
Draft Manuscript

Transient Three-Dimensional Side Load Analysis of a Film
Cooled Nozzle

Ten-See Wang', Mike Guidos
NASA Marshall Space Flight Center, Huntsville, Alabama, 35812

Transient three-dimensional numerical investigations on the side load physics for an

engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust

chamber, were performed. The objectives of this study are to identify the three-dimensional

side load physics and to compute the associated aerodynamic side load using an anchored

computational methodology. The computational methodology is based on an unstructured-

grid, pressure-based computational fluid dynamics formulation, and a transient inlet history

based on an engine system simulation. Ultimately, the computational results will be provided

to the nozzle designers for estimating of effect of the peak side load on the nozzle structure.

Computations simulating engine startup at ambient pressures corresponding to sea level and

three high altitudes were performed. In addition, computations for both engine startup and

shutdown transients were also performed for a stub nozzle, operating at sea level. For

engine with the full nozzle extension, computational result shows starting up at sea level, the

peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the

side load caused by the transition from free-shock separation to restricted-shock separation

comes at second; and the side loads decreasing rapidly and progressively as the ambient

pressure decreases. For the stub nozzle operating at sea level, the computed side loads

during both startup and shutdown becomes very small due to the much reduced flow area.

'Technical Assistant, ER43, Thennal and Combustion Analysis Branch, Propulsion Structure, Thennal, and Fluids
Analysis Division, Senior Member AIAA.
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Nomenclature

Cj,C2,C3,CII= turbulence modeling constants, 1.15, 1.9,0.25, and 0.09.

Cp = heat capacity

D = diffusivity

H = total enthalpy

I = radiative intensity

K = thermal conductivity

k = turbulent kinetic energy

p = pressure

Q = heat flux

R = recovery factor

r = location coordinate

T = temperature

r = non-dimensional temperature

= time, s

U; = mean velocities in three directions

UT = wall friction velocity

x = Cartesian coordinates

e = turbulent kinetic energy dissipation rate

e = energy dissipation contribution

IC = absorption coefficient

II = viscosity

III = turbulent eddy viscosity (=pCl-lk2/e)

JI = turbulent kinetic energy production

p = density

(J" = turbulence modeling constants

r = shear stress
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= chemical species production rate

Subscripts

c = convective

t = turbulent flow

I. Introduction

Structural damages caused by the side load to nozzle components have been found for almost every rocket engine

during development, including damages to past engines in development such as those in the J2 engine,1 Block-I

Space Shuttle Main Engine (SSME),cl and recently, the Fastrac Engine,sl and more recently, those in the European

Vulcain engine2 and the Japanese LE-7A engine.3 As such, nozzle side load has been recognized as a high risk item

during engine development, and many an efforts have been devoted to the understanding of nozzle physics and

subsequently, to the development of methodologies that predict peak side load accurately to help design engineers

designing structures that could withstand the side forces.

The slanted plane method has been used by designers to produce peak side load estimates, by assuming a slanted

plane with one end touches the nozzle lip, and with another end touches somewhere on the nozzle inside wall. That

forms an asymmetric flow and a side force can be estimated. The slanted plane however is highly empirical. It

requires empirical data to establish its parameters. When a new nozzle design comes up and its design and operating

parameters out of the experience base, then the slanted plane method is difficult to use since it is not entirely based

en the physics and not a predictive method.

With the advances of computers and computational methods, three-dimensional, time-accurate computational

methodologies have been developed to closely simulate the side load physics and therefore showing the potential to

predict the side load. Koichi simulated the transition of free-shock separation (FSS) to restricted-shock separation

(RSS) for Japanese's LE-7A engine. Luca simulated a turbine exhaust gas cooled nozzle flow. In USA, Wang

developed a methodology that benchmarked with the startup transient of the Space Shuttle Main Engine (SSME).

This methodology addresses two important side load drivers; the combustion and the histories of pressure ramping

and propellant valve sequencing. Not only the shock transition was simulated, but also the shock oscillation at the
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lip was simulated for the first time. More importantly, the predicted peak and secondary side loads agreed

reasonably well with those of test data.

In this work, the same computational methodology was used to simulate the startup transients for a preliminary

version of the J2-X nozzle design during hot-fire testing for ambient pressures at sea level and at three different

altitudes. In addition, bother startup and shutdown transients were simulated for a stub nozzle at sea level to see if

the peak side load is reduced than that with the full nozzle extension. The computed nozzle side load physics are

discussed and the computed peak nozzle side loads are compared with available test data.

II. Computational Methodology

A. Computational Fluid Dynamics

The CFD methodology is based on a multi-dimensional, finite-volume, viscous, chemically reacting,

unstructured grid, and pressure-based formulation. Time-varying transport equations of continuity, species

continuity, momentum, total enthalpy, turbulent kinetic energy, and turbulent kinetic energy dissipation were solved

using a time-marching sub-iteration scheme and are written as:
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Fig. 1 Simulated inlet pressure and temperature histories
for the main combustion chamber and turbine exhaust gas
flows during the start-up transient.

Fig. 2 Simulated inlet species mass fraction histories for
the main combustion chamber and turbine exhaust gas
flows during the start-up transient.

A predictor and corrector solution algorithm was

employed to provide coupling of the governing equations. A second-order central-difference scheme was employed

to discretize the diffusion fluxes and source terms. For the convective terms, a second-order upwind total variation

diminishing difference scheme was used. To enhance the temporal accuracy, a second-order backward difference

scheme was employed to discretize the temporal terms. Details of the numerical algorithm can be found in Ref s 9-

12.
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An extended k-e turbulence model l3 was used to describe the turbulence. A modified wall function approach was

main combustion chamber flow
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Fig. 3 Simulated inlet pressure and temperature histories
for the main combustion chamber and turbine exhaust gas
flows during the shutdown transient.

Fig. 4 Simulated inlet pressure and temperature histories
for the main combustion chamber and turbine exhaust gas
flows during the shutdown transient.

employed to provide wall boundary layer solutions that are less sensitive to the near-wall grid spacing.

Consequently, the model has combined the advantages of both the integrated-to-the-wall approach and the

conventional law-of-the-wall approach by incorporating a complete velocity profile and a universal temperature

profile l4
• A 7-species, 9-reaction detailed mechanism14 was used to describe the finite-rate, hydrogen/oxygen

afterbuming combustion kinetics. The seven species are H2, O2, H20, 0, H, OH, and N2•

B. Simulated Startup and shutdown Sequences
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The startup and shutdown sequences are important drivers to the nozzle side load physics. The ramp rate of the

pressure sequence determines the magnitude and duration of the peak side load. The temperature and species mass

fraction sequences determine the severity of the combustion reactions that in tum determines the magnitude and

duration of the peak side load, largely because those also determines the specific heat distribution which in run

determines the shock shape which affects the side load physics. In addition, if excess fuel is dumped at certain

period of time, combustion wave could resulted that adds to the severity of the side load. Figure I shows the inlet

pressure and temperature histories, while Fig. 2 shows

the inlet species mass fraction histories, for the main

combustion chamber and the turbine exhaust gas (TEG)

flows during the startup transient. These are obtained

through system modeling which models the transient

operation of a network of components and therefore the

valve sequences. It can be seen from Fig. I that the main

pressure and temperature ramping occurring between I

and 3 s, and from Fig. 2 that Helium (He) gas enters

both the main combustion chamber and TEG flow right

after the start command, this has the effect of reducing
Fig. 5 A close-up look at the hybrid computational grid

and diluting the fuel concentration and possibly near the nozzlette that houses the turbine exhaust flow.

eliminating the combustion wave. Figure 3 shows the

simulated inlet pressure and temperature histories, while Fig. 4 shows the species mass fraction histories of the main

combustion chamber and TEG flows during the shutdown transient. It can be seen from Figs. 3 that the pressure and

temperature ramping down in a much shorter time period, from about 5.2 to 5.6 s. From Fig. 4, there are again He

flows near the end of the shut down transient. Also, there is a rise of hydrogen concentration from about 6.8 to 7.2 s

in the main combustion flow and a corresponding rise in the temperature. The effect of this rise in hydrogen

concentration and temperature will be examined through the computation.
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III. Computational Grid Generation

The computational domain for the J2-X nozzle side load investigation includes the combustion chamber, nozzle,

nozzlette for TEG flow injection, nozzle extension, plume and ambient air regions. The nozzle and its extension

combined has a truncated ideal contour, although the nozzle extension is offset from the nozzle exit by a distance of

the nozzlette exit (hydraulic) diameter to allow the TEG flow coming in. Current configuration has an aspect ratio of

35 for the nozzle; and an aspect ratio of92 for the nozzle extension. The exit of the nozzlette is flush with the nozzle

exit. The nozzle is nicknamed as the "stub nozzle" when the nozzle extension is removed. The procedure for grid

generation follows that of the benchmark effort for

SSME by rotating two axisymmetric grids that already

-,

passed the integrated axial force test into three three-

dimensional (3-D) grids, using a software package

GRIDGEN. 15 These three 3-D grids have grid points of

1,581,306 (3dl) 2,011,902 (3d2), and 2,148,812 (3d3)

were again subjected to the integrated axial force tests

and grids 3d2 and 3d3 were selected to do the actual

transient computations. Similar to the grid used in the
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SSME benchmark, these grids have structured-grid for

the combustor, nozzle, and plume region and

unstructured-grid for the ambient air region. This is Fig. 6 The temperature boundary condition foe the
combustion chamber and nozzle.

because not only is structured-grid a better quality grid.

(for the action region), by using the structured-grid and by rotating an axisymmetric grid, the grid for the combustor

and nozzle grid is symmetric to the centerline, therefore there will be no chance for asymmetric unstructured-grid

induced side. load. Figure 5 shows a typical layout for the computational grid. Note that there are computational

grids inside the solid part of the nozzle extension for conjugate heat transfer computation. The total grid points used

in these 3-D grids are higher than the 1,286,934 points used for the SSME benchmark, and much higher than the

145,500 ~ 405,900 points used for the side load calculations for the LE-7, LE-7A, and CTP-50-R5-L engines. 7
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IV. Boundary and Inlet Conditions

Total conditions were used for the outer boundary and four fixed total conditions were used to simulate hot-

firing at four different altitudes. The inlet flow properties obtained from the system simulation include the time

varying total pressure, temperature, and propellant composition. The time varying propellant composition was

preprocessed with the Chemical Equilibrium Calculation program16
, assuming the propellants were ignited to reach

equilibrium composition immediately beyond the injector faceplate. There was speculation that the radiation from

the nozzle extension wall would be significant and should be included in the transient calculations. Four separate

steady-state computations were therefore performed with coupled radiation calculations for both nozzle extension

solid and the gas medium water. The results show that the radiation does not affect the computed axial force for all

four altitudes and was ignored for the subsequent transient side load computations. This is probably because of the

cold TEG flow shielded the nozzle extension from the hot bulk flow. In addition, since the combustion chamber and

nozzle are regeneratively cooled and it has been shown that the cold wall temperatures due to the regenerative

cooling affected whether a free-shock separation or a restricted-shock separation persisted in the Mach disk flow,

which eventually affected the magnitude of the peak side load, a separate conjugate heat transfer calculation was

performed and the combustion chamber and nozzle wall temperature profiles were provided as the boundary

condition, as shown in Fig. 6. On the other hand, since the nozzle extension wall temperature is also important at the

sea level, but not important at the high altitudes, coupled conjugate heat transfer for the nozzle extension was

performed at sea level to provide accurate temperature boundary condition for the propagating Mach disk flow.

V. Results and Discussion

The computations were performed on a cluster machine using 16 processors. Global time steps were varied

throughout the computations: 2.5~10 I..ls were typically used during the initial transient when the change of flow

physics was mild, and 1~2.5 I..ls were used when strong flow physics such as combustion, shock transitions and

shock oscillations across the lip were occurring. It was known to the design engineers that nozzle side load will be

large at a nozzle aspect ratio of 92 for sea level testing. Hence, only the side loads at altitudes of6lk, 75k, and lOOk

ft, and those for the stub nozzle at sea level are of interest. The case for full nozzle extension at sea level was added

for demonstration and as for reference purposes. The results of the startup transients at the four altitudes (including
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the reference sea level case) are presented first, followed by the results of the startup and shutdown transients for the

stub nozzle.

A. Startup transients with nozzle extension at four altitudes
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Fig. 7 Computed side force histories during startup at three high altitudes.
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Figure 7 shows the computed side load histories for the startup transients at altitudes of 61k, 75k, and lOOk ft.

At 61k ft, the exhaust plume started out as a core jet flow. It changes to a FSS Mach disk flow around 0.8 s, then the

supersonic jet of the Mach disk flow starts to flap after 1.1 s and the side load increases. After 1.32s, the supersonic

jet of the Mach disk flow interacted with the TEG flow and a peak side load occurring around 1.34 s. After about 1.4

s, the FSS transforms into a RSS. The RSS switches back to FSS at about 1.5 s and the nozzle flow full at about 1.94

s. At 75k ft, the core jet flow changes into FSS Mach disk flow at around 0.85 s, transforms itself into RSS Mach

250000 r:-------------------------------------,

200000
Rear Lambda shock foot
steps into TEG flow

Z 150000

~
U. 100000

50000

Fig. 8

disk flow after 0.9s, which then switches back to FSS quickly around 0.95 s. The supersonic jet of the FSS then

interacts with the TEG flow and produced a peak side load at about 1.01 s and a secondary peak at about 1.05s. The

nozzle flows full at about 1.62 s. At lOOk ft, due to the now very low ambient pressure, the core jet flow expands
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Fig. 9 Computed stub nozzle side force history during startup at sea level.

quickly into a fast expanding flow around 0.7 s, generating a peak side load around 0.9 s, and flows full quickly at

about 1.35 s. It can be seen that the peak side loads decrease as the altitudes increase, and the time for nozzle

flowing full decreases as the altitude increases.
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Figure 8 shows the computed side load history at sea level. It can be seen that there are two distinctive side load

physics that produce much larger side loads then any of those at high altitudes: the FSS-to-RSS transition that

produces the secondary peak side load at around 1.8 s, and the rear Lambda shock foot of the RSS stepping into the

TEG flow that generates the very large peak side load at around 2.1 s. The effect of air density on the side load

physics is obvious in here. Note that because of aspect ratio is so large in here and the chamber pressure is not large

enough to push the Mach disk out of the lip, the case is never flowing full. As a result, the side load physics of shock

oscillation across the lip that generated the peak side load for SSME was not occurring in this case.

B. Startup and shutdown transients of stub nozzle at sea level

The large side load occurring in the theoretical case shown in Fig. 8 is the reason why the side load of a stub

nozzle is of more interest. Figure 9 shows the computed side load history for the stub nozzle during startup transient

at sea level. It can be seen that the core jet turns into a FSS Mach disk flow at around 1.3 s. While the FSS-to-RSS

occurs at the 1.8 s for the full nozzle case, the shortness and the low aspect ratio of the stub nozzle make that shock

transition difficult. In fact, only FSS-to-partial RSS (PRSS) occurring at around 1.9 s and simultaneously the PRSS

reaches the lip and oscillates several times and leaves the nozzle. These physics create a peak side load of about 30

kN which is much less than that of 80 kN when the nozzle extension is attached. The peak side load occurring n Fig.

8 when the rear foot of the lambda stepping over the TEG flow was never occurring because the Mach disk is out of

the nozzle very quickly around 1.95 s, even though the TEG flow was still on but it was not constrained by a nozzle

extension. This demonstrates that even for a truncated ideal nozzle, for FSS-to-RSS to happen, the nozzle has to be

long enough, and aspect ratio has to be large enough, and the wall temperature has to be cold enough.
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Fig. 10 Computed stub nozzle side force history during shutdown at sea level.

Figure 10 shows the computed side force history for the stub nozzle during shutdown at sea level. As described

in Fig. 10, after 5.4 s into the shutdown transient, the Mach disk of the plume retreats to the lip level and oscillates

across the lip as FSS and PRSS, then the retreating Mach disk wave quickly becomes FSS at 5.5 s. Between 5.5 and

6.1 s, teepees form on the inside of the nozzle wall. This is because the composition of the TEG becomes pure

hydrogen, and the counterflowing TEG jet and the entrained air reacted to form several triangular shaped formations

on the nozzle wall. The triangular formation starts as one and gradually increases to around five or so, and then its

numbers decrease and finally disappears around 6.1 s. The timing of the appearance and disappearance of the

teepees matches that of the hydrogen mass fraction reaching 1.0 and its decreases to zero, as shown in the TEG

composition history in Fig. 4. The side load increases starting from the FSS-to-PRSS and lip oscillation events drops

to nil as the teepees disappear, although the peak side load level is insignificant. This is all attributed to the short

nozzle and the low aspect ratio, and the fast down ramping rate. It is also noted that the high hydrogen mass fraction

and high temperature in the core flow around 7 s, as shown in Figs. 3 and 4, contributed nothing to side load because

the valve essentially shuts down after 6.8 s.

VI. Conclusions

Three-dimensional numerical investigations on the nozzle side load have been performed for a preliminary

version of the J2-X engine. It is shown that the peak side loads computed for startup operation at high altitudes are

manageable and are decreasing with altitudes. The computed peak side load for startup at a theoretical testing case at

sea level is large and caused by the rear foot of the Lambda shock stepping into the TEG flow. For the stub nozzle

operating at sea level, the computed peak side load of startup transient is small because of the short nozzle and low
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aspect ratio; the computed peak side load of shutdown transient is even smaller for the same reason, and further

more, for the fast ramp down time. Teepee formations were captured during the shutdown transient, and those are

caused by the combustion of the counterflowing excess hydrogen TEG jet and the entrained air.
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