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The receptivity of supersonic boundary layers due to the interaction of a two-

dimensional acoustic wave with a three-dimensional roughness is numerically investigated 

over a 5-degree sharp tipped straight cone at a free stream Mach number of 3.5 and a high 

Reynolds number of 10
6
/inch. Both the steady and unsteady solutions are obtained by 

solving the full Navier-Stokes equations using the fifth-order accurate weighted essentially 

non-oscillatory (WENO) scheme for spatial discretization and using third-order total-

variation-diminishing (TVD) Runge-Kutta scheme for temporal integration.  The 

simulations are performed with different roughness heights and roughness locations. The 

steady computations with the roughness reveal that the perturbations induced by the 

roughness remain very close to the wall and do not penetrate to the outer part of the 

boundary layer. The effects of the roughness persist for about 10 boundary layer thicknesses 

downstream of each element. The unsteady simulation shows the generation of unstable 

three-dimensional first mode disturbances within a short distance from the roughness. 

However, the amplitudes of the instability waves are very small near the neutral point, on 

the order of 10
-4

 compared to the free stream disturbances.  The receptivity coefficients due 

to the roughness elements located very close to the tip are one order of magnitude smaller 

than those due to the roughness elements located closer to the neutral point.  

 

I. Introduction 

In this work, we are concerned with the fundamental question of receptivity in supersonic boundary 

layers over axi-symmetric geometries at zero angles of attack. The stability characteristics of supersonic 

boundary layers have been thoroughly investigated
1-3

. One of the important findings from these 

investigations is that the most unstable disturbances in supersonic boundary layers are three-dimensional. 

The waveangles of the most amplified disturbances are inclined around 60-65 degrees from the inviscid 

streamlines in a boundary layer with an edge Mach number of 3.5. To excite an instability wave in a 

supersonic boundary layer the frequency, the spanwise wavenumber and the streamwise wavenumber of 

the disturbances generated inside the boundary layer by external disturbances should match with those of 

boundary layer instability waves. The frequencies of the disturbances inside the boundary layer in linear 

cases are the same as that in the free stream. The question is what mechanisms determine the spatial 

scales of the disturbances generated inside the boundary layer. 

On flat plate supersonic boundary layers the wavenumbers of the acoustic and the instability waves are 

in the same range. For example, the wave numbers of the acoustic and the instability waves near the 

neutral point for an oblique wave with a spanwise wavenumber of 0.025 are 0.018 and 0.015 

respectively
4
. Hence, in contrast to incompressible flows, the instability waves in supersonic boundary 

layers can be efficiently generated by the free stream acoustic disturbances by weak modulation to the 

acoustic waves. Fedorov and Khokhlov
5, 6, 7

 showed using asymptotic theory that eigen solutions are 

formed near the leading edge region of a flat plate during the diffraction of the acoustic wave by the 

growing boundary layer. This diffraction zone is very long on the order of o(!-2") in the streamwise 

direction, where ! is an asymptotically small parameter and " is the wavelength of the free stream 

acoustic disturbances. In our previous studies
4, 8

, the generation and the evolution of  three-dimensional 
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disturbances induced by slow and fast acoustic waves in a supersonic boundary layer over blunt flat plates 

and wedges at a free stream Mach number of 3.5 were numerically investigated by solving the full three-

dimensional Navier–Stokes equations. It was found that instability waves are generated within one 

wavelength of the acoustic wave from the leading edge. The computed receptivity coefficients based on 

the first mode pressure fluctuations at the wall near the neutral points are about 1.20 and 0.07 for the slow 

and the fast acoustic waves respectively. 

In supersonic boundary layers over axi-symmetric geometries, the azimuthal wavenumber has to be an 

integer due to the circular periodicity in the azimuthal direction. These azimuthal wavenumbers for the 

unstable waves in supersonic boundary layers are large
9
, e.g., on the order of 10 to 30. When these 

wavenumbers are converted to wavelengths by dividing the circumferential length by the wavenumber, 

the wavelengths become very small near the nose and increase gradually in the axial direction. The 

question is then how do the acoustic disturbances in the free stream with long spanwise wavelengths 

generate these small wavelengths, or the large wavenumber disturbances, inside the boundary layer over 

axi-symmetric bodies.  

There may be two scenarios. One is that three-dimensional plane acoustic waves can interact with the 

axi-symmetric geometry and can scatter small scale disturbances inside the boundary layer. We 

considered this possibility in a previous investigation
9
 of the interaction of plane three-dimensional 

acoustic waves with the cone. The unsteady simulations showed that the modulation of wavelength and 

the generation of instability waves first occurred near the leading edge in the plane where the constant 

acoustic phase lines are perpendicular to the cone axis. The receptivity process is very weak in this case 

and the receptivity coefficient is about 10
-3

 compared to 1.20 in the flat plate case. The other scenario is 

that plane acoustic waves can interact with spatial discontinuities at the surface such as roughness and can 

scatter a broad band of disturbances inside the boundary layer. Here, the three-dimensionality is 

introduced by the roughness elements and the required matching of the frequency the spanwise wave 

number, and the streamwise wave number of the instability wave is generated by the bilinear interaction 

between the unsteady acoustic field and the steady three-dimensional field induced by the roughness. This 

mechanism was first explained by Goldstein
10,11

 for incompressible flows. It was shown that the 

receptivity due to roughness is more efficient than that due to the leading edge non-parallel effect. 

Choudhari
12-15

 used a finite Reynolds number approach and computed the local coupling coefficients for a 

wide range of cases including supersonic boundary layers. In this paper, we investigate this possibility by 

simulating the interaction of a two-dimensional acoustic field with isolated three-dimensional periodic 

roughness elements in a supersonic boundary layer.  

We consider a supersonic flow over an axi-symmetric cone with small bluntness at zero degrees angle 

of attack. A schematic diagram of the computational set up is depicted in Fig. 1. Periodic three-

dimensional roughness elements are placed on the surface of the cone close to the nose region. The 

interaction of two-dimensional acoustic waves with the cone and the roughness element is numerically 

simulated to investigate the generation and the evolution of the instability waves inside the boundary 

layer. We note that, in practice, the tip of the cone tends to be non-smooth due to the manufacturing 

difficulties and is likely to have an irregular surface pattern. The question is, how does this irregular 

surface roughness near the tip affect the receptivity process? To investigate this issue we placed the 

roughness elements very close to the tip ~0.05 in. and performed the unsteady simulations. There were 

several relevant transition experiments performed at NASA Langley in the Mach 3.5 Supersonic Low-

Disturbance tunnel.  Boundary-layer transition data on a flat plate and on a cone along with measured free 

stream noise levels and the power spectral distribution of the free stream noise are presented in Ref. 16.  

As a first step, the computations are performed for the same conditions as those used in the experiment. 

 

 

II. Governing Equations 
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The equations solved are the three-dimensional unsteady compressible Navier-Stokes equations in 

conservation form in cylindrical coordinates 
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Here (x, r, !) are the cylindrical coordinates, (u, v ,w) are the velocity components, " is the density, and p 

is the pressure. E is the total energy given by  

E = e +
u
2 + v2 + w2

2
, 

       e = c
v
T ,  p = "RT.                                                                    (3) 

 

Here e is the internal energy and T is the temperature. The fluxes F, G, H and the source term S are 

described in Ref. 9. The viscosity  (µ) is computed using Sutherland’s law and the coefficient of 

conductivity (k) is given in terms of the Prandtl number Pr. The variables ", p, T and velocity are non-

dimensionalized by their corresponding reference variables "#, p#, T# and RT!  respectively. The 

reference value for length is computed by !x
0
/U" , where x0 is a reference location. For the 

computation, the equations are transformed from the physical coordinate system (x, r, !) to the 

computational curvilinear coordinate system 

! 

",#,$( )  in a conservative manner. The corresponding 

Cartesian coordinates are (x, y, z) with z and y-axis oriented along ! = 0 and 90 degree lines respectively, 

Fig. (1).   

A. Solution Algorithm 

The governing equations are solved using a 5th order accurate weighted essentially non-oscillatory 

(WENO) scheme for space discretization and using a third order, total variation diminishing (TVD)  

Runge-Kutta scheme for time integration. These methods are suitable in flows with discontinuities or high 

gradient regions. The governing equations are solved discretely over a uniformly spaced, structured 

computational grid, where flow properties are known point wise at the grid nodes. In a given direction, 

the spatial derivatives are approximated to a higher order at the nodes, using the neighboring nodal values 

in that direction. The resulting equations are then integrated in time to get the point values as a function of 

time. Since the spatial derivatives in one direction are independent of the other coordinate directions, the 

method is easily extended to multiple spatial dimensions. It is well known that approximating a 

discontinuous function by a higher order (two or more) polynomial generally introduces oscillatory 

behavior near the discontinuity, and this oscillation increases with the order of the approximation. The 
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essentially non-oscillatory (ENO) and the improvement of this, WENO methods, were developed to 

maintain the higher order approximations in the smooth regions and to eliminate or suppress the 

oscillatory behavior near the discontinuities. These are achieved by systematically adopting or selecting 

the stencils based on the smoothness of the function that is being approximated. Reference 17 explains the 

WENO and the TVD methods and the formulas. Reference 18 gives the application of the ENO method to 

the N-S equations. Reference 19 describes in detail the solution method implemented in this computation. 

At the outflow boundary, characteristic boundary conditions are used. At the wall, viscous conditions 

are used for the velocities and a constant temperature condition is employed for the temperature. The 

density at the wall is computed from the continuity equation. In the azimuthal direction, symmetric and 

periodic conditions are used at the boundaries. Hence only half the wavelength is considered in the 

computations. In the mean flow computations, the free-stream values are prescribed at the upper boundary 

that lies outside the bow shock. In the unsteady computations, the acoustic perturbations are 

superimposed on the uniform mean flow at the upper boundary. The procedure is to first compute the 

steady mean flow by performing unsteady computations using a variable time step until the maximum 

residual reaches a small value ~10
-11

. A CFL number of 0.10 is used near the nose region and 0.50 is used 

downstream. The next step is to introduce unsteady disturbances at the upper boundary of the 

computational domain and to perform time accurate computations to investigate the interaction and 

evolution of these disturbances downstream. There exists a singularity along the symmetry axis r = 0. 

This singularity is avoided by placing the symmetry axis in the middle of the two grid points around it.  

 The two-dimensional acoustic field that impinges on the outer boundary is taken to be in the 

following form. 

  

                 

! 

" p ac = Real ˜ p ace
i#ac x$ i%t{ }                                                                   (4) 

 

Here $ac is the acoustic wavenumber, and % is the frequency of the acoustic disturbance. 

III. Results 

The Computations are performed for supersonic flows over a 5-degree half-angle cone with a small 

blunt tip.  Table 1 gives the flow parameters and Fig. 1 shows the schematic diagram of the computational 

set up. 

Table 1 Flow parameters for the wind tunnel model 

Free stream Mach number: M#=3.5 

Free stream Reynolds number: Re# =1.0*10
6
/in. 

Free stream density: "#=2.249*10
-2

 lbm/ft
3
 

Free stream pressure: p#=187.74 lbf/ft
2
 

Free stream velocity: U#=2145.89 ft/s 

Free stream temperature: T#=156.42 °R 

Free stream kinematic viscosity: !" =1.7882*10
-4

 ft
2
/s 

Wall temperature: T#=476.0 °R 

Prandtl number: Pr= 0.72 

Ratio of specific heats: &=1.4 
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Length scale 
!"x0

U"

= 5.892*10
#5
ft.  ( x

0
= 0.5  in.) 

Local Reynolds number: 

! 

Re
x

=
U

e
x

"
 

The boundary layer thickness at x
0
= 0.5  in.: '0= .0055 in. 

Non–dimensional frequency F=1*10
-5

 is equivalent to 41.0 kHz 

The non-dimensional frequency F is defined as F =
2!"# f

U#

2
,  

where f is the frequency in Hertz. 

 

The nose region of the cone is modeled as a circle of the form 

! 

(x " r
0
)
2

+ y
2

= r
0

2
                                                                  (5) 

Here r0  is the radius of the blunt nose tip. The circular nose is smoothly merged with the cone by a tenth 

order polynomial. Simulations are performed for a nose radius of r0 = 0.001inches at a unit Reynolds 

number of  1.0*10
6
/inch. 

The grid stretches in the ! direction close to the wall and is uniform outside the boundary layer. In the 

" direction, the grid is symmetric about the tip and very fine near the nose and is uniform in the flat 

region. The grid is uniform in the azimuthal direction. The outer boundary outside of the shock follows a 

parabola with its vertex located a short distance upstream of the nose to capture the boundary layer 

accurately. The computational domain extends from x = -0.015 to 8.0 inches in the axial direction. The 

grid distribution in the axial and in the azimuthal directions over the roughness is shown in Fig. 2. 

Calculations were performed using grid sizes of (2001*251*11) and (3001*251*25) depending on the 

roughness height. Due to the very fine grid requirement near the nose, the allowable time step is very 

small and it becomes very expensive to simulate the unsteady computations in the entire domain at once. 

To overcome this, calculations are performed in two steps. First, the computations are done near the nose 

region with a very small time step. Second, the flow properties in the middle of this domain are fed as 

inflow conditions for the second larger domain wherein a larger time step can be used.  

A. Linear instability 

 The linear stability results for the axi-symmetric similarity boundary layers over the 5-degree half 

angle cone at a free stream Mach number of 3.5 were presented earlier in Ref. 9. The conditions 

downstream of the shock on the surface of the cone are: 

 

Ms = 3.355 

Ts = 1.06 T# 

$s = 1.15 $# 

ps = 1.16 p# 

Res/in =1.075*10
6 

 

Here, Ms, Ts, "s and ps are the inviscid surface Mach number, temperature, density, and the pressure 

respectively. The most amplified frequency is about F = 2.0-2.5*10
-5

 and the azimuthal wave number of 

the most amplified wave is about m = 20~ 25. Figures 3(a) and (b) depict the streamwise wave number, 

growth rate, phase speed and the wave angle for the most amplified disturbance with m = 20 and F = 
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2.0*10
-5

. The wave number increases from 0.008 to 0.085 when the Reynolds number %Rex increases 

from 410 to 3000. The streamwise wave number near the neutral point is about 0.021. The dimensional 

wavelengths of the instability waves are 0.290, 0.214 and 0.207 inches at %Rex =410, 1000 and 3000 

respectively and the wavelength of the two-dimensional acoustic wave is about 0.224 inches.  It is also 

noticed that the phase speed is approaching 1.0 close to %Rex =410. This suggests that the instability 

mode for these parameters merges with the continuous spectrum for the vorticity mode near this Reynolds 

number. The phase speed decreases to about 0.66 around %Rex =1870 and then increases to about 0.71 at 

%Rex =3000. The phase angle decreases from 89 degrees to 42 degrees within this Reynolds number 

range. The Mach angle is about 72.6 degrees for the Mach number of M=3.5. Hence, below a Reynolds 

number of %Rex =1550 the wave direction is outside of the Mach region. This may have implications in 

the receptivity process in the supersonic flows over axisymmetric geometries.  In the experiment
16

 the 

transition occurred close to a Reynolds number of 3000 and this yields an N-Factor of 8.5 for a constant 

m.  

B. Roughness 

A three dimensional, azimuthally periodic roughness strip is placed on the surface of the cone close to 

the nose region. The shape of the roughness is in the form 

! 

yc (x,") = he
#$

x#xr
l

% 

& 
' 

( 

) 
* 

2

cosm"                                                               (6) 

 

Here yc is the height of the roughness normal to the surface of the cone, h is the maximum height, xr is the 

axial location of the roughness, m is the azimuthal wavenumber, l is the length scale and ( is a constant 

that determines the width of the roughness in the axial direction. The Fourier transform of the roughness 

shape is given by 

! 

˜ y c (kx ) =
1

2"
yc (x)e

#ikx x

#$

$

% dx

= h 
1

2 "&
e
#

kx
2

4&

                                                                (7) 

 

Here the variables kx and h are non-dimensionalised by the length scale l.  It is seen that for small kx 

values the spectrum for this roughness shape is almost flat. Computations are performed for m = 20 and 

for different xr ,  h and ( that are given in Table 2. 

  

Table 2 Location and the height of the roughness 

 

Xr (in.) h (in.) &  h/'  

0.50 0.0007 0.01 1/8 

0.25 0.0005 0.01 1/8 

0.25 0.0010 0.01 1/4 

0.05 0.0002 0.02 1/8 

0.05 0.0005 0.02 1/3 

0.05 0.001 0.02 2/3 

 

The local Reynolds numbers at these axial locations xr = 0.05, 0.25 and 0.50 inches are about %Rex = 

230, 520 and 730 respectively. The density profiles without the roughness elements at the axial locations 

where the roughness elements are located are plotted in Figs. 4(a)-(f). The shapes of the roughness 
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profiles are also depicted in the figures for comparison. The roughness height compared to the boundary 

layer thickness is about 1/8
 
at xr = 0.05 with the roughness height of 0.0002 inches and is 1/8 at xr = 0.25 

and 0.50 inches with roughness heights of 0.0005 and 0.0007 inches. 

C. Mean flow with and without roughness 

The mean flow density contours and boundary layer profiles computed using the WENO code without 

the roughness elements are given in Ref. 9. The computations are performed at a unit Reynolds number of 

1.0*10
6
/inch which yields a Reynolds number based on the nose radius of 10

3
. Figure 5(a) shows the 

density contours in a larger domain while figure 5(b) shows the flow field near the nose region. The 

leading edge shocks are located approximately at 0.0002 inches upstream of the leading edge. The 

boundary layer profiles approach the similarity profiles at about x = 1.0 inches from the leading edge. 

Figures 6(a-d) show contours of the radial velocity component, v, close to the roughness element for 

different cases. The figure reveals the modification due to the roughness and the radiation of the Mach 

waves that originate from the roughness. The perturbations and the strength of the Mach waves increase 

with the roughness height. In the next three figures we present the flow fields near the roughness elements 

in different planes. Figures 7(a-b) show the contours of the azimuthal velocity, w, component above the 

roughness element in the (x, r) plane. Figures 8(a-d) depict the contours of the w velocity in the cross 

sectional (y, z) planes across the roughness for different cases. Figures 9(a-b) show the contours of the w 

velocity in the plan view (x, r!) plane. The figure shows the lifting of the fluid away from the roughness 

in upstream of the roughness and turning back towards the wall in downstream of the roughness similar to 

formation of a longitudinal vortex. However, the strength diminishes in a short distance downstream of 

the roughness. In figure 10 we plotted the density and the azimuthal velocity profiles above the 

roughness. Figure 10(a) shows the results for the case xr = 0.05 and h = 0.0005 inches and figure 10(b) 

shows the results for the cases xr = 0.25 and h = 0.0005, 0.001 inches, and xr = 0.50 and h = 0.0007 

inches. In figure 10(b) we also plotted the eigenfunction profile for the w velocity component obtained 

from the linear stability computations for the case with F = 2.0*10
-5

 and m = 20. One important 

observation is that the steady perturbations induced by the roughness are confined close to the surface and 

do not penetrate to the outer part of the boundary layer where the eigenfunctions peak in supersonic 

boundary layers. Another observation is that the amplitude of the perturbation decays to small values near 

the region where the eigenfunction peaks. The maximum amplitude of the perturbations is about 0.03 and 

it reduces to 0.0015 near the region where the eigenfunction peaks. 

D. Interaction of a two-dimensional acoustic wave with the cone without the roughness 

The governing equations and the solutions for plane acoustic waves are given in Ref. 4. After the 

mean flow is computed, two-dimensional plane acoustic disturbances are introduced at the outer 

boundaries and the time accurate simulations are performed to investigate the evolution of disturbances 

inside the boundary layer. The simulations are performed for a non-dimensional frequency of F=2.00*10
-

5
. The amplitude of the free stream acoustic disturbances is 

! 

pac / p" =1.0*10
#5

. Figures 11(a-b) show the 

evolution of the unsteady perturbations obtained from the simulations. Figure 11(a) shows the contours of 

the density fluctuations in the entire domain and Fig. 11(b) shows the instantaneous pressure fluctuations 

along the wall. As expected the two-dimensional disturbances are almost neutral and the amplitude 

increased very slowly by a factor of 3.0 from  x =0.05 to  8.0 inches.  Figure 12 shows the amplitude of 

the density fluctuations across the boundary layer at different axial locations x = 0.05, 0.25 and 0.50 

inches where the roughness elements were later located. It is seen that the amplitudes of the fluctuations 

inside the boundary layer have the same magnitudes as in the free stream and the amplitudes peak near 

the outer part of the boundary layer. If we compare figures 10(b) and 12 at x = 0.25 and 0.50 we see that 

the steady perturbations peak at about y/' ~1/8, the density perturbations due to the acoustic wave without 

the roughness peaks at y/'~2/3 and the eigenfunction for the three-dimensional instability waves peaks at 

y/'~3/5. As we discussed earlier the instability waves are going to be generated by the bilinear interaction 
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between the flow fields shown in figures 10 and 12. Hence we expect the interaction will be weak in 

generating the instability waves. 

E. Interaction of a two-dimensional acoustic wave with the cone with the roughness. 

After the mean flow is computed for the cone with the roughness element, two-dimensional plane 

acoustic disturbances are introduced at the outer boundaries as discussed in the previous section. The 

simulations are performed for a non-dimensional frequency of F=2.00*10
-5

 and for an azimuthal 

wavenumber of m =20 with different roughness locations and heights. To remain in the linear regime, 

very small initial amplitude of 

! 

˜ p ac / p" =1.0*10
#5

 is prescribed for the free-stream acoustic waves. 

Figure 13 shows the results for the evolution of the unsteady fluctuations obtained from the simulation at 

a fixed time for the case  xr=0.50 and h = 0.0007 inches. Figure 13(a) shows the contours of the density 

fluctuations near the roughness in the 0-degrees phase plane and Fig. 13(b) depicts the contours for the 

azimuthal velocity, w,  inside the boundary layer in the 90-degrees phase plane. It should be noted that the 

azimuthal velocity field shown in Fig. 13(b) is purely generated by the interaction of a two-dimensional 

acoustic wave with the three-dimensional roughness elements. The scattering of the unsteady field by the 

roughness along the Mach lines and inside the boundary layer and the generation of the disturbances 

downstream of the roughness are clearly seen in the figure 13(b). Figures 14(a-c) show the instantaneous 

three-dimensional pressure fluctuations along the wall near the roughness for the cases (xr, h) =(0.50, 

0.0007), (0.25, 0.0005) and (0.25, 0.001). Similarly, figure 15 shows the corresponding results farther 

downstream from the roughness array. Figures 16(a-b) show the amplitude of the pressure fluctuations 

along the wall and the maximum three-dimensional density fluctuations in a log scale for the cases  (xr, h) 

=(0.50, 0.0007) and  (0.25, 0.0005). Figure 16 also includes the results from the parabolized stability 

equations (PSE) computations obtained for the same mean boundary layer profiles. The figures clearly 

show the initial generation and the eventual exponential growth of the instability waves inside the 

boundary layer. However, in all the cases the amplitudes of the fluctuations generated by this process are 

very small. The pressure fluctuations close to the roughness elements are on the order of 10
-8

 and the 

maximum density fluctuations are on the order of 10
-6

.  

The growth of the disturbances agrees very well with the PSE results downstream of the neutral point. 

Following the PSE results up to the neutral point, the initial amplitude of the instability waves at the 

neutral point can be estimated. From these values the receptivity coefficients defined by the initial 

amplitude of the pressure fluctuations at the wall at the neutral point non-dimensionalised by the free-

stream acoustic pressure can be evaluated.  

 

! 

Crecpt,pwall
=
(pwall )n

pac
                                                              (8) 

 Similarly, the receptivity coefficients based on the maximum density fluctuations inside the boundary 

layer normalized by 

! 

"
ac

can be defined. The computed receptivity coefficients for different cases are 

given in Table 3. 

 

Table 3 Receptivity coefficients for different roughness locations and heights 

 

Xr (in.) h (in.) 

! 

Crecpt,pwall  

! 

Crecpt,"max  
0.50 0.0007 3.0*10

-4
 3.1*10

-2 

0.25 0.0005 1.2*10
-4 

1.2*10
-2 

0.25 0.0010 1.8*10
-4 

1.7*10
-2 

0.05 0.0002 2.7*10
-6 

2.1*10
-4 

0.05 0.0005 3.3*10
-5 

2.9*10
-3 

0.05 0.001 9.9*10
-5

 9.0*10
-3 
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As was discussed earlier, the receptivity coefficients are much smaller on the order of 10
-4

 compared 

to 1.20 in the flat plate case. The receptivity is the highest when the roughness is located closer to the 

neutral point, xr =0.50.  

Similarly, we performed the simulation with the roughness elements located very close to the tip of the 

cone, xr = 0.05 inches. Figures 17 and 18 show the results for these cases (xr, h) =(0.05, 0.0002), (0.05, 

0.0005) and (0.05, 0.001).  Figure 17 presents the pressure fluctuations along the wall closer to the 

roughness and figure 18 shows the pressure fluctuations and the maximum density fluctuations in log 

scale. The free stream acoustic pressure levels for these cases are 

! 

˜ p ac / p" =1.0*10
#4

. We also 

performed grid refinement studies with a smaller computational domain in the radial direction but with 

the same number of grid points. The results are included in figures 17(a) and (b). The figures confirm that 

the results obtained are accurate and independent of grid resolutions.  We computed the receptivity 

coefficients by following the PSE results as was done previously. The receptivity coefficients are given in 

Table 3. The receptivity coefficients are one order smaller than that was obtained for the earlier cases with 

the roughness elements located closer to the neutral point. This suggests that roughness elements located 

closer to the tip do not introduce large disturbances in the supersonic boundary layers over a cone with 

slightly blunt nose tip. 

 IV. Summary and Conclusions 

The supersonic boundary layer receptivity process due to the interaction of two-dimensional acoustic 

disturbances with a three-dimensional element for the flow over a sharp 5-degree cone is numerically 

investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10
6
/inch. Both the 

steady and unsteady solutions with and without roughness elements and unsteady solutions are obtained 

by solving the full Navier-Stokes equations using the 5
th

-order accurate weighted essentially non-

oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing 

(TVD) Runge-Kutta scheme for time integration.  

The roughness elements are placed at different axial locations close to the nose region. The roughness 

height varies between 1/8 to 2/3 of the boundary layer thickness. The mean flow field showed a 

displacement of the boundary layer and generation of Mach waves near the roughness elements. The 

effects of the roughness persist for about 10 boundary layer thicknesses downstream of the roughness. 

One important finding is that the steady perturbations induced by the roughness elements are confined 

close to the wall, within 1/8
th

 of the boundary layer thickness. These disturbances do not penetrate outside 

the boundary layer and decay very fast in the outer part of the boundary layer. The unsteady simulations 

without the roughness element showed as expected that the two-dimensional disturbances inside the 

boundary layer remain almost neutral up to the transition point. The unsteady simulations with the 

roughness revealed that due to the interaction of the two-dimensional acoustic disturbances with the three-

dimensional roughness elements, the first mode instability waves are generated within a short distance 

from the roughness. However, the amplitude of the excited disturbances near the neutral point is very 

small compared to the free stream acoustic disturbances. The receptivity coefficient based on the pressure 

fluctuations at the wall near the neutral point is about 5.0*10
-4

 for the case  (xr, h) = (0.50, 0.0007).  It is 

also observed that the receptivity coefficient increases when the roughness is located close to the neutral 

point.  The receptivity coefficient is an order of magnitude smaller when the roughness is located very 

close to the tip of the cone. This implies that the isolated imperfections produced by manufacturing 

defects should not introduce large disturbances inside the boundary layer. One question that is not 

investigated is the effect of distributed roughness in the generation of instability waves in supersonic 

boundary layers. That will be addressed in future work. 
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Figure 1. Schematic diagram of the computational model. 
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Figure 2. Grid distribution. 
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Figure 3. Wavenumber and growth rate (a)  and phase speed and waveangle (b) for the boundary layer over a 

5-deg cone. M! = 3.5. m=20 F=2.0*10
-5

. 
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Figure 4. Density profile without the roughness and the roughness shape at different locations. 

 

 

Figure 5. Contours of the density for flow over a 5-degree cone with a blunted leading edge at M=3.5. 
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Figure 6. Contours of the radial velocity above the roughness m = 20. 

 

 

 

Figure 7. Contours of the azimuthal velocity above the roughness m = 20. 

 

 



38
th

 AIAA Fluid Dynamics Conference and Exhibit, June 23-26, 2008, Seattle, Washington 

 
American Institute of Aeronautics and Astronautics 

14 of 17 

 

Figure 8. Contours of the azimuthal velocity above the roughness elements in the cross sectional plane (Y-Z). 

m =20. 

 

 

Figure 9. Contours of the azimuthal velocity in the  (X-r( ) plane. m =20. 
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Figure 10. Density and the azimuthal velocity profiles above the roughness m = 20. 

 

Figure 11. Contours of the density fluctuations (a) and the pressure fluctuations along the wall (b) due to 2D 

acoustic disturbances without the roughness. F=2.0*10
-5

, pac/p#=1.0*10
-5

. 
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Figure 12. Amplitude of the density fluctuations inside the boundary layer at different axial locations due to 

2D acoustic disturbances without the roughness. F=2.0*10
-5

, pac/p#=1.0*10
-5

. 
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Figure 13. Contours of the density fluctuations (a) and the azimuthal velocity fluctuations (b) due to the 

interaction of 2D acoustic disturbances with the roughness. Xr=0.50in., h=0.0007 in., m=20,  F=2.0*10
-5

, 

pac/p#=1.0*10
-5
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Figure 14. Pressure fluctuations of the instability waves along the wall close to the roughness due to the 

interaction of the acoustic waves with the roughness. 
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Figure 15. Growth of the pressure fluctuations of the instability waves along the wall due to the interaction of 

the acoustic disturbances with the roughness. 
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Figure 16. Pressure fluctuations and the maximum density fluctuations due to the interaction of the acoustic 

disturbances with the roughness. 
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Figure 17. Pressure fluctuations of the instability waves along the wall due to the interaction of the acoustic 

disturbances with the roughness. 

0 1 2 3 4
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

X (in.)

p
w
!
max

Roughness location = 0.05 in.
Roughness height = 0.0002 in.

(a)

P
re
s
s
u
re
,
pw

D
e
n
s
it
y
,!
m
a
x

PSE

PSE

0 1 2 3 4
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

X (in.)

Roughness location = 0.05 in.
Roughness height = 0.0005 in.

(b)

P
re
s
s
u
re
,
pw

D
e
n
s
it
y
,!
m
a
x

p
w
!
max

 

Figure 18. Pressure fluctuations and the maximum density fluctuations due to the interaction of the acoustic 

disturbances with the roughness. 


