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1.0 Program Objectives 

 

The purpose of this Cooperative Agreement was to conduct a shared resource project to 

develop revolutionary technologies and manufacturing processes for low-cost, 

environmentally compliant, innovative turbine engine propulsion systems. Such 

technology would lead to the revitalization of the light (less than 6 seat, less than 5000-lb 

gross weight, greater than 200-knot design cruise speed) general aviation (GA) industry 

in the U.S.. The Master Schedule for the GAP Program is shown below. 
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The GAP Program Turbine Engine Element was focused on the demonstration of a new 

small turbofan engine, the FJX-2.  This engine was to have a thrust level of at least 700 

lbs. (sea level, static, standard day conditions) and to weigh less than 100 lbs.  This 

would result in a thrust to weight ratio exceeding any turbofan engine in production at 

this time (Figure 1-1).  Analysis conducted by Williams International showed that the 

FJX-2, along with a number of advanced avionics technologies, would allow a new 

generation of very light turbofan powered airplanes which would have performance 

comparable to present entry level business jets at acquisition and operational costs 

comparable to today's twin piston-powered planes.  The outstanding thrust/weight 

characteristics of the FJX-2, coupled with its low fuel consumption, would enable these 

new GA jet planes to be half the weight of existing entry-level business jets.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Thrust/Weight Ratios 
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NASA's goal to revitalize general aviation has been quantified as shown in Figure 1-2.  

For years GA sales had languished at less than 1000 planes annually after having 

reached over 17,000 planes delivered in the peak year of 1979.  The NASA revitalization 

goal is to increase sales to 10,000 planes/year in 2007 and 20,000 planes/year in 2017. 

 

NASA's investments in the GAP and AGATE (Advanced General Aviation Transport 

Experiments) Programs were intended to rapidly transition advanced technology into GA 

airplanes, providing a significant increase in aircraft safety and value, and accelerate GA 

sales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 GA Annual Sales History 

 

 

 

CD8-624-A

1970             1975            1980             1985            1990            1995             2000            2005            2010             2015            2020

A
nn

ua
l S

al
es

 G
A 

A
irc

ra
ft

30000

25000

15000

20000

10000

5000

0

20,000 in 201720,000 in 2017

10,000 in 200710,000 in 2007

NASA/CR—2008-215266 3



        

2.0 The FJX-2 Turbofan Engine 

 

The history of powered aviation has shown that new engines enable new classes of 

airplanes.  The focus of the GAP program was to design and demonstrate the FJX-2 

turbofan engine combining high thrust/weight, low fuel consumption, and low 

acquisition/operational costs.  The FJX-2 was to also comply with anticipated future 

noise and emissions requirements.  

 

The detail design of the engine was initiated in the fourth quarter 1996 with rig tests of 

key components occurring in 1997.  The first full engine test occurred in December 

1998.  Full engine and component tests were conducted throughout the remainder of the 

program. 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

 
Figure 2-1 The FJX-2 Turbofan Engine Prior to the Initial test Run 
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The FJX-2 is a multi-shaft turbofan engine with a bypass ratio of 4:1 (Figure 2-1).  

 

2.1 FJX-2 Engine Cross Section Review  

The FJX-2 utilizes conventional aerospace materials, and advanced design and 

manufacturing techniques to produce superior performance in a lightweight, economical 

design. The FJX-2 engine design incorporated several revolutionary design concepts 

such as those listed below. 

Shrouded Fan Rotor 

Low Pressure Fuel System 

Electrically Driven Fuel Pump 

Blow Down Scavenge Lubrication System 

No Engine Mounted Gearbox 

High Speed Starter/Alternator 

 

Airflow from the fan is divided into two separate paths.  One flow enters the High 

Pressure (HP) compressor to be further compressed before entering the combustion 

section, where fuel is added and the fuel/compressed air mixture is ignited.  The 

resultant expanding gases drive the turbines. 

 

The other airflow path bypasses the engine core at a medium bypass ratio.  The 

bypassed air permits the engine to use high cyclic temperatures and pressures in the 

core and still produce a low jet velocity at the exit.  The bypass air and core exhaust 

flows are mixed, decreasing the velocity and temperature of the exhaust gases, creating 

high thermal and propulsive efficiency.  In addition, the bypass air decreases the noise 

level and increases the power/weight ratio for a given engine thrust. 
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The FJX-2 Fan is a forward swept, shrouded rotor, integral blade-disk or blisk design. 

The fan contains a composite tip shroud wound from Hercules fiber in a matrix, with a 

titanium triple knife-edge labyrinth seal tip treatment. The Fan is integrally milled from 

Titanium forged material. The axial positioning of the Fan, the core flow splitter, the core 

flow stator, and the bypass stator were influenced by analysis to minimize the noise 

signature of the fan section. 

 

The fan stage static structure is manufactured from Aluminum alloy. The stability during 

manufacturing of the alloy proved to be essential in the manufacturing of the 

Intermediate Case. The Intermediate Case incorporates two forward engine mounts, and 

utilizes a thin-walled, lightweight construction to structurally support the balance of the 

engine. 

 

In order to aid in compressor development, the FJX-2 compressor design incorporated a 

variable Inlet Guide Vane (IGV); downstream of the fan core stator This IGV would 

provide maximum flexibility in rig, core, and full engine testing. As experience with the 

compressor was gained through this series of tests, the IGV was locked in a static 

position, and ultimately removed from the design all together. 

 

The nine stages of axial compression are manufactured from a variety of Titanium as 

operating temperatures increase through the later stages.  The rotors are manufactured 

from individual disk forgings that are Electron Beam welded into multi-stage rotors. 

Abradable rub strips are positioned between each of the blade rows on the rotor, and 

between the vane rows on the stator. 
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The axial compressor vane static structure is manufactured from SST in the 

intermediate-pressure (IP) section, and in the HP section. These stators are supported 

by a titanium Interstage Housing, that also supports the forward HP shaft bearing. 

 

The cover and primary plate, which form the radial outflow, annular engine combustion 

chamber, are manufactured from sheet metal. Cooling to these surfaces is provided by a 

precise pattern of small diameter laser-drilled effusion cooling holes. The fuel is 

delivered to the primary combustion zone by way of a circumferentially uniform, slinger 

fuel distribution system. The fuel is introduced at the front of the HP shaft, and feeds 

along the length of the inner shaft in a thin film, finally being distributed into the 

combustor through the slinger that rotates with the HP shaft. The centrifugal force of the 

fuel exiting the slinger overcomes the compressor discharge pressure (CDP) in the 

combustor, allowing for lower pressure fuel delivery to the engine than would typically be 

required. Ignition in the FJX-2 is provided by way of a single spark igniter. 

 

The first turbine rotor is an inserted blade design. The first stage turbine disk is 

manufactured from a forging, and the second stage disk is manufactured from a forging. 

Conventional nickel based materials are utilized in manufacturing both stages of turbine 

blades, CMSX single crystal alloy for the first stage, and Mar-M-247 for the second.  

 

The low-pressure (LP) turbine rotors are high aspect ratio, shrouded blisk designs. The 

initial rotors were cast. The short chord length of the turbine blades made it difficult to fill 

the castings with the precision tolerance required to meet component performance 

goals. Later rotor designs were integrally machined from a forging, allowing for the high 
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tolerance required. The LP Turbine group incorporates a rotating tailcone spinner, 

greatly reducing the weight and complexity of the engine rear bearing housing support. 

  

The turbine section outer cases are manufactured from forged material. The turbine 

nozzles for all turbines are segmented designs, manufactured from castings. The two aft 

bearing housings are supported to the outer case by strods that provide structural 

support, as well as passage for oil/air services to the bearing housing.  

 

The main shaft bearings utilize both conventional metals and hybrid ceramic materials 

for the ball and rolling elements. The use of ceramic materials provides for improved life, 

improved toughness during failure, and improved oil interruption capability over 

conventional metals. A combination of jetting, and under race lubrication, supplies Mil-L-

23699 oil to these bearings. Under race lubrication is more efficient than jetting, and 

helps to avoid excess oil churning. 

 

An HP Shaft driven high-speed starter/alternator provides three phase, 270-volt 

electrical power. The alternator rotor utilizes Neodynium/Iron/Boron magnets for 

optimum efficiency. A Power Conditioning Unit (PCU) transforms the high voltage power 

to 28 Vdc for aircraft use if desired by the airframer.  

 

The FJX-2 engine did not incorporate a gearbox in its design. An electrically driven fuel 

pump provides fuel to the engine at pressures significantly lower than in conventional 

systems. The use of a rotating slinger to distribute fuel to the combustion chamber 

allows for this lower fuel delivery pressure. A schematic of the fuel system is shown in 

Figure 2-3. 
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Figure 2-3 – FJX-2 Fuel System Schematic 

 

A Fuel Metering Unit (FMU) controls the rate of fuel flow to the engine. The FMU utilizes 

a dual wound Stepper Motor with position encoder to locate a cam with respect to a 

metering orifice. Also incorporated into the FMU is a normally open Fuel  

Shutoff Valve (FSOV), which is energized during normal shutdown, or at times of  

overspeed detection. The dual wound stepper motor provides system redundancy for 

improved safety. 

 

 The FJX-2 lubrication system consisted of an electrically driven lubrication pump, 

containing supply as well as scavenge elements. In addition to pump scavenge, 
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pressurized ‘blow-down’ scavenge is utilized for some bearing cavities. The oil tank for 

the engine is integral to the Intermediate Case. Less than a quart of usable oil is 

required to meet General Aviation type mission requirements. 

 

2.2 FJX-2 Engine Detailed Design 

 

Williams International has a long history of innovation in the area of gas turbines. 

Williams is recognized as a world leader in the advancement of small gas turbine engine 

technology. Prior to the FJX-2, the best existing small turbofan engine was the Williams 

FJX-1, which powered both the Williams V-Jet II GAP demonstration aircraft, and the 

Chichester-Miles Leopard II aircraft during their flight trials. The fuel consumption and 

cost of this engine, however, did not make it an attractive solution to the needs of the GA 

industry. The FJX-2 turbofan was designed from the ground up to be the low cost 

answer. In 1993, Williams International applied its expertise in turbine miniaturization, 

engine cycle analysis, advanced component and manufacturing technologies to initiate 

the design of what would become the FJX-2 Turbofan. By the outset of the GAP 

Program, the FJX-2 was ready for detailed design.  
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2.2.1 Design Tools 

 

Williams International utilized a large array of analytical tools in the Detailed Design 

Phase for the FJX-2 Turbofan. The integrated engine design sequence is flowcharted in 

Figure 2-4.  

 

 

Figure 2-4 Integrated Engine Design Sequence 

 

The Detailed Design Process was initiated from a Preliminary Design (PD) of the FJX-2 

that satisfied Design Criterion based on a General Aviation application. The engine 

design is matured from a 2-dimensional cross section, to a complete 3-dimensional 

model. Williams utilizes Pro-Engineer for all solid model generation. A complete 3-D 

model of all components allows for assembly fits and interference to be totally evaluated 

as part of the layout phase of design.  

 

-3D Aero

-Stress Analysis

-DTC Analysis

-Axi-Symmetric
FEA (ANSYS)

-1D Aero
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Pro-Engineer provides a ready interface for structural analysis. Two codes are utilized for 

stress and heat transfer, providing integrated model evaluations under transient as well 

as static environments. Transient analysis of engine start-up, maximum compressor 

discharge temperature (CDT) operation, and engine shut down, supports material 

selection and disk sizing to meet cycle design life goals. The hot sections of the engine 

were designed with an operating life consistent with commercial engine duty cycles. 

 

Structural and aerodynamic design are completed concurrently, with design trades 

continuously being made to satisfy structural requirements while optimizing aerodynamic 

performance. Compressor preliminary aerodynamic design is initiated utilizing a Williams 

in-house design code called SLC. Once basic design characteristics are insured, axi-

symmetric analysis and blade generation is completed through the use of a modified 

version of the Air Force design code. Williams also utilizes an in-house design code 

called CASQ-3D for preliminary airfoil analysis. The design is matured through the use of 

the APNASA code, available from NASA, providing multi-stage compressor performance 

evaluation. The multi-stage capability of APNASA is a major step forward over the 

previously available Dawes single blade row analysis. 

 

Accurate prediction of compressor performance across the entire operating range 

requires comprehensive compressor mapping. Prior to actual rig testing, analytically 

generated compressor maps are utilized to build predicted engine performance 

computer model or decks. In order to produce these maps, Williams generated an in-

house code, OFFDES. This code made it possible to more easily create separable maps 

for the multi-stage axial compressors utilized in the FJX-2 design. 
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Aerodynamic design of flow through ducting such as inlets, interstage housings, 

combustors, and exhaust nozzles were completed through the use of CFD code. This 

code has developed sufficient fidelity to utilize it to predict the characteristics and mixing 

of the engine bypass and core flows. Use of CFD allowed this interaction to be 

incorporated into the design of the exhaust nozzle. NASA Glenn Research Center 

conducted a parallel combustor analysis effort utilizing ALLSPD/KIVA-II flow code 

supporting the combustor design.  

 

The initial design of the FJX-2 turbine components was completed through the use of a 

commercially available CFD code called TASCFLOW. Efforts were also expended to 

attempt to use the compressor design tool APNASA for turbine component design with 

limited success. As will be indicated in later sections of the report,  a shortfall in HP 

turbine performance prompted Williams to develop an in-house CFD code called 

WILLFLOW. WILLFLOW uncovered an unfavorable flow condition for the HP Turbine 

blade, and allowed for evaluation of multiple design iterations resulting in correction of 

the problem. 

 

 The secondary airflow system of the FJX-2 provides the necessary buffer air to all 

bearing compartments, as well as airflow necessary for component cooling. The entire 

engine system is evaluated by constructing flow network models using a Williams in-

house design code called FINESSE. This analysis is critical to the evaluation of bearing 

thrust load, as well as evaluation of seal failure scenarios that need consideration during 

the design process. 

 

Engine and component shaft first bend and rigid body modes are evaluated through the 

use of an FEM design code. IGES translated Pro-Engineer models, along with rotor 
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mass properties, and beam stiffness evaluations of shaft structure are used to construct 

design models. Throughout its use in the FJX-2 and other engine development 

programs, this code has proven to be very reliable in the prediction of shaft modes. It 

also provides ability to evaluate bearing mounting stiffness impact on shaft dynamics, 

which is very beneficial in the assessment of shaft vibration. 

 

All bearing and gear designs are influenced by multiple design codes. Rolling element 

bearing design is evaluated through the use of a TK Solver application of ABODE 

(Advanced Bearing Optimization Design and Evaluation), the Jones High Speed Ball and 

Radial Roller Bearing Analysis Program, the Shaberth Shaft Bearing Thermal Analysis 

Program, and ADORE (Advanced Dynamics of Rolling Elements) Program. Use of 

ABODE dramatically improved design productivity and optimized bearings designs. It 

allows for trade studies utilizing multiple ball and cylindrical roller bearings, at low speed, 

high speed, and high speed with implementation of raceway control theory. 

 

Williams utilizes an in-house TK solver application based on AGMA design methodology 

for all gear design efforts. In addition, Williams also utilizes DANST (Dynamic Analysis of 

Spur Gear Transmissions), available from NASA.  DANST is utilized for the optimization 

of gear tooth profiling, the minimization of dynamic loads and stresses, and the reduction 

of noise and vibrations. 

 

Williams International and NASA Glenn Research Center engineers utilized two parallel 

approaches in evaluating the noise signature of the FJX-2. Williams utilized NASA 

provided semi-empirical noise prediction code NASANOISE in evaluation of the FJX-2. 

The code is typically utilized for propeller driven GA aircraft and small business jets, and 

is capable of evaluating noise levels at FAA FAR 36 certification conditions for takeoff, 
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approach, sideline, and level flyover. NASA Glenn utilized upgraded versions of 

NASANOISE, specifically ‘Footpr’ and ‘Radius’ to conduct an independent assessment. 

Results of these evaluations will be reported in later sections of this report. 

 

2.3 Turning Design into Reality 

 

Achieving large engine performance in a very small size was one of the greatest 

challenges of the FJX-2 design, but this is a challenge that Williams International has 

successfully met in the past. The FJX-1 turbofan was similar in cycle to the large two-

spool turbofans of its day, but it was much smaller and much simpler.  To maintain the 

efficiencies of large engines when scaled down to such a small size, all features 

including clearances, tolerances, and surface finishes must also be scaled down. The 

design requirements for the HP Compressor to achieve performance are roughly two 

times as fine as those typically held on currently produced engines. 

  

To address these challenges Williams International utilizes a fully integrated design 

approach within our engineering Component Process Teams. Each of Williams 

Component Process Teams contains all engineering disciplines required to insure that 

all component designs meet or exceed the design requirements for performance, weight, 

and cost.  

 

Williams International enhanced the design process for the FJX-2 by the formation of a 

"Contractor-led Product Team" (CPT) to aid in executing the GAP Cooperative 

Agreement.  This team included Boeing Helicopter, Cessna Aircraft, Chichester-Miles 

Consultants, Cirrus Design, Forged Metals, Lancair, New Piper, and VisionAire.  

Williams International met individually with CPT members, and jointly with NASA and 
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CPT members to determine the desired characteristics of the FJX-2 and TSX-2 

(Turboprop version of the FJX-2) as well as identifying engine installation issues.  The 

CPT also reviewed the market prospects of the FJX-2 and its shaft power derivatives, 

concluding that these engines could provide the incentive to launch a new generation of 

GA aircraft.  

 

Williams and NASA also initiated conversations with the Federal Aviation Administration 

(FAA) at a very early stage of the design process. The design of the FJX-2 turbofan 

considered many revolutionary concepts to meet the aggressive design goals for the 

engine. This ongoing dialog with the FAA insured that all features of the FJX-2 design 

could be certified, or identified those areas were special exceptions may be required. 

 

One of the struggles continuously facing the Process Team is the need to actually 

manufacture the hardware imagined by the designers on their computer screen. The thin 

walls and contoured shapes required to minimize weight, optimize performance, and 

satisfy structural requirements are often a challenge to manufacture.  

 

Throughout its history, Williams international has been an innovator in working with 

machine tool manufactures to advance machining technologies. Machine advancements 

made over recent years have made it possible to manufacture the FJX-2 within its 

weight and cost targets.  Williams International’s manufacturing engineers canvassed 

the industry to find the machining technology required to accurately remove material to 

the exacting tolerances required for the FJX-2. Examples of this advanced technology 

will be indicated in the following sections.  Their efforts resulted in an FJX-2 design that 

weighed in at 96-lb as tested at the PSL altitude facility.  
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3.0 FJX-2 Engine Hardware Development 

 

Throughout the design of the FJX-2, Williams International designers conducted 

extensive trade studies to optimize the engine design with respect to fuel economy, 

weight, cost, life and design simplicity.  Any further improvement in fuel economy would 

be insignificant compared to the added weight, cost, and complexity of additional stages, 

and the reduced life or increased cost associated with higher temperatures. 

 

Validations of these design efforts were accomplished by utilizing component rigs, core 

engine, and full engine. The program was structured to take a conservative approach in 

evaluating the capability of the FJX-2, a new engine, designed from the center-line out to 

be a major player in the revitalization of the General Aviation industry. Engine testing 

was structured to initially study all aspects of the engine performance at low speeds, 

attempting to fully understand the engine characteristics prior to moving upward in 

speed. 

 

 

3.1 Component Testing 

 

Development of the FJX-2 Turbofan engine began with component testing initiated in the 

third quarter of 1997. Component rigs were constructed for the Fan and the balance of 

the FJX-2 compressor section, the combustor, and the high-speed starter/alternator. Rig 

testing of these components documented efficiencies early in the development phase, 

prior to core and full engine testing. Verification, and in one case the validation of 

shortcomings, in design tools was a critical step in meeting the aggressive performance 
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goals for the FJX-2 engine. With reliable design tools in place, modifications based on 

rig test results could be incorporated rapidly and with confidence.  

 

3.1.1 HP Compressor Testing 

 

Verification of compressor performance is best accomplished on a rig that provides for 

full variability of pressure ratios, shaft speeds, and the ability to incorporate high levels of 

steady state as well as transient instrumentation. This approach was utilized in the 

evaluation of the entire compressor section for the FJX-2 turbofan engine.  

 

The heart of the FJX-2 engine is the HP compressor shown in Figure 3-1. This design 

was the culmination of extensive cooperation between NASA Glenn Research Center 

(GRC) and Williams International aerodynamicists utilizing the latest advancements in 3-

D viscous flow analysis tools. The availability of NASA’s APNASA CFD code, data from 

compressor rig testing, and the expertise of NASA and Williams personnel was 

invaluable in the advancement of the compressor design. This collaborative effort 

between NASA and Williams resulted in a compressor that exhibited an adiabatic 

efficiency of 85%, the most efficient component of its size ever designed.  
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Figure 3-1 High Pressure Compressor Rotor 

 

The component efficiency was achieved without the use of extreme tip speeds, extreme 

radius ratios, or variable geometry. Advanced finite element analysis was used to 

optimize the rotor bores for the lowest weight necessary to achieve design life. 

 

A typical test arrangement for the FJX-2 compressor rigs is shown in Figure 3-2. The fan 

and compressor components were tested over their entire design speed range. 

Component operating line and stall margin was fully mapped.  
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Figure 3–2  FJX-2 Compression Rig 

 

The initial HP Compressor rotor and stator hardware manufactured to support 

component rig testing were found to be low in airflow and efficiency. A visual inspection 

of this hardware under magnification revealed the reason for the shortfall in 

performance. 

 

The initial hardware tested in the HP Compressor Rig was manufactured on 

commercially available 5-axis milling machines. Such machines are totally acceptable for 

most engine hardware fabrication, but found to be inadequate for the increased accuracy 

required of the FJX-2 fabrication. This hardware lacked the surface contouring required 

for optimum performance. The rig test results reinforced the need for tighter machining 

tolerances on FJX hardware compared to typical engine requirements. 
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In order to achieve the machining tolerances required to properly manufacture this 

hardware, Williams International designed and manufactured a miniaturized five-axis 

milling machine. This machine was optimized for smaller rotating and static components 

such as those found on the FJX-2. It optimized spindle speed, machine head translation 

rates, data processing, and position feedback to obtain the high levels of accuracy 

required for the FJX-2 components.  

 

The original stator hardware tested in the HP Compressor rig was replaced with the 

greatly improved hardware shown in Figure 3, and speed line calibrations were rerun. 

This new hardware showed significant improvement over the initial test. This data was 

adjusted for Reynolds number affects, accounting for the testing conducted at prevailing 

ambient conditions with inlet suppression. These corrections amounted to an adjustment 

of airflow by +1.2% and of efficiency by +1.4%.  

 

Concurrent with the FJX-2 development program, innovation in the area of CFD analysis 

was occurring at a rapid pace. Most notable, and of greatest benefit to the GAP 

Program, were the contributions of the analysis team at NASA Glenn Research Center 

(GRC), with their APNASA design analysis code. The NASA GRC team worked 

extensively with Williams International’s aerodynamicists to refine the compressor 

design, optimizing component performance. Modifications introduced as a result of this 

analysis were validated in follow-on rig tests conducted during, and after the completion 

of the GAP Program. 

 

The cooperative effort of the NASA – Williams team resulted in an improved meshing 

capability with the APNASA code.  The ability to compare actual test results against the 

model predictions proved a valuable tool in the design process. This analysis resulted in 

NASA/CR—2008-215266 21



        

the ability to more accurately represent reality with regard to the fillet radius of the blade 

and vane designs. It was found that stage matching between the forward and aft stages 

of the compressor was critical to optimizing performance. The ability of Williams 

Compressor Team to generate more accurate stage maps, through the use of the in-

house design code OFFDES, allowed for more accurate modeling of the bleed flow 

between stages 2 and 3 of the HP Compressor. Throughout the series of design 

iterations, NASA Glenn personnel continuously implemented programming 

improvements to the APNASA Code, allowing for more rapid processing of individual 

design iterations.  

 

3.1.2 Combustor Rig Testing  

 

Two test facilities were used in evaluation and development of the FJX-2 combustor 

design. The initial testing was performed in a vacuum facility, and was structured to 

study ignition capability of the combustor design under a wide range of altitude and 

temperature conditions. The rig incorporated the entire engine fuel delivery system, as 

well as the proper aerodynamics for air delivery to the combustor. 

 

The vacuum testing concentrated on the evaluation of light-off characteristics of the 

combustor. Testing was conducted across a wide range of anticipated conditions 

including variations in start fuel flow, altitude, ambient temperature, and igniter 

configuration and output energy.  A wide variety of ignitor configurations ranging from 

conventional spark ignition to glow plug technology were evaluated in order to determine 

the most reliable design for use in the FJX-2. Primary zone mixing and recirculation were 

adjusted to produce light-off characteristics that were predictable and reliable, and would 

support core and full engine testing.  
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Igniter testing demonstrated that currently available off the shelf glow plug technology 

was not well suited to the fuel delivery and annular design of the combustor utilized in 

the FJX-2.  Testing showed the glow plug life in the combustor environment of the FJX-2 

to be of short duration, certainly unacceptable for a GA engine. 

 

The second rig facility utilized pressurized, heated air to better evaluate the combustor 

performance at pressure and temperature levels experienced by the engine at power 

settings above idle. This rig installation is shown on Figure 3-3.  

 The pressurized rig completed testing over a wide range of pressure and temperature. 

Figure 3-3 FJX-2 Combustor High Pressure Rig 

 

Combustor modifications incorporated throughout the testing resulted in the combustor 

design exhibiting increased heat release and improving radial profile. These 

modifications were accomplished through the use of CFD modeling to make a detailed 

assessment of recirculation, fuel mixing, and thermal distribution.  Testing indicated that 
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the annulus velocities exiting the diffuser were too high to allow for proper filling of the 

primary air jets in the OD of the combustor cover. Test hardware modifications included 

the additions of air dams to the OD of the cover to better direct the airflow into the 

primary jets. These air dams provided a means of testing with the existing diffuser 

hardware. Design changes would be made to the diffuser to lower the exit velocity, 

allowing for the removal of the air dams on future hardware configurations.  

 

The pressurized rig was limited in its ability to operate over long periods of time, and 

could not provide insight into the durability of the design.  This durability would be 

demonstrated once the hardware was transitioned into core engine testing. The success 

experienced in both the ignition and high pressure combustor rigs greatly reduced the 

risk for the follow-on core and full engine testing. 

 

3.2 Core Engine Testing  

 

Following the completion of individual component testing, the core of the FJX-2 engine 

(full engine less Fan and Low Pressure Turbines) was assembled and tested. In addition 

to evaluating overall performance, this testing focused on evaluating lubrication system 

performance, secondary flow system performance, and shaft dynamics. Heated inlet air, 

along with a means of varying turbine exit area, was used to exercise the core over the 

maximum range possible of mechanical and corrected speeds.  

 

The Core Engine accumulated a total of 5:55 hours and 48 starts during its test program. 

Testing of the engine Core was extremely beneficial in evaluating the secondary flow 

system of the engine, and it’s impact on the engine lubrication system.  This Core testing 
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demonstrated over 93% of maximum mechanical shaft speed, and over 98% of 

maximum inter-turbine temperature (ITT).  

 

The use of inlet heating allowed for testing of the turbine section to 95.5% of the turbine 

design point. The HP turbine efficiency was measured at 80.7%, or 6 points in efficiency 

below the design target. Of those 6 points, excessive radial tip clearance, and a nozzle 

that was 7.4% over design flow could account for 2.9.  Component operating conditions 

realized in the core versus a full engine accounted for 1.5 points slip in efficiency due to 

low Reynolds numbers.  

 

An extensive review of test data versus design goals was conducted to determine the 

source of the 1.6 point lost in turbine efficiency. Concurrent with this investigation, 

Williams Expansion Team was creating a new in-house CFD code called WILLFLOW. 

The original HP turbine design was completed using a commercially available CFD code 

called TASCFLOW. Analysis of the tested turbine design, with the newly created 

WILLFLOW CFD code, revealed that the blade design contained a flaw at the blade tip, 

resulting in the formation of a shock wave, and the creation of a reverse flow field.  

 

The turbine blade configuration was redesigned using the WILLFLOW CFD code to 

correct the reverse flow condition noted at the blade tip. The flow field produced by the 

new turbine design predicting a smooth transition of flow downstream through the 

turbine. This new blade design was initiated into manufacturing, and was incorporated 

into test during the full engine test program. A comparison of the efficiency for these two 

designs was accomplished. 
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3.3 Full Engine Testing 

 

Following the completion of the core engine test program, the Fan Module and Low 

Pressure Turbine Module were married with the core engine in preparation for the first 

Full Engine run of the FJX-2 Turbofan. This initial run was completed at the end of 

December 1998. Figure 3-4 shows the engine installed in the test cell, just prior to the 

historic run. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 FJX-2 Prior to First Full Engine Run 

 

 

Like the core engine, the investigation of the lubrication system and secondary flows 

took center stage in the initial, full engine test program.  In addition, the engine start and 

fuel control systems, along with an investigation of overall performance were also 

conducted. Hardware builds were also dedicated to the evaluation of engine hardware 

durability. 
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Four FJX-2 engines (S/N 001 – 004) were used to complete the full engine test program. 

These four engines accumulated a total run time of 537:21 hours, with 896 starts during 

the period of the GAP Program, which completed in May 2001. Below are a summary of 

all engine builds runtime history, and a synopsis of test objectives and results. 
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Like any new engine design, the FJX-2 did encounter growing pains as exhibited in the 

test summary. Design changes were incorporated as required to bring the engine 

operability and performance to the desired levels. Other than the incidents of seal rub 

noted in the test summary, the vibration performance of the FJX-2 was outstanding from 

the outset of testing, with vibration levels so low as to produce a very comfortable 

environment within an aircraft cabin.  

The test summary indicates design modifications made to replace labyrinth seals with 

carbon seals forward of the No. 1 Bearing cavity. These changes resulted in a reduction 

in oil loss from the cavity. It has been previously noted that the FJX-2 lubrication system 

utilizes blow-down scavenge for some of it’s bearing cavities. The test program 

highlighted the need to maintain proper pressure control on both sides of the seals that 

retain oil within the various bearing cavities.  The secondary flow system of the FJX-2 

was designed to maintain very small delta pressures across all of the bearing cavity 

seals, maintaining oil containment, and minimizing leakage that would reduce engine 

performance. 

One element of the fuel delivery design that exhibited difficulties during sea level and 

altitude testing was the HP shaft fed fuel delivery system. As described in Section 2.1, 

the fuel is introduced at the front of the HP shaft between walls held concentric by 

supporting cross-struts. The fuel feeds along the length of the inner shaft in a thin film, 

finally being distributed into the combustor through the slinger that rotates with the HP 

shaft. Engine testing showed that at higher shaft speeds it was difficult for all of the fuel 

introduced at the end of the shaft to pass through the rotating cross struts, limiting the 

fuel that could be delivered to the combustor. Modifications made to the cross-strut 

design helped to reduce this blockage, allowing operation at higher shaft speeds.  
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The durability of the FJX design was demonstrated through the completion of the three 

(3) 100-hour endurance cycles by engine S/N 003. Each 100-hour cycle was completed 

on a single build of the engine hardware. Engine performance was maintained 

throughout the endurance completed on build 12, and little change noted from the 

beginning, to the end of the second 100-hour endurance cycle on build 13. 

3.3.1 700-lb Thrust Demonstration Run 

The culmination of the test program was the sea level static demonstration of over 700-

lb. thrust completed in March of 2001 at Williams International’s Walled Lake test facility. 

This test confirmed the ability of the hardware design to satisfy the program goals with 

regard to engine produced thrust. Plots of Corrected LP Shaft Speed vs. Corrected 

Thrust and Corrected HP Shaft Speed vs. Corrected ITT, for this performance calibration 

were made and compared.  

The test article for this demonstration was a follow-on engine to the four FJX-2 engines 

utilized throughout the Development Program. Engine S/N 111 was built in support of 

the FJ22, the first productionized version of the FJX-2 turbofan engine. More detail on 

the commercialization of the FJX-2 will be included in later sections.  

The engine utilized in the thrust demonstration run weighed in at 96-lb, demonstrating a 

thrust-to-weight ratio of 7.52. 

3.3.2 Altitude Testing - NASA Glenn Propulsion Systems Laboratory (PSL) 

An essential portion of the FJX-2 engine test program was the completion of altitude 

testing in the Propulsion Systems Laboratory (PSL) facility at GRC. This testing was 

completed in March to April of 2000. 

 

Testing in an altitude facility allows for engine operation at higher corrected shaft speed, 

higher airflow, and higher compressor discharge pressure (CDP) than is capable at sea 
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level static conditions. In addition, one of the most critical elements of the test program 

dealt with understanding the impact of Reynolds Number affects. Reynolds Number is 

associated with changes in fluid density and viscosity, and their impact on the 

smoothness of flow over objects such as compressor and turbine blades. At higher 

altitudes, this impact can be critical for hardware components as small as those in the 

FJX-2 engine.  Figure 3-5 shows the FJX-2 engine being installed in the PSL facility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3–5 FJX-2 Installation into PSL Altitude Facility 
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The altitude test program at NASA GRC was completed using engine S/N 003 in 41:34 

hours of engine running in PSL, accumulating 34 starts. This testing was performed at 

altitudes ranging from sea level to 30,000 feet, and at Mach numbers from static to 0.6.  

 

igure 3-6 – Summary of Altitude Test Points 
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A summary of accumulated test data is graphically shown in Figure 3-6. Three builds of 

Engine S/N 003 were used to complete the altitude test program. A summary of those 

engine builds is included below. 

 

The configuration of engine S/N 003 incorporated the Shrouded Fan rotor utilized 

throughout the engine development program. The third stage compressor was clipped 

as a result of the blade failure experienced during the initial build of engine S/N 004. The 

variable IGVs, which had been incorporated as an aid to development testing, were 

locked at 25 degrees angle of incidence for the majority of the test program. The engine 

utilized shaft fuel feed delivery, along with a single spark plug for engine ignition. The 

most optimum HP turbine configuration, established through development testing was 

incorporated. The LP turbines were of the machined configuration. 

 

The engine accessories included an air turbine starter, and a palletized fuel and oil pump 

system. A remote air-to-water HP Compressor bleed cooler was utilized to reduce the 

bleed air temperature prior to the reintroduction of the air into the secondary buffer air 

system. Electrically actuated handling bleeds were utilized. Customer bleed was routed 

through to a remote valve and measuring station.  The engine control systems consisted 

of a PC based interface to a stand alone single-channel digital engine control. This 

control interfaced with the P2/T2, P0, ITT  and speed sensors, Fuel Metering Unit (FMU) 

stepper motor. A composite tailpipe was utilized throughout the test sequence. 

 

Testing conducted on build 6 of the engine experienced an engine surge and shaft lock-

up during testing conducted on March 28, 2000. The engine was removed from the cell 

and returned to WI for investigation. 
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Teardown inspection of the engine identified primary cause of the event as #2 bearing 

retainer excessive wear, allowing the compressor rotary group to move forward 0.042 of 

an inch. This forward movement allowed the tapered compressor rotor blade tip to 

contact the stator abradable, causing a heavy tip rub. The displaced material generated 

a hole in rotor abradable area measuring 0.200 X 2.5 inch around the circumference of 

the rotor, creating excessive group unbalance. The unbalance loads caused an HP shaft 

rub, and subsequent shaft lockup. 

 

Build 7 of the engine completed repairs, rebuild and check run in WI’s test cell B1 prior 

to return to PSL. The engine configuration included modification to the design of the #2 

bearing retainer incorporating a larger contact surface and a more hardened material. 

Compressor and shaft seals were replaced. Instrumentation for shaft group thrust 

balance analysis was incorporated.  

  

Continued testing at NASA PSL accumulated 4:38 hours and 5 starts before 

experiencing an ECU commanded shutdown due to an over temperature of the ITT. 

Analysis of the event on both the facility safety tape, and the data logging capability of 

the PC based interface to the ECU, indicated that the control had commanded an 

increase in fuel flow to counteract a perceived decrease in HP shaft speed. HP shaft 

speed is measured at the air starter, and the apparent decrease in speed was a result of 

a failure in the air starter drive system, which decoupled the starter from the engine.  

 

The engine was returned to WI, and disassembly revealed a failure of the starter shaft 

bevel gear. Analysis of the failure indicated that thrust loads imparted by the air start 
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turbine caused it.  Build 9 of the engine incorporated new bevel / pinion gears, along with 

a new design low thrust air start turbine. The new design also featured new HP speed 

sensor target to improve the speed sensing capability of the ECU. Build 8 testing at PSL 

had experienced compressor instability traced to increased tip clearances due to worn 

abradables. A very tight test window at PSL forced the return of the engine into test 

without the ability to replace the abradable. In order to provide some improvement to the 

engine stability, a functioning variable IGV was incorporated. 

 

Build 9 testing completed the altitude phase of testing on the FJX-2. The new HP speed 

sensor demonstrated much better signal stability than had been seen previously.  A 

maximum power data point was achieved while running to a 1500F ITT limit at a flight 

condition of 5000 feet, Mach Number 0.2, and inlet temperature of -40F. At this flight 

condition, the engine attained a measured thrust of 770 lbs. corrected to sea level static.  
 

Considering all the factors that drove overall engine performance during the test 

program, there was nothing that showed the Reynolds Number analytical modeling too 

be far off from reality. Progressive tip clearance deterioration, along with improper 

engine spool speed match, contributed to the loss of operational stability and very limited 

operational range.  Efforts to precisely model a continuously changing engine proved to 

be quite challenging.  If Reynolds effects were not adequately modeled this would have 

been further exacerbated. 

 

Altitude sweeps conducted with engine builds 6 and 7 were compared to status models.  

Projected production engine performance was superimposed on these plots to provide 

comparison with Reynolds Number predictions. 
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4.0 TSX-2 Turboprop Engine 

 

It was recognized at the beginning of the GAP program that building large quantities of 

engines was key to achieving low acquisition costs.  The FJX-2 turbofan was designed 

to be readily converted to a turboprop or turboshaft configuration that could support the 

sizable market for turboprop aircraft that exists today. The GAP Cooperative Agreement 

included an option to design, build, and test a turboprop version of the FJX-2 turbofan if 

both NASA and Williams International agreed.  This option was exercised and the 

resulting turboprop engine was designated the TSX-2.  The schedule for the TSX portion 

of the program is shown below. 
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The TSX-2 was configured to maintain a high degree of commonality with the FJX-2 to 

aid in achieving the goal of reduced engine acquisition cost.  The fan was removed from 

the low pressure shaft of the FJX-2 and a gearbox was added to the front of the engine.  

The remainder of the engine was kept common to the FJX-2. 

 

1997 1998 1999 2000
O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Turboshaft Option Phase II - Detail Design and Demo Schedule
GAP PROGRAM

Milestones

Design and Analysis
Gear, Bearing & Lube System Analysis

Systems & Cycle Analysis

Control Software

Detailed Design

Technology Development

Tooling, Materials & Processes

Hardware Fabrication

Turboprop Gearbox (2 sets)

Turboshaft Gearbox (2 sets)

Demonstration Testing

Rig/Bench Testing

Engine Testing - WI

Program Management

Technical Interchange Meetings

NASA LeRC Support

Gears/Bearings/Structure/Acoustics

TSX Option Phase II 1st FJX-2 Engine

Design Criteria Design Review Gearbox Hdwe

Cycle Deck Update Design Complete
Test

Complete

pl . . . C:\My Documents\NASA\TSX Schedule - GAP Final Report.ML5  11/14/01--06:43:16  Page 1  
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Two different gearboxes were designed; one for a turboshaft application with 6000 rpm 

output shaft speed, and a derivative one which further reduced the output shaft speed to 

2000 rpm, appropriate for a turboprop application.  

 

The turboprop configuration of the gearbox was fabricated and rig tested over its full 

speed spectrum (Figure 4-1).  6:06 hours of rig testing were conducted.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 TSX-2 Gearbox in Rig Testing 

 

The TSX-2 engine was then built and demonstration testing ensued. The engine and 

gearbox were installed at the Outside Test Facility (OTF) at Walled Lake (Figure 4-2). 

The test program required 49:21 hours of engine running to complete, with 106 starts. 

Along with validating the design of the gearbox drive train and lubrication system, the 

test program also demonstrated the suitability of the lightweight design of the powerhead 
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and gearbox of the TSX-2 for use in the vibration environment created by a 195-lb 

propeller capable of absorbing 550-HP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 TSX-2 and McCauley Propeller in Test at OTF 

 

The TSX-2 demonstration engine weighed 130-lb without the propeller.  Some additional 

accessories would be needed dependent upon the requirements of each specific 

application.  The TSX-2 would be rated at 550 hp on a sea level, static, standard day.  

The engine is very attractive from a weight and fuel consumption viewpoint.  It would 

compete very well in the light helicopter market and the light turboprop market. It's future 

is dependent upon the success of the FJX-2.  The high degree of commonality between 

the engines will allow a low TSX-2 acquisition price when a high annual sales rate is 

achieved with the FJX-2. 
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5.0 NASA and Industry Working Together 

 

The Turbine Element of the GAP Program leveraged the talents and facilities of NASA 

along with Williams International to further the advancements in technologies supporting 

General Aviation.  The areas of impact are highlighted below in a summary schedule of 

the NASA facility efforts. 

1996 1997 1998 1999 2000
O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S

FJX-2 Engine Demonstrator - NASA Centers Support Schedule
GAP PROGRAM

Milestones

NASA LeRC Design & Analysis Activities
Combustor Modeling

CFD Predictive Code
Turbomachinery CFD

Compressor
Fan

Structural Analysis
Material Characterization/Eval
Containment

Engine Control System Analysis
Instrumentation & Controls

Engine Acoustic Predictions

Predictive Noise Code Analysis

NASA LeRC Test Activities
Engine Altitude Testing

NASA LaRC Test Activities
Post Stall Investigation

CA Award FJX-1 EAA Demo 1st FJX-2 Eng End 1st LeRC TestsCA Ends

CA Signed T-Shaft I T-Shaft II

pl . . . C:\My Documents\NASA\Schedule 2 GAP Final Report.ML5  11/14/01--07:15:47  Page 1  
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5.1 A Quieter and Cleaner Engine Solution 

 

The next generation of GA engines will need to be environmentally friendly in the areas 

of noise and emissions. These characteristics will be essential if we are to begin to 

utilize jet aircraft at the hundreds of smaller airports across the country. NASA engineers 

at GRC, along with engineers at WI, conducted noise analysis of the FJX-2 engine 

installed in the V-Jet II demonstration aircraft. The analysis was conducted utilizing 

NASA provided codes NASANOISE, Footpr, and Radius. These codes were validated 

through comparison of analysis and actual test results for Williams FJ44-1A powered 

Cessna CitationJet. The results, reported in NASA Noise Analysis Report NASA/TM-

1999-208908, show the FJX-2 to have a lower predicted noise signature (Figure 5-1) 

than the existing Effective Perceived Noise Level (EPNL) requirements, with a total 

margin of 63.9 dB. It is anticipated that future requirements will reduce the combined rule 

by 11 dB, still leaving the V-Jet II, and aircraft like it, with a 52.9 dB margin. 

 

 Sideline Community Approach 
Fan 65.3 59.2 65.9 
Jet 72.0 68.8 48.3 

Core 67.6 64.6 66.5 
Airframe 46.5 55.6 39.3 

Total 74.9 71.5 70.7 
Rule 94.0 89.0 98.0 

Variance -19.1 -17.5 -27.3 
 

Figure 5-1 EPNL Predictions for the V-Jet II vs. Existing standards 
 

Along with reduced noise signatures, the next generation of GA Aircraft will also need to 

generate low exhaust emissions. The current FAA regulations require engines of the 

size of FJX-2 to have smoke numbers of less than 50. Estimates for the FJX-2 engine, 

based on analysis and testing of the Williams FJ44 business jet engine, would indicate 
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smoke numbers well below this requirement with values of between 10 and 20. 

 

5.2 Scaled Aircraft Model Testing 

 

The model makers and engineering staff at the 14 X 22 foot low speed wind tunnel 

facilities at NASA Langley supported the GAP Program through testing of a quarter scale 

model of the FJX-2 demonstration aircraft, the V-Jet II, shown in Figure 4-2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Quarter Scale Wind Tunnel Model of V-Jet II Demonstrator Aircraft 
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Figure 5-3 NASA Langley Model Test Matrix 

 

The Test Matrix shown in Figure 5-3 was conducted concurrent with the aircraft flight 

test program that allowed for the safe investigation of deep stall characteristics at high 

angles of attack (60 degrees alpha).  The test program also concentrated on 

investigation of the aircraft’s combination flap/aileron or flaperon utilized as a flap only.  

The command authorities of the aircraft’s combination rudder/elevator or Ruddervator, 

α β Power δf, left δf, right δr, left δr, right δv Comments
A1 0, ±5, 15 OFF 0 0 0 0 0 Baseline configuration

TBD B1 OFF 0 0 0 0 0 Baseline configuration, check for deep stall
A1* 0 OFF 0 0 0 0 0 Baseline configuration

A1 0, ±5 OFF -14, -5, 5, 10, 22 -14, -5, 5, 10, 22 0 0 0 Flaperon pitch control, symmetric
A1 0, ±5 OFF 0 0 -22, -10, -5, 5, 14 -22, -10, -5, 5, 14 0 Ruddervator pitch control, symmetric
A1 0, ±5 OFF TBD TBD TBD TBD 0 Combined pitch control, validate use of superposition (2 deflections)
A2 0 OFF -5 to 10 by 1 -5 to 10 by 1 0 0 0 Flaperon map

A1 0, ±5, 15 OFF -14, -5, 5, 10, 22 0 0 0 0 Flaperon roll control, every 10º between max & min deflections
TBD B1 OFF -14, -5, 5, 10, 22 0 0 0 0   Also generates data for math model of flaperon effectiveness

A1 0, ±5, 15 OFF 0 0 -14, -10, -5 5, 10, 14 0 Asymmetric ruddervator (yaw control)
A1 0, ±5 OFF 0 0 -36, -25, -15, -5, 5, 15, 28 0 0 Ruddervator control, every 10º between max & min deflections

TBD B1 OFF 0 0 -36, -25, -15, -5, 5, 15, 28 0 0   Also generates data for math model of rudervator effectiveness
A1 0, ±5 OFF 0 0 TBD TBD 0 Combined yaw-pitch control, validate use of superposition (2 deflections)

A1 0, ±5 OFF 0 0 0 0 0 Alternate wing tip dihedral
A1 0, ±5 OFF 0 0 0 0 0 Alternate nacelle inlet

A1 0, ±5 OFF 0 0 0 0 -30, -20, -10 Ventral control
TBD B1 OFF 0 0 0 0 -30, -20, -10   Also generates data for math model of ventral effectiveness

A1* 0, ±5, 15 T1 0 0 0 0 0 Baseline configuration
TBD B1 T1 0 0 0 0 0 Baseline configuration
A1* 0 T1 0 0 0 0 0 Baseline configuration

A1 0, ±5 T1 0 0 -14, -10, -5 5, 10, 14 0 Asymmetric ruddervator (yaw control)
A1 0, ±5 T1 0 0 -36, -25, -15, -5, 5, 15, 28 0 0 Ruddervator control, every 10º between max & min deflections

TBD B1 T1 0 0 -36, -25, -15, -5, 5, 15, 28 0 0   Also generates data for math model of rudervator effectiveness
A1 0, ±5 T1 0 0 TBD TBD 0 Combined yaw-pitch control, validate use of superposition (2 deflections)

A1 0, ±5 T1 0 0 0 0 0 1 Engine out
A1 0, ±5 T1 0 0 0 0 0 Alternate nacelle inlet

A1: -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32 (17 points) A1* : A1 alpha sweep extended as necessary to document deep stall characteristics
A2: TBD (to be used for flaperon map)
B1: -15, -12, -10, -8, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15 (21 points)
T1: Thrust required for inlet mass flows of 1 and 2 lbm/sec per engine

Remaining TBD items will be determined during the test based on obtained data.
Flow visualization, both tufts and smoke flow, will be conducted at the end of the test.  Conditions will depend on test results.
Configurations may be added or deleted depending upon test results.
Test plan as shown represents approximately 360 runs.
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as well as a ventral fin design were also characterized.  The model was constructed to 

allow for flexibility to also investigate wing tip droop variations from the flight 

configuration anhedral design, to a level wing tip, to an equivalent dihedral tip design. 

 

5.3 Material and Material Processes Evaluation 

 

The metallurgy and processing of the FJX-2 turbofan allowed for extensive cooperation 

between NASA Glenn and Williams in completing evaluations conducted in the following 

areas. 

 

Due to the small physical size of the FJX-2 components a study was conducted to 

determine the best Non-Destructive Test (NDT) methods to use on these components as 

well as assemblies. The investigation concentrated on 3 main areas; Titanium billet 

inspection, semi-finished machined component inspection, and assembled weld joint 

inspection. The goal of the investigation was to find defects measuring 0.010” or less in 

the detection-limiting dimension. A secondary challenge was to find defects in hidden 

areas of assembly joints. The ability to detect smaller flaws will directly impact the ability 

to accurately life components. 

 

Mockups used for the investigation had artificial defects machined into the parts for 

inspection purposes. Flat bottom EDM holes and notches machined to set depths were 

used to simulate internal defects. Titanium mockups contained a 0.030” hole, and a 

0.010” hole in the flat section of the disk. Two edge defects in the bore, 0.010” X 0.010” 

and a 0.005” X 0.005” were also machined. Small tungsten inclusions were added in the 
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hub contour area by filling EDM holes with tungsten powder, welding the holes closed 

and HIP’ing the parts. 

 

NASA Glenn provided Computer Aided Tomography (CAT) scans for the titanium 

samples and some conventional ultrasonic testing. Williams worked with inspection 

vendors such as Sonoscan Inc. to evaluate additional processes. A summary of the 

methods used, and the results are shown below. 

 

 RESULTS 

METHOD COMPRESSOR ROTOR 

FLAWS DETECTED 

TURBINE ROTOR FLAWS 

DETECTED 

 .010” .030” HD EDGE .010” .020” .030” SLOPE 

Acoustic Micro Imaging X X X X X X X (1) 

CAT  X X  NA NA NA NA 

Eddy Current (2) NA NA NA  NA NA NA NA 

Conventional Ultrasonics  X  NA  (3) (3)  

Conventional Radiography  X X   X X (4) 

 

Summary of Component Defect Inspection Results 

NA = Not Applicable 

(1) Could detect flaws in tapered area only from the open side 

(2) Not used to look for sub-surface defects – could not detect edge defects, will detect 

other surface flaws 

(3) Flat areas only 

(4) Sizes of defects in tapered region indeterminate 
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The most promising inspection method for finding flaws in near net machined hardware 

appears to be Acoustic Micro Imaging. This method detects smaller flaws in more areas 

than any of the other methods studied. Additional results and recommendations for 

further investigation are summaries in the table below. 

 

PARTS/MATERIALS REQUIRED 

CAPABILITY 

CURRENT 

CAPABILITY 

ADDITIONAL WORK REQUIRED 

Ti Billet .010” .032” Billet structure refinement or 
software development 

Compressor Rotors .010” .010” Correlation studies between 
conventional and Sonoscan 

methods 
HP Compressor 
Welds 

.010” .020” Investigation of Smart Eddy 
system, eddy current probe 

development 
HP Turbine Rotor .010” .010” Correlation studies between 

conventional and Sonoscan 
methods 

HP Shaft Welds .030” .030” Probe development to access 
restricted areas 

Rotor Edge Defects .005” X .005” .010” X .010” Investigate Sonoscan method to 
yield consistent detection of .005” 

x .005” 
 

NDI Inspection Methods - Results and Recommendations 

 

NASA Glenn and Williams jointly performed material characterization studies of 

compressor component materials. These materials included disks, welds, and titanium 

welds. This testing encompassed an evaluation of tensile properties, high cycle and low 

cycle fatigue (HFC/LCF), creep rupture, and creep growth rate both with and without 

dwell 
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NASA also provided great assistance in the evaluation of a variety of turbine nozzle and 

blade casting coatings to evaluate their oxidation/corrosion benefits. This testing 

subjected the test samples to a maximum temperature of 1900 0F, with 60 sec of 1 PPM 

sea salt, 59 minutes w/out salt, 10 min cool down prior to initiation of the next cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 – Carousel Test Fixture for HP Turbine Blades – NASA Glenn Research 
Center 
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Figure 5-4 shows the test arrangement assembled at NASA Glenn to complete this 

evaluation. A compilation of the testing and results are shown in Figures 20 - 22 in 

Appendix A of this report.  

 

6.0 Cost 

 

The success of the FJX-2 design cannot be measured only in its ability to meet its 

performance and weight goals. One of and quite possibly the most important success 

criteria for the FJX-2 and its successors is its ability to be manufactured at a cost which 

will make possible the revitalization of the GA Industry envisioned by the GAP Program. 

Design to Cost (DTC) is a critical element for all of Williams International turbine engine 

designs, and the FJX-2 was no exception. Cost analyses conducted by Williams 

International show that at production rates consistent with NASA's GA sales goals, the 

FJX-2 would be cost competitive with the 300 horsepower, turbocharged, piston engines 

of today.  NASA commissioned an independent cost analysis performed by Aviation 

Analysts International, Inc. which reached the same conclusion. A summary of the cost 

model for the production version of the FJX-2 engine is shown in Appendix B.  

 

This success is due to many factors influenced by the integrated design process. Cost 

saving begin with raw material, and minimization of raw material is a key to low cost 

engine manufacturing. This is one of many areas in which the close relationship between 

Williams International and its Contractor-led Product Team (CPT) member, in this case 

Forged Metals, resulted in cost saving measures. Forged Metals delivered tooling and 

manufacturing techniques required to produce low cost, close shaped forgings, 

minimizing raw material. 
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The ability to remove material economically and accurately is also critical to the cost of 

the manufacturing process for the FJX-2. Williams International currently utilizes highly 

automated, unmanned, high rate, highly flexible machining cells in the production of 

turbine components. This approach will continue for the FJX-2 engines. Williams also 

investigated options for automated assembly of the FJX-2 engine in a production 

environment. 

   

The FJX-2 has demonstrated the potential for a production, general aviation, turbofan 

engine that can enable a new class of airplanes that will provide outstanding value to the 

general public.  The GAP program brought the engine to a point where a commercial 

engine certification program could be initiated. 

 

7.0 Commercialization  

 

The ultimate success of the GAP Program will be determined by the ability of FJX-2 

technology to be commercialized, i.e., to be certified and incorporated into a new 

generation of airplanes with outstanding safety and value.  Williams International formed 

a "Contractor-led Product Team" (CPT) to aid in executing the GAP Cooperative 

Agreement.  This team included Boeing Helicopter, Cessna Aircraft, Chichester-Miles 

consultants, Cirrus Design, Forged Metals, Lancair, New Piper, and VisionAire.  Williams 

International met individually with CPT members, and jointly with NASA and CPT 

members to determine the desired characteristics of the FJX-2 and TSX-2 as well as 

identifying engine installation issues.  The CPT also reviewed the market prospects of 
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the FJX-2 and its shaft power derivatives, concluding that these engines could provide 

the incentive to launch a new generation of GA aircraft.  

 

While it was not a requirement of the GAP Cooperative Agreement, Williams 

International and NASA understood that the final confirmation of commercialization 

would be the launch of a new certified airplane program based on the FJX-2.  It was 

believed that this new engine would enable a new generation of airplanes unlike those 

presently available.  These new planes would be the size of today's twin piston powered 

airplanes but with performance comparable to today's entry level business jets.   

 

It was decided it would be necessary to demonstrate to aircraft manufacturers and the 

public the new type of airplane enabled by the FJX-2.  Williams International conducted 

the preliminary design and funded the detailed design, fabrication, and flight test of the 

V-Jet II concept airplane as part of the GAP Cooperative Agreement.  Burt Rutan and his 

team at Scaled Composites fabricated and flight tested the V-Jet II.  It was flown at the 

Experimental Aircraft Association Oshkosh Fly-In in 1997, utilizing available Williams 

International's turbofan engines of approximately FJX-2 size.  These engines were 

heavier than the FJX-2 and had significantly higher TSFC.   
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The V-Jet II was a very effective concept plane.  It attracted public attention and clearly 

made the point that the engine being demonstrated in the GAP Program would lead to 

significant improvements in light plane safety and value. 

 

 

S e a t i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
L e n g t h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 . 1  f t
H e i g h t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 8  f t
S p a n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 . 3  f t
M e a n  T O  W e i g h t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 , 8 0 0  l b
E m p t y  W e i g h t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 , 2 0 0  l b

T a k e - o f f  D i s t a n c e
S L / S t d  D a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 , 3 0 0  f t
5 0 0 0  f t / IS A  ( 2 5 ° C ) . . . . . . . . . . . . . . . . . . . . . . . . . 3 , 0 0 0  f t

C l i m b  R a t e  ( S L ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 , 2 0 0  f p m
T i m e  t o  C l i m b . . . . . . . . . . . . . . . . . . . . . . . 8  m i n  t o  1 8  k f t

P e r f o r m a n c e
H i g h  S p e e d  C r u is e . . . . . . . . . . . . . . . . . . . . . 3 7 0  k t a s
R a n g e  - M a x  F u e l . . . . . . . . . . . . . . . . . 2 6 0 0  m i le s

4  o n  b o a r d . . . . . . . . . . . . . . 1 8 0 0  m i le s
F u e l  E c o n o m y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5  m p g
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The GAP Program has achieved far more than the objectives cited in the Cooperative 

Agreement.  It has demonstrated engine technology which has motivated the 

development and certification of the first of a number of new, safe, comfortable, high 

value airplanes, which will revolutionize general aviation. 

 

 

 
 
 

V-Jet II Performance Summary 
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