water, the weight of a complete system would be approximately 8.5 versus 43 kg for stored 
fluids. 

Exploration missions will be highly mass sensitive, and the mass allocated to medical supplies may 
dictate a smaller volume than discussed above. The minimum recommendations are detailed in Section 
4.5. The lunar sortie is the most mass sensitive, especially since the ISS and lunar habitat are considered 
technology testbeds for Mars missions. A lightweight contingency fluids recommendation for the lunar 
sorties would be for a system capable of producing 12 L of NS, with no fluid stores. This fluid volume 
could cover most trauma situations, and provide a reasonable chance for survival of a patient with burns 
up to 30 percent. NS can also be utilized as a maintenance fluid for limited durations where the caloric 
intake of D5 is not critical. It may be possible to develop such a system in the 3 to 5 kg mass range. 

The solutions produced should meet USP standards to ensure the best possible medical care is being 
provided. The details of these requirements are discussed in Section 5.1.1. There is some concern because 
the USP standards are defined mainly from the process used to produce WFI rather than quantitative 
measurements of the final product. This becomes a problem because the standard processes will have 
problems meeting NASA’s mass requirements. There is an additional complication because NASA 
potable water specifications do not match the EPA potable water specifications that are assumed to be the 
initial source water. Detailed specifications will have to be developed to ensure the medical water system 
and the final produced solutions meet the spirit of the regulations if not the specific process regulations. 
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There are many potential technologies that can be utilized to produce the purified water. Many of 
these technologies are commercially used to purify liquids in industry, or are being developed in 
advanced systems for potable water production. Only distillation and reverse osmosis are currently 
utilized to produce WFI, and the USP WFI standards are written with these processes in mind. NASA’s 
intended usage is significantly different than standard, with production required only occasionally and not 
continuously. Maintaining sterility is more of a concern with occasional production, and the production 
system may be altered to include components that are utilized only for limited durations to prevent 
contamination. NASA’s requirements are also unique in that WFI is not required as the final product. This 
requirement may allow utilizing technologies in a unique fashion to directly produce a solution while 
bypassing intermediate steps. A future trade study will evaluate the potential technologies, incorporating 
the results of small breadboard studies, and recommend the type of system that should be developed for 
NASA’s Exploration missions. 
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Appendix A–Acronyms  
ARDS acute respiratory distress syndrome 
BWI bacteriostatic water for injection 
CCL contaminant candidate list 
D5KS 5% dextrose/0.225% saline/20 mEq potassium chloride/L 
D5W 5% dextrose in water 
DEHP di-(2-ethylhexyl) phthalate 
DRM design reference missions 
EPA Environmental Protection Agency 
ESAS Exploration Systems Architecture Study 
ESM equivalent system mass 
EU endotoxin unit 
EVA extravehicular activity 
FDA Food and Drug Administration 
FLUID filtering liquids for use in intravenous devices 
FO forward osmosis 
FTS fluid therapy system 
Gy gray 
HBOC hemoglobin-based oxygen carrier 
ISS International Space Station 
IV intravenous 
IVF intravenous fluid 
KSC NASA Kennedy Space Center 
L liter 
LAL limulus amebolysate 
LR Lactated Ringer’s 
MODS multiple organ dysfunction syndrome 
MORD Medical Operations Requirements Document 
mOsm milliosmoles 
NASA National Aeronautics and Space Administration 
NF National Formulary 
NPDWR National Primary Drinking Water Regulations 
NS normal saline 
NSDWR National Secondary Drinking Water Regulations 
OD osmotic distillation 
OGS oxygen generation system 
PCDB patient condition database 
pH potential of hydrogen (a measure of acidity) 
PVC polyvinyl chloride 
RBC red blood cell 
RO reverse osmosis 
SBIR Small Business Innovation Research 
SMCCB Space Medicine Configuration Control Board  
SMS space motion sickness 
SSP Space Shuttle Program 
STS space transportation system 
SWFI sterile water for injection  
SWIS sterile water for injection system 
TBSA total body surface area 
TPN total parenteral nutrition 



USP United States Pharmacopeia 
WFI water for injection 
WRS water recovery system 
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