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Effects of a Rotating Aerodynamic Probe on 
the Flow Field of a Compressor Rotor 

 
 

Jan Lepicovsky 
ASRC Aerospace Corporation 

Cleveland, Ohio 44135 
ABSTRACT 

An investigation of distortions of the rotor exit flow field caused by an 
aerodynamic probe mounted in the rotor is described in this paper.  A total pressure Kiel 
probe, mounted on the rotor hub and extending up to the mid-span radius of a rotor blade 
channel, generates a wake that forms additional flow blockage.  Three types of high-
response aerodynamic probes were used to investigate the distorted flow field behind the 
rotor.  These probes were: a split-fiber thermo-anemometric probe to measure velocity 
and flow direction, a total pressure probe, and a disk probe for in-flow static pressure 
measurement.  The signals acquired from these high-response probes were reduced using 
an ensemble averaging method based on a once per rotor revolution signal. The rotor 
ensemble averages were combined to construct contour plots for each rotor channel of the 
rotor tested.  In order to quantify the rotor probe effects, the contour plots for each 
individual rotor blade passage were averaged into a single value.  The distribution of 
these average values along the rotor circumference is a measure of changes in the rotor 
exit flow field due to the presence of a probe in the rotor.  These distributions were 
generated for axial flow velocity and for static pressure. 
 
 
NOMENCLATURE 
Symbols 
CSP [1]  static pressure coefficient  {(pSP – PAMB)/(0.5*ρ*UBT

2)} 
CTP [1]  total pressure coefficient   {(pTP – PAMB)/(0.5*ρ*UBT

2)} 
CVX [1]  axial velocity coefficient   {VAX/UBT} 
h [mm]  radial coordinate 
n [%]  relative rotative speed 
PAMB [kPa]  ambient pressure 
pSP [kPa]  static pressure 
pTP [kPa]  total pressure 
UBT [m/s]  rotor blade tip speed 
VAX [m/s]  axial velocity component 
VIN [m/s]  inlet average velocity 
z [mm]     rotor blade height 
 
φ  [1]  compressor flow coefficient   {VIN/UBT} 
ρ [kg/m3]  air density 
τ [1]  rotor blade passage relative period 
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ΘAX  [%]  fraction of rotor sector average   (axial velocity component) 
ΘSP  [%]  fraction of rotor sector average   (static pressure) 
 
Abreviations 
BR  blade root 
BT  blade tip 
CA  channel average 
IGV  inlet guide vanes 
LE  leading edge 
LS  lower span 
MS  mid span 
OPR  once-per-revolution mark 
PRB  rotor probe 
RB  rotor blade 
RBC  rotor blade channel 
RBR1  stage 1 rotor blade row 
S---  fixed measurement station (port) 
SP  split plane of compressor shroud 
SVR1  stage 1 stator vane row 
US  upper span 
 
 
MOTIVATION 

In order to measure flow parameters in the relative flow frame of a spinning rotor 
directly, aerodynamic probes must be mounted in the rotor cascade.  Placing probes in 
rotor blade channels, however, causes flow blockage, which affects the flow pattern in 
the follow-up stages of the machine under test.  The work presented in this paper focused 
on an investigation of the effects of the rotating aerodynamic probe on the rotor outflow.  
A Kiel total pressure probe was mounted on the rotor hub at a mid-chord location in the 
first stage of the NASA Low Speed Axial Compressor (LSAC) to measure rotor inlet 
pressure in the relative flow frame.  The probe extended up to the mid-span radius of the 
rotor.  The probe generates a wake that forms an additional flow blockage in the given 
rotor channel.  It is intuitively obvious that the flow field in this particular blade channel 
will differ from the flow field patterns in the remaining rotor channels.  It is not quite 
clear, however, what are the probe wake effects and how much this probe wake will 
modify the flow field at the inlet plane of the adjacent stator cascade.  Also, it is not clear 
if the wake effects are contained to the particular rotor blade channel only, or by how 
much the flow field in the neighboring rotor channels is also affected. 

 
 
LOW SPEED AXIAL COMPRESSOR 

The NASA LSAC test facility was utilized for this study.  The LSAC facility is 
described in detail in Refs. 1 through 3, so only the basic characteristics are stated here.  
The research compressor comprises an inlet guide vane row followed by four 
geometrically identical axial stages (rotors and stators).   The case radius is 
610 mm, and the hub radius is 488 mm;  thus the ratio of hub to tip radii is 0.8.  The rotor 
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has 39 blades.  The rotor blade channel throat area is 5320 mm 2.  Compressor design 
flow coefficient is 0.395.  The compressor was operated during this entire investigation at 
a constant physical speed of 984 ± 1 rpm (n = 100% ) at the last stable operation point 
close to the surge limit (φ = 0.345). 

 
The Kiel probe, mounted in the first stage rotor, is shown in the photographs of 

Fig. 1.  The location of the rotor probe with respect to the once-per-revolution (OPR) 
mark is shown in Fig. 2.  The OPR mark, a black stripe, is used in conjunction with an 
optical pickup to generate a single voltage pulse per each rotor revolution.  As seen in 
Fig. 2, the rotor blades are labeled for identification.  The Kiel probe is located in rotor 
blade channel RBC29, which is between rotor blades RB29 and RB30.  The probe extends 
to the channel mid-span radius, where the probe occupies a projected area of 185 mm 2.  It 
follows that the geometric blockage due to the probe presence in the blade channel is 
3.5%.  

 
The compressor partial layout is shown in Fig. 3.  The axial section, depicted in 

the upper right quadrant, covers only the inlet guide vane row, and both rows of the first 
stage.  In the compressor cross-section, only part of the compressor left half is shown.  
The position of the rotating probe in the rotor leading edge plane, as well as the fixed 
measurement stations behind the first stage rotor are clearly identified in the drawings.  
All dimensions are related to the split plane of the compressor shroud.  The angular 
positions of the fixed measurement stations are related to the “12 o’clock” point on the 
compressor shroud.  The optical pickup for the OPR signal is at the “6 o’clock” position.  
Blading of the compressor first stage and a layout of measurement stations are presented 
in Fig. 4.  The rotor probe (PRB) is, of course, moving with the rotor.  The stations S15A 
and S15B are probe ports made in the compressor shroud, and therefore they are at fixed 
positions.  High-response aerodynamic probes to determine changes in the rotor flow 
field due to the PRB wake were inserted into the compressor through these ports. 

 
 
INSTRUMENTATION 

Three types of high-response aerodynamic probes were used to investigate the 
unsteady flow field behind the rotor.  These probes were: a split-fiber thermo-
anemometric probe to measure velocity and flow direction, a total pressure probe, and a 
disk probe for in-flow static pressure measurement.  The probes are shown in Figs. 5, 6, 
and 7; detailed descriptions of these probes are in Refs. 3 and 4, so only the basic data are 
given here.  The frequency response of the commercial (Dantec Inc.) split-fiber probe 
used is flat up to at least 10 kHz (Ref. 3), which is sufficient for reliable unsteady velocity 
acquisition in the LSAC facility (blade passing frequency is only 640 Hz).  Details of the 
signal decomposition procedure for the split-fiber probe to distinguish between velocity 
and flow direction signals are given in Ref. 3.  Both pressure probes, total and static, are 
in-house designs, and are described in detail in Ref. 4.  The probes have built-in 
miniature Kulite pressure transducer with a 7 kPa (1 psid) pressure range.  The total 
pressure probe has a flat frequency response up to 35 kHz, whereas the disk static 
pressure probe frequency limit is 70 kHz. 
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The high-response aerodynamic probes were inserted one after another in the gap 
behind the rotor through the same access ports (S15A and S15B), and the compressor was 
repeatedly operated at the same conditions.  The probes were traversed along the rotor 
blade span starting at the compressor shroud to acquire data over the entire rotor flow 
field. 

 
 
ROTOR ENSEMBLE AVERAGING 

The signals acquired from high-response probes were reduced using an ensemble 
averaging method based on a once per rotor revolution signal.  Using this method, 
continuous data records five seconds long were subdivided into 65 segments, each 
segment being equal to one rotor revolution, and all segments were averaged into a 
resulting distribution equal to the rotor revolution period.  Parsing the resulting 
distribution into 39 subsegments (the rotor investigated has 39 blades) separate 
distributions for each rotor blade channel were acquired.  This procedure was applied to 
every span position of the probes that were traversed behind the rotor.  In this way, 
individual contour plots for each rotor channel were constructed. 

 
 
CONTOURS OF FLOW PARAMETERS 

In order to show clearly the effects of the rotor probe on the flow field in the rotor 
passages involved, only parts of the entire rotor flow field will be shown.  As seen in 
Figs. 2 and 4, the rotor blade channel most affected is channel RBC29.  Because the 
majority of rotor blade channels is not affected by the probe presence, only two of three 
channel groups will be shown.  The first group, the wake channels group, comprises 
channels RBC28, RBC29, and RBC30, and the second group, the free flow group, which 
is 180 dg from the wake group, comprises channels RBC10, RBC11, and RBC12.  As a 
rule, the free flow group is always shown first in the following contour plots. 

 
As indicated in Figs. 3 and 4, there are two access ports in the compressor shroud 

S15A and S15B.  Inspecting Fig. 4, it can be seen that the port S15A is located close to a 
flow stream line that enters the stator cascade at the mid-pitch of the stator vane channel.  
On the other hand, the port S15B is on a flow stream line heading for the stator vane 
stagnation region.  Consequently, the differences between flow parameter contours 
generated for these two ports must reflect the effects of stator vanes on the rotor flow 
field. 

 
Contours of axial velocity coefficient for the free flow channels for both access 

ports are presented in Fig. 8.  As seen here, there are no visible differences in the flow 
patterns of individual channels for a given port.  As discussed above, the velocity levels 
are lower for the S15B port (stator vane stagnation region) than for the S15A port (mid-
pitch region of the stator vane channel).  The situation is quite different for the wake 
channels group (Fig. 9).  As expected, the flow pattern in channel RBC29 is severely 
affected by the rotor probe wake.  Flow is heavily blocked and separated from the suction 
surface in this channel (the affected area is over 20% of the entire blade channel).  The 
suction surface of the next channel (RBC30) also suffers larger separation than it was for 
the free flow channel, albeit significantly smaller than that for channel RBC29. 
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Static pressure coefficient data are presented in Figs. 10 and 11.  Static pressure 
patterns for the free flow cannels measured at port S15A are noticeably different from 
those measured at port S15B (Fig. 10).  In general, the static pressure in both data sets 
increases toward the blade tip.  However, for station S15A (mid pitch of stator vane 
channel) the pressure levels are quite low, and in particular in the rotor blade wake 
regions the static pressure depressions extend up to 70% of the blade span.  For station 
S15B (stator vane stagnation region) zones of high pressure spread from the blade tip 
down to 20% of the blade span.  Static pressure patterns for the wake channels group 
(Fig. 11) are, at first glance, somewhat similar to the free flow channels group.  For 
station S15A (mid pitch) the difference from the free flow channels is mostly in channel 
RBC29, where an extended zone of low pressure close to the rotor hub can be observed.  
At station S15B (vane stagnation region), the difference can be observed mainly along the 
pressure surface of channel RBC28. 

 
Finally, contours of total pressure coefficient are introduced in Figs. 12 and 13.  

Total pressure contours for the free flow channels appear quite uniform over the most of 
the rotor channel area.  There are limited regions of higher pressure at mid pitch, just at 
the compressor shroud (blade tip).  These spots are probably associated with the blade tip 
cross flow.  Further, there are stripes of elevated pressure along the full span of the blade 
channel pressure surface, and finally, there are pressure depression zones at the blade 
channel suction surface close to the blade roots.  The major difference between data for 
stations S15A and S15B is that the pressure pattern variations described seem to be more 
extreme for the stator mid-pitch data (S15A) than for the vane stagnation region (S15B).  
It is as if the stagnation regions of the stator vanes smoothed out the total pressure 
variations.  The situation for the wake channels group differs from the previous one 
mainly by enlarged total pressure depression in the hub and the suction surface corner of 
blade channel RBC28, and by noticeable pressure increase in the hub region of blade 
channel RBC 29, in particular in the hub and pressure surface corner of this blade 
channel.  The zone of increased total pressure in the hub region of channel RBC29 is 
probably a manifestation of increasing tangential velocity component in this region on the 
account of diminishing axial velocity (Fig. 9).  There is no significant difference between 
vane mid-pitch data (S15A) and the vane stagnation region data (S15B). 

 
 
CIRCUMFERENTIAL VARIATION OF CHANNEL AVERAGES 

In order to quantify the rotor probe effects, the contour plots for each individual 
rotor blade passage were averaged into a single value.  The distribution of these average 
values along the rotor circumference is a measure of changes in the rotor exit flow field 
due to the presence of a probe in the rotor.  These distributions were generated for axial 
flow velocity and for static pressure. 

 
Several averages were calculated as is schematically indicated in Fig. 14.  The 

first was the average over the entire area of a rotor blade channel.  Then, sector averages, 
which are averages for partial channel area, were calculated.  These averages are called: 
(1) blade tip sector (calculated over an area between 80% and 100% of the blade span), 
(2) upper span sector (area between 60% and 80% of the blade span), (3) mid span sector 
(area between 40% and 60% of the blade span), (4) lower span sector (area between 20% 
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and 40% of the blade span), and finally (5) blade root sector (area between 0% and 20% 
of the blade span). 

 
Circumferential variations of rotor channel average axial velocity are presented in 

Fig. 15.  The top most bar diagram in this figure presents the distribution of channel 
overall averages.  The abscissa identifies all 39 rotor blade channels, and the ordinate 
records axial velocity coefficient.  As seen in this diagram, the average value for most of 
the channels in nearly identical except for channel RBC29, that shows a noticeable 
depression.  This is the channel which contains the rotor probe.  It appears that the 
neighboring channels RBC28 and RBC30 show a slight increase in the axial velocity, 
probably counterbalancing the velocity deficit in channel RBC29.  
 
 An extremely interesting diagram is the next diagram for the blade tip sector that 
reveals huge variations of axial velocity average values along the rotor perimeter.  The 
reason for such huge variation is not obvious.  It should be emphasized here that the 
diagram is an average over 65 rotor revolutions, so the variations are not random but 
highly repeatable.  The upper span sector (the third diagram) indicates uniform averages 
for nearly all of the channels, again with an exception for channel RBC29.  Contrary to 
the overall averages (the first diagram), channel RBC29 has a visibly higher value of the 
axial velocity coefficient than the rest of the channels in the upper span sector.  As seen 
in Figs. 1 and 2, the rotor probe blocks the lower half of the rotor channel RBC29.  
Obviously, the blockage in the lower half causes axial velocity increase in the upper half 
of the blade channel RBC29. The following three diagrams for mid span, lower span, and 
blade root sectors show various degrees of a large axial velocity deficit for channel 
RBC29.  In addition, they also show small but visible variations of axial velocity among 
the rest of the rotor channels.  

 
The circumferential variations of channel averages for the static pressure 

coefficient indicate a different character than the axial velocity coefficient, as is 
immediately obvious in Fig. 16.  First, all the diagrams in this figure show the same 
character, varying only in a degree of pressure depression for channel RBC29.  Contrary 
to the axial velocity diagrams, the probe effect is not limited to channel RBC29 only, but 
a pressure depression is clearly visible also in channel RBC28, which precedes the rotor 
channel containing the probe. 

 
 
CONCLUSION 

Mounting a probe in the rotor causes deterioration in the rotor outlet flow. The 
defects in static pressure and axial velocity component due to the presence of an 
aerodynamic probe in the rotor are summarized in Fig. 17.  The diagram on the left hand 
side is for static pressure coefficient, and that on the right hand side is for axial velocity 
coefficient.  The abscissa in both diagrams identifies blade channel average (CA), and the 
following sectors: blade tip (BT), upper span (US), mid span (MS), lower span (LS), and 
blade root (BR).  The ordinate records the flow parameter depression in an affected rotor 
blade channel as a fraction of the parameter average taken over all remaining channels 
not affected by the rotor probe presence.   It was shown in Figs. 15 and 16 that in the case 
of axial velocity only channel RBC29 was affected by the probe wake, whereas for static 
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pressure case two channels RBC28 and RBC29 were affected.  Therefore, only these two 
channels are shown in Fig. 17.   

 
As seen in Fig. 17 the probe presence is manifested for the channel overall 

average as well as for all the sector averages.  For the static pressure coefficient, the value 
in channel RBC28 is about 95% of the average value, and for channel RBC29 it is only 
86%.  Both channels show static pressure depression along the entire blade span.   The 
effects on the axial velocity coefficient are shown in the diagram on the right hand side of 
Fig. 17.  The axial velocity level in channel RBC29 is lower than is the average of the rest 
of the rotor channels (down to 96%); however, for the sector averages the situation is 
different.  In the upper half of the blade channel, RBC29 (sectors BT and US), the axial 
velocity is higher than the average level (about 103%), and then rapidly drops down to 
about 88% in the lower half of the rotor blade channel (sectors MS, LS, and BR).  Clearly, 
the consequence of increased blockage and decreased axial velocity in the lower channel 
half is an increase in axial velocity component in the upper, unblocked, portion of the 
rotor blade channel. 

 
The qualitative and quantitative findings about the flow field distortion due the 

presence of an aerodynamic probe in a compressor rotor do not tell the entire story.  A 
probe mounted in a compressor rotor will undoubtedly also affect onset of rotating stall 
and stability limits of a compressor tested.  Such investigations, however, were beyond 
the scope of this study. 
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       Fig. 1.      The total pressure probe in a rotor blade passage. 

          Fig. 2.     View of the first rotor  (OPR = once per revolution, RB = rotor blade). 
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        Fig. 3.     Layout of measurement stations and compressor basic dimensions. 
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Fig. 7   Disk probe for in-flow unsteady static pressure measurements (shown at two span positions). 

Fig. 6  Unsteady total pressure 
probe installed in an axial 
research compressor.

Fig. 5  Split-fiber probe in the  
gap between rotor and 
stator of the compressor 
first stage.  

 Fig. 4.   First stage blading and projected
              wake trajectory of the rotor probe. 
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            Fig. 8.     Contours of axial velocity coefficient for the free flow channels group. 
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            Fig. 9.     Contours of axial velocity coefficient for the wake channels group. 
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         Fig. 10.     Contours of static pressure coefficient for the free flow channels group. 
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            Fig. 11.     Contours of static pressure coefficient for the wake channels group. 
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          Fig. 12.     Contours of total pressure coefficient for the free flow channels group. 
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            Fig. 13.     Contours of total pressure coefficient for the free flow channels group. 
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                         Fig. 15.     Channel averages of axial velocity coefficients. 
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                          Fig. 16.     Channel averages of static pressure coefficients. 
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                          Fig. 17.     Wake channel parameter level relative to sector average. 
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