
Managing the Evolution of an Enterprise Architecture using a
MAS-Product-Line Approach

Joaquin Pefia Michael G. Hinchey Manuel Resinas
University of Seville NASA Goddard Space Flight Center University of Seville

Spain USA Spain
joaquinp@us.es Michael.G.Hinchey@nasa.gov resinas@us.es

Roy Sterritt James L. Rash
University of Ulster NASA Goddard Space Flight Center

Northern Ireland USA
r.stenitt @ulster.ac.uk James.L.Rash @nasa.gov

Abstract

We view an evolutionary system ns being n software
product line. The core architecture is the ~inchnngingpnrt of
the system, and each version of the system may be viewed as
a product from the product line. Each "producr " may be de-
scribed as the core architecture with sonre agent-based nd-
ditions. The result is a multiagent system software product
line. We describe an approach to such n Software Product
Line-based approach using the MaCMAS Agent-Oriented
nzethoclology. The approach scales to enterprise nrchitec-
tures as a multiagent system is an approprinre means of
representing a changing enterprise nrchitectclre nnd the in-
feraction between components in i f .

Keywords: Multiagent Systems Producr Lines, Enter-
prise architecture evolution.

1 Introduction and Motivation

is fixed (i.e., the substantial part of the system that does not
change), and each version of the evolving system may be
viewed as a particular product from the product line.

Similarly, an enterprise architecture may be viewed as
the core architecture that is unchanging, and various spe-
cializations of the architecture (as the enterprise evolves)
implement various products of the product line.

If we consider the unchanging part of a software system
or of an enterprise to be the core architecture, the special-
ization to various products (versions of the system) can be
viewed as agent-based additions. The result is that an evolv-
ing system can be viewed as a Software Product Line of
multiagent systems (MAS).

Our approach scales to enterprise architectures and soft-
ware architecture for two reasons. Firstly, a multiagent sys-
tem (MAS) is a very appropriate means of representing an
enterprise and the interactions within it, thanks to the or-
ganizational metaphor that architects the system mimicking
the real enterprise organization. Secondly, the gap between
the enterprise architecture and the software architecture is
mitigated through the addition of architectural concepts at

When dealing with systems. and in particu- the running That is to say, MAS are
lar 'ystems exhibiting any of autonomy Or autonomic able to manage architectural evolutions and
properties, it is unrealistic to assume that the system will be tectural concepts at the implementation level,
static. Complex systems evolve over time, and the architec-

In this paper, we propose a set of modeling techniques
ture of an evolving system will change even at run time, as

based on an agent-oriented methodology called Methodol-
the system implements self-configuration, self-adaptation,

ogy for Analyzing Complex Multiagent Systems (MaCMAS)
and meets the challenges of its environment.

that is designed to deal with complex unpredictable systems
An evolving system can be viewed as multlple versions [l l] ' . Specifically, the approach we use is based on an ex-

of the same system. That is, as the system evolves it es- tension of MaCMAS that allows to model MAS Product
sentially represents multiple instances of the same system, Lines (MAS-PL) [14, 131. This allows us to manage the
each with its own variations and suecific changes. That is ..
to say, an evolving system may be viewed as a product line 'See www.tdg-seville.infolmembersljoaquinplrnacmasl for details and
of systems, where the core architecture of the product line case studies using this methodology

modeling of the evolution of the system in a systematic way.
To the best of our knowledge. this is the first approach

that deals with architectural changes of MASS based on
MAS-PL.

2 Background and Related Work

The software product line paradigm (hereafter, SPL) au-
gurs the potential of developing a core architecture from
which customized products can be rapidly generated, re-
ducing time-to-market, costs, etc. [I], while simultaneously
improving quallty, by making greater effort in design, im-
plementation and test more financially viable, as this effort
can be amortized over several products. The feasibility of
building MAS product lines is presented in [13]. In [14],
we discuss the details of how to build the core architecture.

In a MAS-PL, we can observe the enterprise architecture
of the system from two different points of view. This dis-
tinction stems from the organizational metaphor 19. 10. 181.
These two views are the following:

Acquaintance point of view: shows the organizat~on as
the set of interaction relationships between the roles
played by agents in models called role models. It fo-
cuses on the interactions within the system and also on
representing how a functionality designated by a sys-
tem goal is achieved.

Structural point of view: shows agents as artifacts that
belong to sub-organizations, groups, teams. In this
view agents are structured into hierarchical construc-
tions showing the social structure of the system. It
shows which agents are playing the roles in the Ac-
quaintance Organization, and thus, shows how system
goals are achieved by means of agents interacting to
fulfill the system goals.

As shown in [7], the acquaintance organization can be
modeled orthogonally to its structural organization. This
allows us to change the system goals that are enabled in the
system by changing the parts of the acquaintance organiza-
tion present in the structural organization. This in fact. is
the basis of MAS-PLs.

The software process of MAS-PLs is divided in two main
stages: Domain Engineering and Application Engineering.
The former is responsible for providing the reusable core as-
sets that are exploited during application engineering when
assembling or customizing individual applicat~ons [4]. En-
tering into details, we might say that, generally, both stages
can be further divided into requirements, analysis. design.
and implementation (a typical software development lifecy-
cle).

domain requirements: This phase describes the require-
ments of the complete family of products. highlighting

both the common and variable features across the fam-
ily. In this phase, commonal~ty analysis is of great im-
portance for aiding in determining which are the com-
monal~ties and variabilities. The models used in this
phase for specifying features show when a feature is
optional, mandatory or alternative in the family. The
models used are called feature models [2, 131. A fea-
ture is a characteristic of the system that is observable
by the end user. which in essence represents the same
concept than a system goal as shown previously [6].

domain analysis: This phase produces architecture-
independent models. i.e. acquaintance organization
models, that define the features of the family and the
domain of application. MAS-PLs use role models
to represent the interfaces and interactions needed to
cover certain functionality independently (a feature
or a set of features)[l4]. The most representative
references in the non-MAS-PL field are [5, 171.
Similar approaches have appeared also in the 00
field. for example [3. 161, but all of these approaches
use role models with the same purpose, namely.
representing features of the system in isolation from
the final enterprise architecture.

domain design: In this phase, a core architecture of the
family is produced. and is termed the core structural
organization of the system. The core architecture is
formed as a composition of the role models corre-
sponding to the more stable features in the system [13].

application engineering: This phase has the responsibility
of building concrete products. As our purpose in this
paper is the runtime evolution of the system, we do not
illustrate it here.

3 A NASA case study

The case study we use is a s w a m of pico-spacecrafts
that are used to prospect the asteroid belt. The enterprise
architecture of the system changes at run-time depending
on the environment and the state of the swarm. From all the
possible evolutions we show only two states of the system.
in the first one the swarm is orbiting an asteroid in order to
analyze it; in the second, a solar storm occurs in the envi-
ronment and the system changes its state to protect itself.

We will show the role models for both states and an ex-
ample of composition of both of them since both features of
the system are not completely orthogonal: to protect from
a solar storm the spacecraft must take two basic steps: (a)
orient ~ t s solar sails to minimize the area exposed to the so-
lar storm particles (trim sails) and (b) power-off all pos-
sible electronic components. Step (a) minimizes the forces
from impinging solar-storm particles, which could affect the

spacecraft's orbit. Both steps (a) and (b) minimize potential
damage from the charged particles in the storm (which can
degrade sensors, detectors, electronic circuits, and solar en-
ergy collectors).

4 Modeling an Evolutionary MASS

As we have shown. each product in a MAS-PL is defined
as a set of features. Given that all the products present a
set of features that remain unchanged, the core architecture
is defined as the part of all of the products that implement
these common features[l4]. Thus, a system can evolve by
changing. or evolv~ng, the set of non-core features.

A product or a state in our evolutionary system can be
defined as a set of features. Let F = {fi.. f,) be the set
of all features of a MAS-PL. Let cF c F be the set of
core features and ncF = F \ C F be the set of non-core
features. We define a valid state of the system as the set of
core features and a set of non-core features, that is to say,
S = cF U S F , where S F c ncF is a subset of non-core
features.

Given that. the evolution from one state to another
S, is defined as:

where nF, ,-I c ncF 1s the set of new features and
dF, , - I C 7 x 9 is the set of deleted features.

Finally, Ai,,-1 describes the variation between the prod-
uct of the state i - 1 and the product of the state i, that is to
say, nF,,,-1 \ dF,,,-1.

In [13], we show that a feature correlates with a role
model. Thus, for a system to evolve from one state to an-
other, we must compose or decompose the role models in
n F and dF. Specifically, we must compose the role models
corresponding to the features in n F with the role models
corresponding to the features that remain unchanged from
the initial state S T P I , that is to say S, \ dF,.;-l. Decompo-
sition is used for role models that must be eliminated.

In the following subsections, we describe role models,
and the operations for composition and decomposition.

5 Models

MaCMAS is the AOSE methodology that we use for our
approach. It is specially tailored to model complex acquain-
tance organizations [15]. We use this methodology since it
is the only that provides explicit support for MAS-PLs.

For the purposes of this paper, we only need to know
a few features of MaCMAS, mainly some of the models it
uses. Although a process for building these models is also
needed, we do not address this in this paper, and refer the

A) Plan Model

--
B) Role Model

Figure 2. Self-protection from solar storms
autonomic property model

interested reader to the literature on this methodology. From
the models it provides, we are interested in the following:

a) Static Acquaintance Organization View: This shows
the static interaction relationships between roles in the
system and the knowledge processed by them. In this
category, we can find models for representing the on-
tology managed by agents, models for representing
their dependencies, and role models. For the purposes
of this paper we only need to detail role models:

Role Models: show an acquaintance sub-organization
as a set of roles collaborating by means of several
rn~~lti-Role Interaction (mRI). mRIs are used to
abstract the acquaintance relationships amongst
roles in the system. As mRIs allow abstract
representation of interactions, we can use these
models at whatever level of abstraction we de-
sire.

In Flgure I-B and 2-B, we show the role model
that represents how the swarm orbits an asteroid
and the one representing the protection from a
solar storms. In the figures, interfaces, repre-
sented as boxes, represent the static features of
roles showing their goals, the knowledge man-
aged. and the services provided. mRIs, repre-
sented as dashed ellipses, represent the interac-
tions between the roles linked to them, show-
ing their goal when collaborating, their pattern
of collaboration, and the knowledge consumed,
used, and obtained from the collaboration.

b) Behavior of Acquaintance Organization View: The
behavioral aspect of an organization shows the se-
quencing of mRIs in a particular role model. It is

A) Plan Model
<dnv,ronment>>

Orbiter
rds"veP0a Poo

OibtMcddlw

r-- RdeG& CatiulaLe ahb
orbilM O r t , W mRlGr*ls sffd 06, mod&%

OC1,0+#<. ~ m ~ - , l , O m ~ ~ ~ I B B ~ J P O B POB
aQeraORelaldb3 PO$
asData Astcela
*slModei m o d e (

1 n
CalaulatrnrbqiisleradData,
OlbllMcdei

.
me. asfnbute

Rum: Collaboiaitan
Out:

.. - - . -__- -
B) Role Model

Figure 1. Orbiting and measuring an asteroid autonomous property

represented by two equivalent models:

Plan of a role: separately represents the plan of each
role in a role model showing how the mRIs of
the role sequence. It is represented using UML
2.0 ProtocolStateMachines. It is used to focus on
a certain role, while ignoring others.

Plan of a role model: represents the order of mRIs in
a role model with a centralized description. It is
represented using UML 2.0 StateMachines. It is
used to facilitate easy understanding of the whole
behavior of a sub-organization.

In Figure I-A and 2-A, we show the plan of the
role models of our example.

We must add a new model to MaCMAS in order to rep-
resent the evolutions of the system. This model is called the
evolution plan.

Evolution Plan: Is represented using a UML state machine
where each state represents a product, and each tran-
sition represents the addition or elimination of a set of
features, that is to say, A. In addition, the conditions in
the transitions represent the properties that must hold
in the environment and in the system in order to evolve
to the new product.

A) Plan Model

B) Role Model

Figure 3. Measure storms model

In Figure 4, we show part of the evolution plan of our
case study. There we represent two products, one rep-
resenting the swarm when orbiting an asteroid, and an-
other representing the swarm when orbiting and pro-
tecting from a solar storm. As can be seen, we add or
delete the feature corresponding to protect from solar
storm depending on whether or not the swarm is under
risk of solar storm, which is measured by the feature
represented in the role model of Figure 3.

Figure 5. Composed Role Model

J

[STMeasurer SolarStormRisk()c=K]

s ~ ~ ~ w . ~ h ~ ~ ~ ~ ~ a ~ ~ s ~ w m ~ \ { Fva~t~hm.sdu.stms)

Figure 4. Evolution plan of our case study

6 Evolving from one product to another

6.1 Composing role models

It is important to point out that the composition of role
models is used to map an acquaintance organization onto
a set of agents; that is to say, a structural organization.
This mapping is not always orthogonal between all role
models-applying two related features to a product may re-
quire their integration. The composition of role model is the
process required to perform this integration. In the case of
having orthogonal features, and thus orthogonal role mod-
els, we must only assign the prescribed roles to the corre-
sponding agents.

We have to take into account that when composing sev-
eral role models that are not independent, we can find:
emergent roles and rnRls, artifacts that appear in the compo-
sition yet they do not belong to any of the initial role mod-
els; composed roles and mRls, the roles and mRIs in the

resultant models that represent several initial roles or mRIs
as a single element; and, unchanged roles and rnRls, those
that are left unchanged and imported directly from the ini-
tial role models.

Once those role models to be used for the core architec-
ture have been determined, we must complete the core ar-
chitecture by composing role models. In addition, to obtain
a certain product we perform the same process. Importing
an mR1 or a role requires only its addition to the composite
role model. The following shows how to compose roles and
plans.

When several roles are merged in a composite role
model, their elements must be also merged as follows:

Goal of the role: The new goal of the role is a new goal
that abstracts all the role goals of the role to be composed.
This information can be found in requirements hierarchical
goal diagrams or we can add it as the and (conjunction) of
the goals to be composed. In addition. the role goal for
each rnRI can be obtained from the goal of the initial roles
for that mRI.

Cardinality of the role: It is the same as in the initial
role for the corresponding mR1.

Initiatorts) role(s): If mRI composition is not per-
formed, as in our case, this feature does not change.

Interface of a role: All elements in the interfaces of
roles to be merged must be added to the composite inter-
face. Notice that there may be common services and knowl-
edge in these interfaces. When this happens, they must be
included only once in the composite interface, or renamed,

depending on the composition of then ontologies.
Guard of a role/rnRI: The new guards are the and (con-

junction) of the corresponding guards in initial role models
if roles composed participate in the same mRI. Otherwise,
guards remain unchanged.

In our case study, the evolution from the product orbit-
ing, that also have the feature measure storms, to the prod-
uct protecting fronz solar storm requires the addition of the
feature to protect from a solar storm. This is due to two
reasons: first, the features orbiting and measure asteroid
and the measure storms belongs to the core architecture,
and second. the prorecrion from solar storms can happen
in whichever moment and we must report the last measures
of the asteroid before powering-off subsystems. Thus, as
these role models are not orthogonal, we must perform a
composition of them. This composition, represented in Fig-
ure 5, IS done following the rule prescribed above. As can
be observed, we have imported a11 the mRIs and most roles.
In addition, we have performed a composition of roles Self-
ProtecSC and the rest in the role model Orbir and measure
asteroicls.

The conlposition of plans consists of setting the order of
execution of mRls in the composite model, using the role
model plan or role plans. We provide several algorithms to
assist in this task: extraction of a role plan from the role
model plan and vlce versa, and aggregation of several role
plans; see [1 ?] for further details of these algorithms.

Thanks to these algorithms, we can keep both plan views
consistent automat~cally. Depending on the number of roles
that have to be merged we can base the composition of the
plan of the composite role model on the plan of roles or on
the plan of the role model. Several types of plan composi-
tion can be used for role plans and for role model plans:

Sequential: The plan is executed atomically in sequence
with others. The final state of each state machine is super-
imposed with the initial state of the state machine that repre-
sents the plan that must be executed, except the initial plan
that maintains the initial state unchanged and the final plan
that maintains the final state unchanged.

Interleaving: To interleave several plans, we must build
a new state machine where all mRIs in all plans are taken
into account. Notice that we must usually preserve the order
of execution of each plan to be comp-s-d. We can use al-
gorithms to check behavior inheritance to ensure that this
constraint is preserved, since to ensure :his property, the
composed plan must inherit from all the initial plans [S].

The composition of role model plans has to be performed
following one of the plan composition techniques described
previously. Later, if we are interested in the plan of one of
the composed roles. as it is needed to assign the new plan to
the composed roles; we can extract it using the algorithms
mentioned previously.

We can also perfom a composition of role plans follow-

Figure 6. Composed plan

ing one of the techniques to compose plans described previ-
ously. Later, if we are interested in the plan of the composite
role model, for example for testing. we can obtain it using
the algorithms mentioned previously.

In Figure 6. we show the composed plan for our case
study. This plan follows an interleaving composition where
we include the mR1 report nzeasures before starting the pro-
tection from the solar storm. Notice that when finishing
the solar storm, the system will evolve to the other product
deleting the feature solar storm protection. Then, the plan
of the feature orbiting and measure will start from its initial
state, thus re-starting the exploration of the asteroid.

6.2 Decomposition of role models

The decomposition is simpler than composition. When
the role model to be eliminated IS orthogonal to the rest, we
only have to delete the corresponding roles from the agents
that are play~ng them. In the case that the role model is de-
pendent with others, we have to delete the elements of role
models and eliminate all the interactions that refer to them.
Given that the software architecture where the system run
should support the role concept and its changes at runtime,
these changes can be made easily with a lower impact on
the system.

However, when dependent, several features may appear
whose role models are related. In these cases some roles
may have to be decomposed. These roles are those whose
mRls belong to the scope of the role model(s) that have to
be eliminated. In these cases, the role has to be decomposed
into several roles, in order to isolate the part of the role we
want to delete.

In addition, we have to eliminate the mRl(s) of the role
model(s) to be eliminated from the role model plan or the
role plans. This is done starting from the plan of the initial
dependent role models. Each separate role model usually
maintains the order of execution of mRIs determined in the
initial model but executing only a subset of mRIs of the
initial role models. The behavior of the role model to be

deleted can be extracted automatically using the algorithms [4] M. Harsu A survey on domain engineering. Technical Re-
descnbed In [12]. This algorithm allows us to extract the port 3 1. Institute of Software Systems, Tampere University of
plan of remaining role models from the initial ones con- Technology, December 2002.

strain~ng this to the set of mRIs that remains in the model. [5] A. Jansen. R. Smedinga. J. Gurp, and J. Bosch. First class
feature abstractions for product derivation. IEE Proc.r~drny.~

7 Conclusions and future work

We have described a novel approach to describing. un-
derstanding, and analyzing evolving systems. Our approach
is based on viewing different instances of a system as it
evolves as different "products" in a Software Product Line.

That Software Product Line is in turn developed with an
agent-oriented software engineering approach and views the
system as a Multiagent System Product Line. The use of
such an approach is particularly appropriate as it allows us
to scale our view to address enterprise architectures where
various entities in the enterprise are modeled as software
agents.

The main advantage of the approach resides in the fact
that it allows us to derive a formal model of the system and
of each state that it may reach. This allows us to clearly
specify the differences from one state of the architecture
and any subsequent states of that evolving system. This sig-
nificantly improves our capabilities to understand, analyze
and test evolving systems. Additionally. thanks to the use
of MaCMAS which allows for the description of the same
feature at different levels of abstraction. we can also spec-
ify and test the architectural changes at different levels of
abstraction.

Finally. such an approach provides support at run time
for the addition and deletion of roles in the architecture.
It provides reflection mechanisms that enable understand-
ing of the features, roles, and agents in an enterprise ar-
chitecture at different levels of abstraction, providing ca-
pabilities for ensuring quality of service by means of self-
organization. self-protection, self-healing and other self-"
properties identified by the Autonomic Computing initla-
tive. Furthermore, it decreases the distance between enter-
prise architectures and software architectures. enabling us
to model enterprise architectures as software architectures
and exploit all of the advantages of software architectures
approaches.

References

!ll P. Clements and L. Northrop. Sofrwarr Producr Ltne, Prac.-
tires and Patterns. SEI Series in Software Engineenng.
Addison-Wesley. Aug. 2001.

121 K. Czamecki and U. Eisenecker. Grnrt-arr~'e Programming:
Mrrlzods, Tools, and Applications. Addison-Wesley. 2000

[31 D. D'Souza and A. Wills. object^, Componenr.c. rirzd Frame-
work.\ with UML: Tfze Caralysi.~ Approach. Addison-Wesley,
Reading, Mass., 1999.

- Sofm are. 15 l(4): 187-1 98. 2004.
161 K. Kang, S. Cohen, J Hess, W Novak. and A. Peter-

son Feature-oriented domain analysis (foda) feasibility study.
Technical Report CMUfSEI-90-TR-021, Software Engineer-
ing Institute. Carnegie-Mellon University, November 1990

171 E. A. Kendall. Role modeling for agent system analysis. de-
sign. and implementation. IEEE Concurrency. 8(2):34-41,
Apr./June 2000.

[81 B. Liskov and J . M Wing. Specifications and thelr use in
defining subtypes. In Proc,erding.s of the eighth annual con-
.fererrce on Object-orientud progra~nming sysiem.c, lanyuagr ,,
artd app1ic.atton.s. pages 16-28. ACM Press, 1993.

191 J . Odell, H Parunak. and M. Fleischer. The role of roles in
designingeffective agent organisations. In A . Garcla and C. L.
F. Z A. 0. J Castro, editors, SojYware Engineerrug fbr Large-
Scale Mulrr-Agmt Sysrern.~. number 2603 in LNCS. pages 27-
28, Berlin, 2003. Springer-Verlag.

[I 01 H. V. D Parunak and J. Odell. Representing social structures
in UML. In J. P Miiller, E Andre, S. Sen, and C. Frasson. edi-
tors. Proceeding.\ ofthe Fifl11 Inrenrational Conferencr on Au-
tonornous Agents. pages 100-101, Montreal. Canada. 2001
ACM Press.

[I I] J . Peiia. On Irnprovrng The Modelling Of Complex Acquain-
tance Organrsarions OfAgents. A Method Fragrnenr For The
Ana1ysi.r Phase. PhD thesis. University of Seville. 2005.

[I21 J . Pefia, R. Corchuelo. and J . L. Arjona. Towards Interac-
tion Protocol Operations for Large Multi-agent Systems. In
Proceed~ngs ef the Second lnternational Workshop on Forrnal
Approaches to Agent-Based Systems (FAABS 2002). volume
2699 of LNAI, pages 79-91. NASA-Goddard Space Flight
Center, Greenbelt, MD, USA, 2002. Springer-Verlag.

[13] J . Peiia andM. G. Hinchey Multiagent system prod~lct lines:
Challenges and benefits. Communirarions of the ACM, De-
cember 2006. Submitted and pre-accepted.

[14] J. Peiia. M. G. Hinchey. and A. Ruiz-Cortis. Building the
core architecture of a multiagent system product line: With
an example from a future nasa mission. In 7th International
Workshop on Ayenr Oriented Software Engineering 2006.
page to be published, Hakodate. Japan, May, 2006. LNCS.

[I51 J. Peiia, R. Levy. and R. Corchuelo. Towards clarifying the
importance of interactions in agent-oriented sov~ware engi-
neering. lnternarional lbrroarnerican Journal q" :I' (25): 19- -
28, 2005.

[I61 T. Reenskaug. Working with Objects: The OOrarn 'ofm,are
Engineering Method Manning Publications. 1990.

[I71 Y. Smaragdakis and D. Batory. Mixin layers: an
object-oriented implementation technique for refinements
and collaboration-based designs. ACM Trans Sofhv. Ens.
Methodol., 1 1(2):215-255,2002.

[18] F. Zambonelli. N. Jennings, and M. Wooldridge. Developing
multiagent systems: the GAIA methodology. ACM Tran~ac -

rion~ nrz SoftMarc Engineering and Methodology, 12(3):3 17-
370, July 2003.

