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An approach for conducting reliability-based design and optimization (RBDO) of a 
Boeing 767 raked wing tip (RWT) is presented.  The goal is to evaluate the benefits of RBDO 
for design of an aircraft substructure.  A finite-element (FE) model that includes eight 
critical static load cases is used to evaluate the response of the wing tip.  Thirteen design 
variables that describe the thickness of the composite skins and stiffeners are selected to 
minimize the weight of the wing tip.  A strain-based margin of safety is used to evaluate the 
performance of the structure. The randomness in the load scale factor and in the strain 
limits is considered.  Of the 13 variables, the wing-tip design was controlled primarily by the 
thickness of the thickest plies in the upper skins.  The report includes an analysis of the 
optimization results and recommendations for future reliability-based studies. 

 
I. Introduction 

A. Motivation and Background 
Optimization for structural sizing has been successful as a result of accurate, reliable, and computationally 

inexpensive finite-element (FE) methods for structural analysis (Refs. 1−5).  However, the optimization process can 
generate designs that have poor off-design performance.  Moreover, the optimization solution can be unduly 
influenced by design constraints that are not precisely known (Ref. 5). 

A probabilistic approach is an attractive alternative to traditional design optimization. Probabilistic analysis and 
optimization can result in improved designs considering the variability of structural materials and the uncertainty in 
loads.  Moreover, the process generates information as to which design changes have the biggest impact on 
reliability.  This process gives the designer the added freedom, for example, to create lower cost designs with the 
same reliability as the baseline design or to produce higher reliability designs with a minimum addition of weight. 

The current study explores the advantages of the probabilistic approach by choosing the Boeing 767-400ER 
raked wing tip (RWT) as a baseline design (see Figure 1).  Unlike previous academic studies, this study starts with 
an FAA certified baseline design and suggests how it can be improved using probabilistic a design approach.  To the 
extent possible, the study uses load cases and material characterizations that represent the as-built RWT.  On the 
other hand, the design problem is necessarily simplified to expedite the study.  The FE model is only appropriate for 
linear static analysis; therefore, crucial constraints like fatigue and damage tolerance are ignored.  Similarly, only 
static-load cases are considered, and these load cases are not adjusted for changes in aerodynamic loading that result 
from changes in the design variables.  The change in design variables is limited, so that changes in the aerodynamic 
loading can be neglected. 
 
B. Purpose and Contents 

The purpose of the RWT design study is to answer important questions about applying reliability-based design 
and optimization (RBDO) to aircraft design in general and, more specifically, to the design of the RWT.  First, does 
a probabilistic approach produce a viable design?  This question is answered by comparing RBDO designs with the 
baseline design.  Next, does the probabilistic approach require exorbitant computer resources or measured data that 
are unavailable?  This question is answered by estimating the computational costs of probabilistic analysis and 
establishing the needed and available data for the RWT.  

In the limited context of structural analysis for a secondary substructure, this study shows the strengths and 
weaknesses of the RBDO approach.  In this context, the benefit-to-cost improvement over the traditional design 
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approach is examined.  Examples and recommendations are presented for characterizing and modeling uncertainties, 
for validating structural analyses and probability calculations, and for computing the final design risk while 
accounting for important uncertainties. 

This paper is organized as follows. Section II provides a description of the RWT design problem.  Section III 
presents details of the approaches that are used in the study.  Section IV presents the results of the deterministic and 
probabilistic analyses for the baseline design.  Section V presents the results of the deterministic and probabilistic 
design studies.  A summary of the approaches that are evaluated and the conclusions of the design study are 
presented in Section VI.  Finally, concluding remarks on the design study are presented in Section VII. 
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Figure 1. Boeing 767-400ER Raked Wing Tip. 

 
II. Description of RWT Design Problem 

In this section, the RWT design problem is described. The FE model and the analyses that simulate the RWT 
and its response are discussed.  All FE analyses are performed with MSC/NASTRAN software, a product of 
MSC.Software Corporation (Ref. 6)††.  Next, the design variables that are used to change the baseline design and the 
objective function that is used to assess the modified FE model are discussed.  Finally, the deterministic and 
probabilistic design constraints are defined. 

 
A. Analysis model 

The FE model of the RWT consists of a metallic stubbed wing box and a composite RWT (Figure 2).  Single-
point displacement constraints are applied to the root of the stubbed wing box, so that the model acts like a 
cantilevered beam.  The model consists of 2958 nodes, 3386 shell elements (CTRIA3, CQUAD4, and CSHEAR), 
166 solid elements (CHEXA), and 501 line elements (CBAR, CBUSH, CELAS, and CROD). 
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Figure 2. FE model of the stub box and the RWT. 

                                                 
†† The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an 
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics 
and Space Administration. 
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As shown in Figure 2, the stubbed wing box is used to simulate constraints imposed by full wing box on the 
RWT.  The focus of this study is the stiffness and strains in the RWT; so the structural response of the stub box is 
ignored in this study, and therefore, the elements of the stubbed wing box are not sized in the optimization process. 

The RWT consists of four metallic components (i.e., root rib, root rib center section, leading edge, and tip rib, 
see Figure 3) and five composite components (i.e., upper cover, lower cover, forward spar, middle (half) spar, and 
aft spar, see Figure 4).  The annotation (e.g. UC1, UC2, SM1, and SF1) in Figure 4 represents design variables used 
in the analysis and will be discussed later in the paper. 
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Figure 3. Metallic components in the FE model of the RWT. 
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Figure 4. Composite components in the FE model of the RWT. 

 
Structural engineers define limit loads as the largest load a structure is expected to encounter.  Ultimate loads 

represent limit loads multiplied by a factor of safety.  For this study, eight critical load cases are identified and 
applied to the FE model, as summarized in Table 1.  The magnitude of the loads represents the ultimate loads for the 
deterministic design process. 

 
Table 1.  Load Cases 

Load case # Type Altitude 
1 1-g spoilers down Climb 
2 +2.5-g spoilers up Sea Level 
3 +2.0-g flaps down Sea Level 
4 +2.0-g flaps down Cruise 
5 1.0-g spoilers down Sea Level 
6 Load case #2 + buffet Sea Level 
7 Load case #4 + buffet Sea Level 
8 Load case #5 + buffet Cruise 
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In the FE model, the composite shell properties are represented by NASTRAN PCOMP cards (Ref. 6).  Each 

“ply” in the PCOMP card represents a layer of graphite epoxy fabric material.  The material properties in each layer 
represent fabric as a smeared material system consisting of either a 0/90 or a ±45 cross-ply.  The exact properties of 
this material system are Boeing proprietary data, and hence are not presented in this report.  The thickness of the 
covers is not constant; it varies in both the spanwise and chordwise directions.  The exact thickness distribution is 
Boeing proprietary data, but in general the covers are thicker at the root of the RWT than at the tip.  Similarly, the 
spars are thicker at the root than at the tip. 

 
B. Design Variables 

Thirteen design variables are defined for both deterministic and probabilistic optimization of the RWT.  Each 
design variable is associated with the shell thicknesses of the composite components in the FE model as shown in 
Table 2.  The design variables control the changes in thickness that are added to or subtracted from the original 
thickness for a given component (i.e., a value of 0.0 represents the baseline design).  The lower limit of each design 
variable ∆N is equal to the minimum gage (MG) minus the baseline number of plies associated with that variable.  
Relative locations of the thirteen variables on the FE grid are shown in Figure 4.  Multiple variables are used for 
each component as illustrated in Figure 5. 

In Figure 5, variable UC1 represents a change in the thickness of the thinnest section of the upper cover, and 
variable UC4 represents a change in the thickness of the thickest section of the upper cover.  The change in 
thickness at other sections of the upper cover is a piecewise linear function of the four design variables (UC1, UC2, 
UC3, and UC4) based upon the initial thickness of that section.  During the optimization, lamina thicknesses in the 
PCOMP cards are changed as the design variables change.  This approach is simpler to implement than adding 
layers and changing the stacking sequence.  Although during the optimization process, the design variables are 
continuous; the design variables must be rounded up to the nearest integer number of plies for manufacturing 
purposes. 
 

Table 2.  Mapping of Design Variables to Composite Properties 
# Label Component Baseline thickness (# of plies N) Lower limit (# of  plies ∆N) 
1 UC1 Upper cover MG +  1 -1 
2 UC2 Upper cover MG +  4 -4 
3 UC3 Upper cover MG +  6 -6 
4 UC4 Upper cover MG +  8 -8 
5 LC1 Lower cover MG +  1 -1 
6 LC2 Lower cover MG +  4 -4 
7 LC3 Lower cover MG +  6 -6 
8 LC4 Lower cover MG +  8 -8 
9 SF1 Forward spar MG +  1 -1 

10 SF4 Forward spar MG +  4 -4 
11 SM1 Middle spar MG +  6 -6 
12 SA1 Aft spar MG 0 
13 SA7 Aft spar MG +  6 -6 
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Figure 5.  Sample mapping of design variables to ply thicknesses in upper cover. 

 
For this study, only the lamina thickness is permitted to change.  Several PCOMP cards in the upper and lower 

cover represent a sandwich composite and include a layer of core material.  Preliminary parametric studies have 
determined that small changes in the thickness of the core material do not have a significant effect on the strains in 
the RWT model, so the thickness of the core layer in the upper and lower cover is not changed during the design 
process. 

Special attention must be paid to beam elements on the spars of the FE model.  In the forward, middle, and aft 
spars, shell elements represent the spar web, and beam elements represent the spar caps at the top and bottom of 
each spar as shown in Figure 6.  For consistency in this study, the cross-sectional areas for the spar caps are linked 
to the thickness of the spar webs.  In the actual RWT, the spars are C-channels; thus, the cross-sectional area A for 
the spar caps (defined with NASTRAN PROD cards) in the FE model should be the product of the flange width b 
and the spar web thickness.  In the model parameterization process, constant flange widths for each PROD set are 
computed from the cross-sectional area and the initial thickness of the web connected to the beam elements 
associated with that PROD card.  Therefore, the cross-sectional area for each PROD card is adjusted according to 
the value of the design variable for the spar web that is connected to the beam elements of that PROD card. 
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Figure 6. Cross-sectional dimensions of spar caps. 

 
The conversion of the FE model into a parameterized FE model is an iterative process; thus, decisions such as 

whether to make the cross-sectional area of the spar cap a design variable or a computed quantity require some trial 
and error.  In general, starting with design variables that map intuitively to the physical structure is advisable.  In 
addition, variables should be normalized so that all have the same order of magnitude, and variables should be 
selected so that recovering the baseline case is easy.  The set of design variables that is described here is one of 
many reasonable choices. 
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C. Objective function 
The objective of the optimization problem in this design study is to reduce the weight of the Boeing 767 RWT 

by changing the composite panel thicknesses and the spar cap cross-sectional areas (design variables).  Weight is 
one output of the MSC/NASTRAN software.  For this study, only the weight of the sized composite components is 
considered in the objective function.  To eliminate the non-sized components from the weight calculation, the 
material densities of the non-sized components are set to zero. 
 
D. Constraints for deterministic optimization 

Three types of deterministic constraints are described in this section.  The first constraint type is a side 
constraint that defines a lower limit on the design variables (i.e., ∆N in Table 2).  The second constraint type is a 
modeling constraint that is based on the stiffness of the RWT.  The third constraint type is a performance constraint 
that is based on composite strains and metallic stresses.  This performance constraint has both a deterministic and a 
probabilistic formulation.  The deterministic performance constraint is described in this section, and the probabilistic 
performance constraint is described in section II.F. 

The purpose of the side constraints is to define a minimum gage for the composite material.  Setting the 
minimum gage simplifies the margin of safety calculations and removes several failure modes related to impact 
resistance, durability, and damage tolerance. 

The purpose of the modeling constraints is to limit the bending and twisting of the RWT so that the 
aerodynamic loads will not change due to excessive deformation of the RWT.  These constraints are required in both 
the deterministic and probabilistic optimizations.  In this study, bending stiffness and torsional stiffness of the RWT 
are defined by the displacements wTip and αTip as shown in Figure 7.  The constraints are feasible if the computed 
values of wTip and αTip are within ±10 percent of the baseline values for each load case (i.e. the ratio of the computed 
value over the baseline value must be between 0.9 and 1.1).   The 10% value was selected as a reasonable limit by 
the design team based on the experience of the loads engineers. 
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Figure 7. Stiffness constraints. 

 
The purpose of the performance constraints is to assess whether the RWT is strong enough to resist the loads 

that are applied to it.  The performance constraint for this design study is a margin of safety (MS) that is based on 
von Mises stresses and composite strains.  The MS for the metallic components is computed for each element by: 

1−= NASTRAN
vonMises

Allowable
vonMises

MetalllicMS
σ
σ

 (1) 

where the computed value is the maximum of the upper and lower surface von Mises stress that is reported by 
MSC/NASTRAN, and the allowable value is the ultimate stress for the material that is associated with that element.  

For composites, the MS should be computed for each of three failure modes: net section failure, bearing bypass 
interaction, and bearing failure.  Unfortunately, the FE model does not include representative elements for bolts; 
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thus, only the net section failure is considered in this study.  The MS for composite components is computed for 
each ply in each element by: 

11
−=

FI
MSComposite  (2) 

where FI is a composite failure index, which is computed with either a fiber tension equation (Eq. 3) or a fiber-
matrix shearing equation (Eq. 4), depending on the value of the axial strain ε. 

T

NASTRAN

FI
ε

ε
=  for  0≥NASTRANε  (3) 

22









+








= S

NASTRAN

C

NASTRAN

FI
γ

γ
ε

ε
 for  0≤NASTRANε  (4) 

In Eqs. 3 and 4, εNASTRAN and γNASTRAN represent NASTRAN-computed axial and shear strains, respectively.  εT, εC, 
and γS represent axial tension, axial compression, and shear strain limits, respectively.  Axial strains are evaluated 
for both the 0/90 and the +45/-45 fabric system, so there are two sets of axial strain limits.  In Eqs. 3 and 4, the strain 
limits for the composite fabric material are proprietary Boeing data and hence are not presented in this paper 

In the deterministic optimization process, only the lowest MS in each component for each load case is used.  
With 8 load cases and 9 components, 72 performance (i.e., MS) constraints are used in the design process.  A 
summary of the deterministic constraints (g) that are used in the deterministic design process is given in Table 3.  

 
Table 3.  Summary of Deterministic Constraints 

Constraint type Number of Constraints Equation Constraint 
Side (design variable) 13 (1 per variable) xxg =)(1  Ng ∆≥1  

Model (bending stiffness) 8 (1 per load case) 

baseline
Tip

NASTRAN
Tip

w
w

xg =)(2  
1.19.0 2 ≤≤ g  

Model (torsional stiffness) 8 (1 per load case) 

baseline
Tip

NASTRAN
Tipxg

α
α

=)(3  
1.19.0 3 ≤≤ g  

Performance (MS) 72 (9 per load case) 
ultimate loads UltimateMSxg =)(4  04 ≥g  

 
E. Probabilistic Variables 

One of the key issues in probabilistic design is to determine the uncertainties that are associated with structural 
analysis.  The type, distribution, sensitivity, and significance for each source of uncertainty must be considered.  
Possible sources of uncertainty include modeling errors, manufacturing errors, environmental variability, 
aerodynamic loads, and material variability.  Many sources of uncertainty were ignored for this study because their 
effects on the design were considered small in comparison to other sources of uncertainty or because of a lack of 
quantifiable data on the uncertainty distributions.  The ignored sources of uncertainty include material elastic 
properties, as-manufactured cover and spar thicknesses, model fidelity errors, and analytic simulation errors. 

Based on prior research experiences in structural analysis, two major sources of uncertainty dominate the failure 
probability (Refs. 2−4).  These two uncertainties are randomness in the applied load and variability in the allowables 
(i.e., strength and strain limits).  The procedure that is used to estimate the distributions for these two sources of 
uncertainty is discussed in the following section. 

 
E.1 Distribution for the load 

Load distribution is difficult to determine in the absence of measured data. For aerospace vehicles, the loads 
depend upon many factors (e.g., flight path, accelerations, payload, gusts, wind, aeroelasticity, maneuvering, 
airspeed, and vibration).  The uncertainty of the load is the combination of the randomness in all of these factors. In 
the traditional design method, the loads are determined based on the airplane configuration and the aerodynamic 
performance as specified by the design flight envelopes.  This study lacked the resources required for the in-depth 
study of the load spectrum which would be required to develop a refined load uncertainty distribution.  However, the 
data and calculations that are presented in Ref. 7 provide evidence that such a distribution can be developed. 
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A practical method was applied to estimate the load and its uncertainty based on the knowledge of the RWT 
study team members.  The FE model that was provided by Boeing includes eight load cases that represent ultimate 
loads for eight critical flight conditions (see Table 1).  These loads can be scaled to design limit loads (DLL’s) by 
dividing the NASTRAN load scale factor by 1.5.  Aircraft designers assume that DLL’s are the maximum loads that 
are experienced by the Boeing 767-400ER aircraft during its service life of 40,000 flights.  Designers assume that 
the occurrence of 100-percent DLL is relatively rare.  A conservative estimate is that DLL occurs once in 3,000 
flights.  However, the occurrence of 75-percent DLL is not rare, perhaps once in two flights.  These assumptions are 
captured in a probabilistic distribution that is shown in Figure 8.  Here, a normal distribution is used to model the 
uncertainty, and the distribution is normalized so that the DLL has a value of unity.  Notice that Figure 8 represents 
the probabilistic distribution of the maximum load per flight rather than the distribution of the load.  Any probability 
of failure calculated using this distribution is the probability of failure per flight. 

In this study, a normal distribution is selected for the loads because the central limit theorem states that the 
combination of the uncertainties of multiple factors is a normal distribution (Ref. 8).   For a standard normal 
distribution (i.e., mean = 0, standard deviation = 1), the notation Φ(z) (Eq. 5) is commonly used to represent the 
distribution function of the standard normal variate K .  The standard normal variate represents the number of 
standard deviations from the mean µ (Ref. 8).  The value for the standard normal variate Kp for a cumulative 
probability p is computed from Eq. 6: 

( ) ξ
π ξ

ξ dez
z

∫
−∞=

−=Φ
2

2
1

2
1)(    (5) 

)(1 pK p
−Φ=    (6) 

 
If the cumulative probability that the maximum load per flight exceeds the DLL is assumed to be 1/3000 or 

3.333 x 10−4, then the standard normal variate Kp is calculated to be 3.402933.  The value L (percent of DLL) for a 
given Kp, µ, and coefficient of variation (COV) can be computed as:   

)1( pKCOVL ⋅+⋅= µ    (7) 

Thus, if we assume a COV of 10 percent, then the mean for the maximum load per flight (100% DLL) can be 
computed by using Eq. 7 to be 0.7461 and is pictured in Figure 8.  Notice that the mean value of the load scale factor 
is about 75 percent of the DLL, which is consistent with the assumptions that were provided by the aircraft designers 
involved in this study. 
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Figure 8. Normal distribution for load scale factor of the maximum load per flight.  

 
E.2 Distribution for material strength and strain limits  

Strength and strain limits of a material system are commonly described using three types of values: A-basis, B-
basis and typical (µ) values.  The use of A-basis and B-basis allowable properties recognizes that material properties 
are statistical in nature.  For this study, B-basis  tolerance bounds are used to characterize uncertainties in the 
material system.  The B-basis tolerance is the value above which 90 percent of a specified population of 
measurements is expected to fall, with a confidence of 95 percent (Refs. 9 and 10). 

To obtain the material variation, multiple test samples from multiple batches and panels are collected to include 
variations from sample to sample, panel to panel, and batch to batch. The B-basis (RB) of the materials can be 
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calculated using the mean µs and the coefficient of variation COVs (standard deviation SDs = COVs*µs) of the testing 
sample as: 

( )1B s B s s B sR K COV K SDµ µ= ⋅ − ⋅ = − ⋅   (9) 
where KB is a tolerance limit factor.  The tolerance limit factors are functions of the distribution and sample size as 
shown in Table 4 (data from Ref. 10, chapter 8).  Note that the values for the infinite sample size are obtained from 
Equation 6, as shown in Figure 9. 

 
Table 4.  Tolerance Limit Factors for Normal Distribution 

Sample size  KB 
5 3.408 

10 2.355 
30 1.778 
100 1.527 

infinite 1.282 
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Figure 9. Normal distribution for material limits assuming infinite sample size. 

 
For the RWT study, a normal distribution is assumed for the strain limit distributions.  The mean value µ and 

the B-basis (RB) of the material were provided by Boeing, but the coefficient of variation COV of the material was 
not available.  If the sample size is given, the COV and SD can be computed from Equation 9.  The number of 
samples used to determine the RB ranges from 5 to 30 specimens.  Since the exact number of samples used to 
determine the RB ranges is not available in this study, an additional analysis using Chi-Square distribution (Ref. 10) 
and sample size was conducted for 95% high confidence bound of the SD of samples.   Because the 95% high 
confidence bound of the SD computed for 5 and 30 samples differ by less than four percent, the SD calculated with 
sample size 5 is used for this study.  The resulting COV values for the composite fabric are presented in Table 5. 
 

Table 5.  Probabilistic Distributions for Composite Strain Limits 
Strain type COV 

0◦/90◦ fabric tension 0.155 

0◦/90◦ fabric compression 0.118 

+45◦/45◦ fabric tension 0.155 

+45◦/45◦ fabric compression 0.118 
Shear 0.100 

 
F. Constraints for probabilistic optimization 

Three types of constraints are used in the RBDO process.  The first two constraint types, side constraints and 
model constraints, are deterministic and were discussed in section II.D.  The third constraint type is a probabilistic 
performance constraint, which is described in this section. 

A summary of all of the constraints used in the RBDO process is given in Table 6.  The probabilistic 
performance constraint (g4) is based on the idea that a MS that is less than zero is unacceptable.  In this study, the 
probability of failure Pf means the probability that MSLimit is less than zero (i.e., P[MSLimit  < 0] ).  Here, the MSLimit 
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is computed as the minimum MS for all components for all load cases (i.e the minimum of  72 MS responses).  In 
Table 6, the constraint g4, is that the Pf must be smaller than a prescribed system probability PReq.  In this study, 
Monte Carlo simulation is used to compute Pf. 

 
Table 6.  Summary of Probabilistic Constraints 

Constraint type Number of  Constraints Constraint 
Side (design variable) 13 (1 per variable) Ng ∆≥1  
Model (bending stiffness) 8 (1 per load case) 1.19.0 2 ≤≤ g  
Model (torsional stiffness) 8 (1 per load case) 1.19.0 3 ≤≤ g  
Performance (MS) 1 

reqLimitf PMSPPg ≤<== )0(4  

 
III. Design Approaches 

Each design approach combines a FE analysis tool (MSC/NASTRAN, Ref. 6) and an optimizer (Design 
Optimization Tools (DOT), Ref. 11) with additional NASA-developed codes to perform the data transfer, the 
response surface approximations, and the probabilistic analysis.  This set of codes was integrated using commercial 
framework software called ModelCenter®, a product of Phoenix Integration, Inc. (Ref. 12). In the following 
subsections, the approaches for the deterministic design and the probabilistic design are described.  

 
A. Deterministic design approach 

In the deterministic optimization, the 13 design variables that are listed in Table 2 are adjusted to reduce the 
weight of the composite components subject to the 13 side constraints, 16 model constraints, and 72 performance 
constraints that are listed in Table 3.  A functional flow diagram of the deterministic optimization is illustrated in 
Figure 10.  As shown in the flowchart, the “Compute Responses” phase uses MSC/NASTRAN to compute the 
objective function and constraints, and the “Optimization Search” phase uses the optimizer DOT to adjust the values 
of the design variables.  The process continues to iterate between compute and optimization phases as long as the 
design variable, constraint and objective values are changing.  The process can also terminate if the number of 
analyses exceeds some maximum number (e.g., 300 is the maximum number allowed for the RWT study).  Each 
structural analysis (using load cases 1 through 8) requires 21 seconds of CPU time on a single node of a 2.0 GHz 
Pentium IV Linux cluster.  A typical optimization requires less than 300 analyses and is completed in a few hours. 
Standard approximate analysis techniques and parallel processing strategies can be used to reduce the computation 
time but were deemed unnecessary for this study. 
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Figure 10.  Functional flow diagram for deterministic optimization. 
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B. Probabilistic design approach 

The probabilistic design problem is defined in much the same way as the deterministic design problem.  The 13 
design variables that are listed in Table 2 are adjusted to reduce the weight of the composite components subject to 
the side, model, and performance constraints that are listed in Table 6.  The difference between the two design 
approaches is that the 72 deterministic performance constraints are replaced by a single probabilistic constraint. 

In the probabilistic approach, the structural analysis is performed with inputs that are uncertain in nature. 
Random number values for the strain limits and the load scale factors are generated using an algorithm that is 
described in Ref. 13.  Because the NASTRAN load cards are defined as ultimate loads in the deterministic 
optimization, the random load scale factor that is used in the probabilistic calculation is reduced by a factor of 1.5 to 
represent limit loads. 

The probability Pf that MSLimit < 0 is estimated by Monte Carlo (MC) simulations.  This choice is justified 
because 72 MS functions define the failure region, and efficient methods, such as First Order Reliability Method 
(FORM), are known to underestimate the value of Pf when a large number of limit state functions exist (Ref. 5).  
However, the MC method is computationally expensive; thus, the number of NATRAN calculations must be 
limited, and the use of approximate analysis must be considered. 

The number of MC simulations needs to be as large as possible.  A large number of MC simulations is more 
likely to accurately reflect the distribution of the underlying random variables and is more likely to provide an 
accurate prediction of Pf.  In addition, the DOT optimizer requires derivatives of Pf with respect to the design 
variables.  In MC simulation, Pf is computed from an integer count of the number of simulations that fail divided by 
the total number of simulations performed, NS.  Therefore, the resolution of the Pf calculation is 1/NS.  This 
resolution must be sensitive enough such that both the values and derivatives of Pf  are accurate. 

The error that is associated with a MC simulation can be estimated using a “confidence interval.”  A confidence 
interval is defined as a range of values for Pf  that is likely to contain the true value of Pf  (Ref. 9).  For a normal 
distribution, the 95-percent confidence interval (CI) is defined as: 
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where Pf is computed by the MC simulation.  For the small values of Pf that are computed in the present study, Eq. 
10 can be rewritten as 
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Then, a value of Pf ·Ns = 500 guarantees a CI of approximately 9 percent.  For this study, all reported results have a 
CI of 9%.  Thus, 108 sampling points are needed when the Preq is 5.0e-6.   

The use of response surface methods or parallel processing is not needed to speed up the MC simulation because 
the design variables are not random variables and the NASTRAN analysis is linear static.  Therefore, only one 
structural analysis is required to estimate all of the values that are needed in the MC simulation.  An MC simulation 
with one hundred million (108) sampling points using all 28 strain limits and all 8 random loads requires 25 minutes 
on a single node of a 2.0 GHz Pentium IV Linux cluster.  For this study, DOT required an average of 160 function 
evaluations for convergence.  The computation time for each converged optimization process ranged from less than 
a minute to several days depending on the value of Preq. 

To validate the MC simulation results, additional probabilistic analysis methods were performed for the present 
study.  First, a probabilistic design study is performed with only one random variable.  For this case, the system Pf 
was computed by: 
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where Pf  is computed from the nominal limit load MS, COV is the coefficient of variation,  µ is the mean of the 
random value, and z0 is the nominal value of the random value. 

 
IV. Analysis Results for Baseline Design 

In this section, the results of the deterministic and probabilistic analyses of the baseline design of the RWT are 
presented.  In the baseline design, the design variables shown in Table 2 have values of zero.  Deterministic results 
computed include weight and margin of safety (MS).  Probabilistic results include Pf computed using both MC 
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simulation and exact analysis with several combinations of the 8 random load scale factors and 28 random strain 
limits. 
 
A. Deterministic Analysis 

The weight of the FE model is computed by NASTRAN using the component material densities and the 
element dimensions.  A weight breakdown of the FE model by component is presented in Table 7.  The weight of 
the stubbed wing box is included in Table 7 because this component is only a simplistic representation of the actual 
767 wing box and only serves as a region for the application of the displacement constraints so that the RWT acts 
like a cantilever beam.  Because the geometry (i.e., the FE node locations) of the RWT is fixed, the weight of the 
RWT is a perfectly linear function of the design variables.  The weight serves as the objective for both the 
deterministic and probabilistic design studies. 

 
Table 7.  Baseline Component Weight Breakdown 

Component Normalized Weight 
Composite skin, upper 0.402 
Composite skin, lower 0.397 
Front spar webs 0.044 
Front spar caps (chords) 0.042 
Middle spar webs 0.025 
Middle spar caps (chords) 0.016 
Aft spar webs 0.041 
Aft spar caps (chords) 0.033 
Total 1.000 

 
The deterministic performance constraints are computed from the margins of safety for both metallic and 

composite components.  MS results for the composite components are presented in Figures 11 and 12.  For 
composite components, the B-basis strain limits are used to compute the MS for the deterministic constraints.  In 
Figure 11, the most critical (i.e., the lowest) MS in each composite component is plotted for each load case for the 
baseline design.  For load case #1, the lowest MS occurs in the middle spar.  For load cases 2 through 8, the lowest 
MS occurs in the upper cover.  From Figure 11, the most critical load case is #6 with a MS of 0.126.  A fringe plot 
of the MS in the composite components is presented in Figure 12. 
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Figure 11.  MS in composite components under ultimate load. 
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Figure 12.  MS in composite components for most critical load case (#6). 

 
B. Probabilistic analysis 

The only probabilistic constraint in the design process is a MS-based performance constraint Pf = P(MSlimit < 0).  
In this section, the effects of different random variables on Pf are evaluated.  First, the randomness in the material 
limits is considered;  then, randomness in the load scale factor is considered.  Finally, the effect of applying both the 
random material limits and the load scale factors is evaluated.  In the single random variable cases, the MC 
simulation results are verified against the results of other methods.  In the following tables, results for MC 
simulations with three different sample sizes are compared to determine the sample size necessary for accuracy. 

Three cases are considered using only random distributions on material limits, as given in Table 8.  In these 
cases, the fixed load scale factor that corresponds to the DLL is used.  With only one random value, Pf  can be 
computed using Equation 12.  If only randomness in the strain limit of the upper cover (the component with the 
lowest MS) is considered, then the Pf from Eq. 12 is 6.343e-6, which is 4.36 standard deviations away from the 
mean.    As shown in Table 8, the use of multiple strain limits causes a significant increase in Pf. 

 
Table 8.  Calculation of Pf with only Random Material Limits 

MC sample size Random variables Eq. 12 
107 108 5·108 

One strain limit (0/90 compression) 6.343e-6 5.9e-6 5.93e-6 5.846e-6 
Two strain limits (0/90 compression and shear) N/A 6.4e-6 5.74e-6 5.742e-6 
All 28 strain limits N/A 3.53e-5 3.380e-5 3.377e-5 

 
Two cases are considered with only random distributions on the load scale factor, as given in Table 9.  In Table 

9, the limit load distribution for the first case corresponds to a probability of exceeding the DLL of 3.3e-4 per flight.  
For the first case, the Pf from Eq. 12 is 6.59e-37, which is 12.6 standard deviations away from the mean.  A second 
case that represents a 50-percent probability of exceeding the DLL is presented in Table 9 to illustrate the effects of 
a different load distribution on the Pf response.  Even with the second extreme load distribution, the probability of 
failure is quite small.  The Pf that is attributable only to randomness in the load scale factor is low, but the inclusion 
of the effects of random load scale factors in the RBDO process is important. 

 
Table 9.  Calculations of Pf with only a Random Load Scale Factor 

Limit load distribution (load case #6) Eq. 12 MC (sample size = 5·108) 
Normal, µ=0.7461 6.59e-37 0 
Normal, µ=1.0000 2.80e-12 2.79e-12 

 
Three cases are considered with random distributions in both strain limits and load scale factors, as given in 

Table 10.  In the first and second cases, only strains for load case #6 are considered.  In the last two cases, 
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uncertainties in strain limits for all load cases are considered, but different load distributions are used.  The addition 
of more random distributions in the design process results in an increase in Pf from 2.e-8 to 1.2e-6.  Comparison of 
the results in Tables 8 and 10 reveals that the addition of one random load reduces Pf by a factor of 30 over the 
random strains alone. 

 
Table 10.  Calculations of Pf with Both Random Material Limits and Load Scale Factors 

MC sample size Strain limit distributions Load distributions 
107 108 5·108 

One strain limit (0/90 Compression) Load case #6 (Normal) 0 2.e−8 1.6e−8 
All 28 strain limits Load case #6 (Normal) 6.e−7 5.2e−7 5.76e−7 
All 28 strain limits All load cases (Normal) 9.e−7 1.21e−6 1.174e−6 

 
V. Results of the design studies 

In this section, the results of the deterministic and the probabilistic optimization studies are presented.  In the 
deterministic optimization study, three optimization runs are conducted with different initial designs.   Also, the 
results for a deterministic optimization with discrete design variables are presented.  In the RBDO study, several 
optimization runs are performed with a different target Preq to study the cost (in terms of weight) of increasing the 
required reliability of the RWT.  Finally, the sensitivities of the responses to the design variables are compared to 
evaluate the robustness of the deterministic design. 
 
A. Deterministic optimization 

For the initial deterministic optimization, three optimization runs are conducted with three starting designs: the 
baseline Boeing design, a minimum weight design, and a maximum weight design.  The optimization is performed 
with a version of the DOT software that is embedded within the ModelCenter framework.  The optimum weights for 
these three starting points are close (within 0.2%).  Actual fabrication of the RWT requires an integer number of 
plies; thus, the nearest optimum design with discrete (integer) design variables is determined by a parametric study.  
The resulting optimum design is presented in Tables 11 and 12.  Notice from the yellow shading in Table 11 that 
only five variables (three in the upper cover, one in the lower cover, and one in the aft spar) have values that are 
greater than the lower bounds.  The optimum design was 83.48% of the weight of the baseline design.  For the 
optimum design, the twist ratio constraint was active (near the 110% stiffness limit) for load case #8, and the margin 
of safety constraint (g4 from Table 3) was nearly active (almost zero) in the upper cover for load case #6. 

 
Table 11.  Deterministic Optimum Designs for Discrete Design Variables 
# Label Lower limit, ∆N Design variable values Number of plies 
1 UC1 -1.0 -1.0 MG - 1.0 
2 UC2 -4.0 -4.0 MG - 4.0 
3 UC3 -6.0 -3.0 MG - 3.0 
4 UC4 -8.0 -2.0 MG - 2.0 
5 LC1 -1.0 -1.0 MG - 1.0 
6 LC2 -4.0 -4.0 MG - 4.0 
7 LC3 -6.0 -3.0 MG - 3.0 
8 LC4 -8.0 -8.0 MG - 8.0 
9 SF1 -1.0 -1.0 MG - 1.0 

10 SF4 -4.0 -4.0 MG - 4.0 
11 SM1 -6.0 -6.0 MG - 6.0 
12 SA1 0.0 0.0 MG 
13 SA7 -7.0 -1.0 MG - 1.0 

 
Table 12.  Objective and Constraint Values for Discrete Design Variables 

Response Baseline Discrete optimum 
Normalized Weight 1.0000 0.8348 
Twist ratio for load case #8 1.0000 1.0999 
MS (UC for load case #6) 0.1260 0.00563 
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B. Probabilistic optimization results 
For the RBDO study, several optimization runs are conducted using different values of the Preq (from 1.0e-3 to 

5.0e-7) as constraints.  Again, the optimizations are performed using the DOT software within ModelCenter 
framework.  In Figure 13, the optimized weights for the different target values of Preq are plotted.  Figure 13 
illustrates the cost of requiring a more stringent probability of failure.  For example, if the Preq constraint for the 
RWT is decreased from 10−6 to 10−5, then the optimum weight of the RWT could be reduced by 10 pounds.  The 
relationship between the optimized weight and the log of the Preq is approximately linear for values of Preq between 
5.e-7 and 5.e-5.  When Preq is greater than 1.e−4, the deterministic stiffness constraint begins to drive the design.  A 
deterministic optimization that is performed with only the stiffness constraint is also shown in Figure 13.  For this 
deterministic design, the corresponding probability of failure is computed as 1.07e-3.  Because the stiffness 
constraint is a modeling constraint beyond which the aerodynamic loads for the analytical simulation are no longer 
valid, the probabilistic optimization cannot produce a feasible design with a Preq that is greater than 1.07e-3. 
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Figure 13.  Optimum weights for several target probabilities of failure. 

 
To put these results in perspective, consider the guidance that is provided by the Federal Aviation 

Administration (FAA) to certification engineers in the aircraft engine industry (Ref. 14).  In FAR 25.1309 and other 
related advisory materials, the FAA defines a Pf value in the range between 1.0e−5 and 1.0e−7 per hour as a 
“remote” probability of failure condition.  A remote condition is defined as one that is unlikely to occur for any 
single aircraft during its lifetime but is likely to occur at least once in the lifetime of a fleet of aircraft.  Ref. 14 
explains that an acceptable Pf value depends upon the severity of the effects that result from the failure condition.  
Because the RWT is secondary structure and the Pf in this study describes relatively minor damage (first ply failure), 
the severity of condition effects for the RWT is in the “minor” category.  Figure 14 (adapted from Refs. 14 and 15) 
implies that the baseline value of Pf = 1.0e−6 per flight for the RWT is well within the acceptable range. 

 



16 

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re

 C
on

di
tio

n

Severity of Condition Effects

1.e-11

1.e-09

1.e-07

1.e-05

1.e-03

Extremely Improbable

Extremely Remote

Remote

Probable

Unacceptable

Acceptable

Minor Major Hazardous Catastrophic

Design
Space

for
RWT

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re

 C
on

di
tio

n

Severity of Condition Effects

1.e-11

1.e-09

1.e-07

1.e-05

1.e-03

Extremely Improbable

Extremely Remote

Remote

Probable

Unacceptable

Acceptable

Minor Major Hazardous Catastrophic

Design
Space

for
RWT

 
Figure 14.  FAA Advisory guidance (where 1e−5 < Pf < 1e−7 is considered to be Remote). 

 
C. Sensitivity Analysis 

A sensitivity analysis about the discrete optimum was performed, and a selected set of results is presented here.  
Only five of the thirteen design variables have values that are greater than the minimum gage for the discrete 
optimum.  The sensitivities of the responses with respect to these five variables are shown in Figures 15 and 16.  In 
Figure 15, the normalized weight is the weight divided by the baseline weight.  In Figure 15, a one ply change in 
variable UC4 (upper cover thickness near the RWT root) results in a 0.73 percent change in the weight, which is 
larger than for any other variable.  In Figure 16, the minimum MS among all of the elements in the upper cover for 
load case number 6 is evaluated against changes in the number of plies from the discrete optimum design.  The MS 
response is nonlinear because the element in the FE model that has the minimum MS changes as the thickness 
changes.  In Figure 16, a one ply change in variable UC4 results in a change in the MS of 0.036 in the vicinity of the 
optimum design (zero change in number of plies), which is significantly larger than for any other variable. 
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Figure 15.  Weight sensitivity around the discrete deterministic optimum design. 
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Figure 16.  MS sensitivity around the discrete deterministic optimum design. 

 
In Figure 17, a two-dimensional cross section from the five-dimensional sensitivity study is shown.  For these 

cross-sectional depictions of the design space, the two most important variables are selected: UC2 and UC4.  Notice 
that for the discrete optimum, the torsional stiffness constraint is active, and the MS constraint is nearly active (very 
close to zero).  Figure 17 demonstrates that if continuous design variables are considered, then the minimum weight 
optimum would occur at the intersection of the stiffness ratio and the MS constraints.  Moreover, the MS constraint 
curve is nearly a horizontal line, which indicates that the design is primarily driven by the single variable UC4.  
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Figure 17.  Weight contours for UC2-UC4 cross section of design space. 

 
VI. Summary 

An approach for conducting reliability-based design and optimization (RBDO) of a Boeing 767 raked wing tip 
(RWT) is presented.  Performance-based responses for the RWT are considered for eight critical aerodynamic load 
cases.  Stiffness-based model constraints are used to steer the optimizer away from regions where the FE 
deformations may significantly affect the aerodynamic loading.  For deterministic design, the performance 
constraint is the margin of safety (MS) that is computed by using the ultimate load.  For probabilistic design, the 
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performance constraint is the probability of failure Pf that the MS is less than zero.  In this section, the results of the 
RBDO study are discussed, and the lessons that have been learned from the RBDO process are presented. 

 
A. Discussion of Results for the RWT RBDO 

The first part of the RBDO process for the RWT was an evaluation of the baseline design.  From a deterministic 
analysis, a MS of 0.126 was computed for the RWT under ultimate load.  A deterministic optimization of the RWT, 
subject to the MS constraints, produced a design that weighed approximately 16 percent less than the baseline 
design.  Of the 13 design variables that were considered, only five variables had values that were greater than the 
minimum gage for the deterministic optimum design.  Of these five variables, the variable that controlled the 
thickness of the thickest plies in the upper cover was 20 times more influential than the next most critical variable. 

For the probabilistic analysis and design, two sources of randomness were considered: randomness on the load 
scale factor and randomness in the strain limits.  A normal distribution was established for the random load factor 
that predicts an occurrence of the limit load once per 3000 flights.  Normal distributions were chosen for the strain 
limits based on typical and B-basis values and assuming a sample size between 5 and 30.  The MS for the metallic 
components were high, so the randomness was only considered for the strain limits in the composite laminates.  For 
the baseline design with 8 random load factors and 28 random strain limits, the probability of failure was 1.2e−6.  
Several probabilistic optimizations were conducted with a target Pf that ranged from 5.e−7 to 1.e−3.  The optimized 
weight was a linear function of the log of Pf between 5.e−7 and 1.e−4.  For target values of Pf above 1.e−4, the 
deterministic stiffness-based modeling constraint became active.  This modeling constraint limited the feasible 
design for the probabilistic optimization to a maximum Pf of 1.07e−3 at a weight that is 80.44% of the baseline 
design. 

 
B. Lessons Learned from the probabilistic design process  

This sub section discusses the lessons learned during the RWT design study.  The computational expense of 
RBDO is discussed first.  Next, additional constraints that were not considered in this study are discussed.  This 
section concludes with a discussion of the sources of uncertainty that were examined. 

The most time-consuming part of this RBDO study was the time that is required to set up the optimization.  
Parameterization of the FE model required several weeks of work, particularly because of the hundreds of composite 
property cards, with up to a few dozen plies per card.  Additionally, several passes were needed to develop a 
reasonable grouping of variables.  Such tedious attention to detail is typical of the “art” of FE analysis.  The 
outcome was a validated model that was used to explore the design space manually and with automated optimization 
and parameter studies. 

Once the parameterization had been completed, setting up the deterministic optimization was quickly 
accomplished by using commercial framework software (e.g., ModelCenter), although a scripting language, such as 
PERL or UNIX shell scripts could also have been used.  The software to compute a probabilistic constraint (using 
MC simulation or FORM) was a straightforward addition of a single “black box” to a framework.  Some additional 
analysis time was required to perform a probabilistic calculation.  For the current study, the deterministic analysis 
required less than 1 minute, and the probabilistic analysis required from a few minutes to a few hours, depending on 
the number of simulations that were required (for MC) or the number of probabilistic constraints that were 
considered (for FORM).  Most of the time that was required for the RBDO study was spent in activities that are 
needed regardless of whether the designer uses a traditional approach or a probabilistic and optimization-based 
approach. 

A number of structural design criteria are used during the Boeing design process, but for this study, only 
stiffness and strength criteria were addressed.  The deterministic stiffness constraint was used to keep the stiffness of 
the designed RWT within 10 percent of the baseline design.  By applying this stiffness constraint, the aerodynamic 
loads were assumed to be constant, and the flutter behavior for the designed RWT was assumed to be the same as 
that of the baseline case.  The NASTRAN model that was used in this study is only validated for static strength load 
cases; so only a first-ply failure criterion was used as a performance constraint.  Several design criteria, were 
neglected because they were either not critical for the RWT component (e.g., crashworthiness and impact events) or 
because the design changes in this study would not affect these criteria (e.g., maintainability, producibility, and 
corrosion).   Other criteria, such as fatigue and damage tolerance, are important for the RWT design, but it was 
necessary to exclude them from this study because the resources (such high fidelity FE models with three-
dimensional elements) and data (such as a dynamic load spectrum) were not available.  However, the RBDO process 
could easily accommodate these criteria if these analytical models and data were available. 

Accurate probability distributions for the primary sources of uncertainty in the RWT are important for 
probabilistic design.  For the RWT design, two primary sources of uncertainty were noted: material strain limits and 
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aerodynamic loads.  In this study, the probabilistic distributions for the strain limits in the composite components of 
the RWT were developed from typical and B-basis values.  Adjustments to the standard deviations for these material 
limits were made based on the number of coupon tests that were used to determine the B-basis values.  The other 
primary source of uncertainty considered in this study was the randomness in the maximum loads experienced by 
the RWT.  Because the loads were static, a probabilistic distribution was determined for a load scale factor in the FE 
model.  This load scale factor represented uncertainties in the flight conditions (e.g., mission profile or weather) but 
did not represent uncertainties in the modeling or in the physics-based analysis codes.  In this study, a stiffness-
based model constraint was used because the uncertainty in the modeling was difficult to quantify.  Additional 
sources of uncertainty in material elastic properties and geometry were not considered in this study. 

 
VII. Concluding Remarks 

One aim of the RWT design study was to compare the baseline design with the results of deterministic and 
probabilistic optimization.  This study produced a chart that showed a clear relationship between the weight of the 
RWT and the system probability of failure per flight. The RWT study suggests that such a chart could be produced 
during the structural design process with data and knowledge that is already available to design engineers.  A chart 
such as this is valuable because it provides an assessment of the baseline design and it predicts the reduction in 
reliability that would result from any mandated reduction in weight. 

A second aim of the RWT study was to estimate the effort required to produce a probabilistic optimum design.  
The conclusion is that the added effort is small compared to the effort already required to produce and validate a 
parametric finite element model for trade studies.  Use of probabilistic methods are especially recommended  for 
components for which maintenance and operational data is available for characterizing the uncertainties in the loads 
and the material system.  The probabilistic method provides important information concerning the design changes 
that will have the greatest effect on reliability for the minimum change in the design.   
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