Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

Cassie Smith¹, Stuart MC Lee², Mitzi Laughlin², James Loehr², Jason Norcross², John DeWitt³, RD Hagan⁴, FACSM

JES Tech¹, Wyle Laboratories², Bergalia Engineering Services³, NASA Johnson Space Center⁴, Houston, TX

INTRODUCTION: Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription.

PURPOSE: To quantify heart rate (HR), oxygen consumption (VO₂), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects.

METHODS: Twenty subjects (10 men, 10 women; 31 ± 5 yr, 172 ± 10 cm, 68 ± 13 kg, mean \pm SD) with a treadmill peakVO₂ of 45.5 ± 5.4 ml·kg⁻¹·min⁻¹ (mean \pm SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO₂ was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. **RESULTS:** All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO₂ HR, RPE and BLa were significantly higher during T-NM locomotion at

both speeds.

Mode	Speed (mph)	HR (bpm)	$\underline{\text{VO}_2}(1 \cdot \text{min}^{-1})$	RPE	<u>BLa (mmol·l⁻¹)</u>
T-M	2	87 ± 2	0.71 ± 0.03	7.2 ± 0.3	1.47 ± 0.10
T-NM	2	$123 \pm 4*$	$1.48 \pm 0.05*$	$9.7\pm0.5*$	$1.95 \pm 0.18*$
T-M	4	110 ± 4	1.51 ± 0.09	9.1 ± 0.5	1.92 ± 0.29
T-NM	4	$171 \pm 2*$	$3.11 \pm 0.08*$	$14.5\pm0.7*$	$8.76\pm0.68*$

* Significantly different than T-M (p<0.05)

CONCLUSION: Locomotion during TVIS-N requires a significantly greater physiologic demand than TVIS-M at the same speed, including an apparently greater reliance on anaerobic energy production, such that not all subjects can exercise for long periods of time at higher TVIS-NM speeds. This information will be used to refine prescriptions for in-flight treadmill exercise countermeasures during long duration space flight and can be applied to ground-based non-motorized locomotion utilizing a treadmill with similar characteristics.