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where Ho a,lso contains V: 

and TI:! = Irl - r21. The first order perturbed wave function of the electron 2 due t o  the potential 
V can be written as 

where integration over continuum states is implied and en = -Z2n-2 is the energy of the n th  
hydrogenic s tate  which is given by 

The perturbing potential I/ for rl > rz is given by 

r1 V(r1. r2) = 2 -Pi ( C O S ~ ~ ) ,  
l = l  '1 

(9) 

where we have fixed the z-axis in the direction of rl and have used the well-known expansion of 
l / r l z .  Noting that  the I = 0 term drops out of V ( r l l  r2), we can write the matrix in Eq. (7) as  

The second integral vanishes in the limit rl + oo and the above ma,trix for large r l  can be 
approximated by 

which can be written as 

Now Eq. (7) can be written as 
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To sum this series, use the fact that the bound states satisfy 

and therefore 

which implies (letting A @  $100 - @ ( T I ,  1 '2))  

Use now completeness 

for any I ,  so that A @  satisfies the differential equation 

where we have used Eq. (8) for @loo. Expmding 

00 
uls,l(.2)/'2 fi(cos02) *@ = C $+I 

1=1 1 ( 4 z x ) f  ' 

reduces Eq. (18) to the set of uncoupled equations for each 1 

where uls(r) = 2 m ~ e - ' ~ .  Eq. (20) can be solved analytically 
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The method of polarized orbitals uses only the dipole part (I = 1) of A@ [?I so that  the polarized 
part of the target is 

where 012 is the angle between r l  and r2 and Temkin has i~itroduced the step functiori 

which ensures that  polarization takes place only when the scattered electron is outside the orbital 
electron. The second term in Eq. (22) is called @yol(rl, r2) and gives the distortion of the orbit of 
hydrogen atom in its ground state  (Is) .  This then solves the problem of the inclusion of polarization 
in the wave function, for substituting Eq. (22) into Eq. (13) one gets the explicit form of the 
polarized orbital wave function 

Q(r1, i-2) = w(r1) [ ~ 1 0 0 ( r 2 )  + @yol(rl, r Z ) ]  I ui(r2) [@loO(rl) + ayO'(rZ, rl)] , (24) 

where 

u1 (r) = a x o  ( 0 )  
T  

The scattering equation is obtained from 

where H is the Hamiltonian, E is the total energy, k2 is the energy of the incident electron and 
aloe = a o .  We will derive the scattering equation for any Z ,  the charge of the nucleus. If the 
variational principle were used it would require that  we operate on the left by (<Po + a';''). This 
would give us liiglier order terms which are not in accord with the first-order perturbation theory. 
(It  would also give quadratic terms involving @yol which would be singular if the step function 
e(r l .  r 2 )  were retained in its definition.) Therefore, Temkin has multiplied on the left by a. only 
in Eq. (26). (In retrospect, the main disadvantage of this ansatz is the loss of any hound on the 
calculated phase shifts from this equation.) The resulting integro-differential equation for ul ( r )  [5], 
including the pwave  ( /=I )  correction of Sloan [6] is, letting r l = r ,  

d 
dr 

+ l) ] ul ( r )  k 4 ~ ~ e - "  [(k2 + z2) rhlO Srn dr2e-lT2 r 2 ~ ~ r  ( rz )  [?+ k2 +l~,t ( r )  - --- 
r L  0 
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where the static potential is given by 

and the direct polarization potential is given by 

where 

Note that  the polarized orbital ansatz Eq. (24) provides a natural cut off for the polarization 
potential p ( Z r ) / r 4  -+ 0 as  r t 0 and gives the correct polarizability as r -+ co, where cu = 
9/22"s the dipole polarizability of the target with nuclear charge Z. We get the equation for the 
exchange approximation [I] by putting the right hand side equal to  0 and we get exchange adiabatic 
approxinlation by retaining the first term on the right hand side which is the direct polarization 
potential. 

Eq. (28) can be solved for the function u l ( r )  with the phase shifts 71 being obtained from the 
values of the function a t  large distance: 

?r 
lim,,,ul(r) cc sin (kr - 1- + 9) 

2 (32) 

The phase shifts for electron-hydrogen scattering for S-wave and P-wave are given in Table I for 
various k in three different methods: exchange approximation, polarized orbital method and Kohn 
variation principle [7,8]. The effect of the polarization is dominated by the direct -cr/r"otential 
and always has the effect of increasing the phase shifts relative to  the exchange approximation. The 
effect of exchange polarization terms is smaller and can be either positive or negative depending on 
the spin. The and 3,S results decrease with increasing k while 3P results increase with increasing 
k. The effect of the exchange polarization terms in the lP case leads t o  three changes in sign of 
phase shift as k increases, indicating that  the method does include the essential physics. This is 
the first method t o  give three changes of sign of the P phase shifts correctly (cf. Fig. 6-1-5 in [9]). 
We will return t o  the question of bounds in another section. 



Symposium on Atomic & Molecular Physics 

TABLE I. e-H phase shifts of IS, 3S ,  I P ,  and 3P for various k in different approximations. 

Partial LYave k Exch. POa  KVP' ~ x c h .  PO" KVP' 
- 

Singlet Triplet 
O V . 1 0  5.9 5.965 2.35 1.9 1.7686 

" S-wave phase shifts obtained by Tcmkin and Lamkin [5] using the method of polarized orbital. 
The  P-wave results are from Sloan [6]. 

Kohn variational results for S-wave are from Schwartz [7] and P-wave results are from Armstead 

PI. 
" The k=O entries are scattering lengths [5]. 
d ~ h e  polarized orbital results are froin [9]. 
"Beyond k=0.8 the phase shift becomes positive and in fact goes through a ('P) resonance a t  
k=0.846 

On the other hand, sca,ttering length a, which is defined a,s 

does have an upper bound, in the variational calculation [7] aeXact 5 a,,lculated. The scattering 
lengths in various approximations are given in Table I. For the triplet state,  Rosenberg et  a l .  [lo] 
had obtained at 5 1.91 for the electron-hydrogen scattering. They used an s-wave function having 
a correct asymptotic form a t  infinity but did not have a slowly vanishing part (+), as subsequently 
pointed out by Temkin [11]. Furthermore, Temkin [11] showed that  the expression for the scattering 
length calculated a t  a finite distance R should be corrected 

where a is the t rue scattering length, and a the polarizabilty of the target. With this ~nodification 
Temkin obtained an improved value 
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compared to  the previous va,lue of 1.91 [rj] given in the Table I. After the publication of Ternkin's 
formula (34) and his numerical result in Eq. (35), Schwartz [7] did use such a slowly vanishing part 
l/r"n his trial wave function, obtaining precision results: 

a, = 5.965 5 0.0003 and at = 1.7686 k 0.0002, (36) 

for the singlet ( s )  and triplet ( t )  scattering lengths. 

Symmetric Euler-Angle Decomposition 

In most of the scattering a.nd eigenvalue problems, it is necessa,ry t o  write the required wave 
function in terms of a product of two components: radial and angular. Only then the IIamiltonian 
operating on such a wave function gives equa,tions which depend on the internal coordinates only, 
with terms arising from the operation of the angular part contained in the Hamiltonian. For 
one particle scattering from a fixed center, (or the relative motion of two particles) the  Laplacian 
operator is of the form 

where the radial and angular parts can be separated and the second term is propotional t o  the square 
of the angular momentum opera,tor. When acting on a wave function which is an eigenfunction of 
angular momentum I ,  the Laplacian simplifies t o  

thus converting a 3-dimensional partial differential equation into an ordinary differential equation. 

In the case of two particles in an external force field, e.g., the field of the fixed nucleus (i.e., 
of infinite mass), the decomposition of the Laplacians is not as simple as in the case of relative 
motion of two particles. The wave function describing these particles is a function of the internal 
(i.e.. meaning coordinates depending on the position of the nucleus and on two electrons in a plane) 
coordinates ( r l ,  7 2 ,  012) or ( r l r  r2. r12) and the angular component which is a function of three Euler 
angles which describe the orientation of the instantaneous plane formed by the two particles and the 
nucleus in space. The Euler angles are not unique. Breit [12] used the Euler angles which Hylleraas 
[13] introduced. These are two spherical angles of one the particles aHd the angle between the 
rl - s plane and r l  - rz plane, the internal coordinates being (rl,  r2, 012). Breit introduced these 
angles for P-wave functions and - because they are not symmetrically defined with respect t o  the 
two electrons - it is not easy to  generalize this decomposition for all angular momenta. Temkin 
introduced a different set of symmetric Euler angles which allowed the separation of the radial part 
and angular part for any angular momentum I .  The analysis of this problem was carried out by 
Bhatia and Temkin [14]. Fig. 1 contains a perspective drawing of the Euler angles which define 
the particle plane with respect to  the space fixed x ,  y ,  and z axes. 
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%-i: 
2 sin QI2 - 

2 

Figure 1: Perspective drawing of the Euler angles the unit vector of the problem. 

I t 1  

The rotated axes x , y , z with respect to  the space fixed axes x ,  y ,  z  a.re defined by  

Having defined if, define f '  

Having defined 2' and g f ,  define ijt 

..I , I  
y = z  x z .  

The Euler angles are then 

0 angle between i and it,  (4'4 

I = angle between i and 2 ,  (43) 

II! = angle between if and ( f a  - f (44) 

The operation of parity ( r l  -+ -rl and ra [I -ra) only involves the Euler angles 
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Exchange corresponds to  the transfornlation rl ++ rz and is given by rl e 1.2 plus the following 
transformation of the Euler angles 

The eigenfunctions of total angular momentum are purely functions of the Euler angles. Temkin 
has coined the name "rotational harmonics" for these eigenfunctions (t.hey are usually called 'D 
functions). The angular momentum properties of these functions are 

arid 

They transform under parity as 

and exchange as 

Lie see t ha t  whereas the 2) functions are eigenfunctions of parity, that  they actually change 
indices under I la .  But operation of exchange commutes with the total Hamiltonian, therefore it 
must be possible t o  construct eigenfunctions of exchange: they are linear combinations of the above 
2) functions. For m=O they are 

and 

IJnder exchange these linear combinations have the property 

Thus they are indeed eigenfunctions of exchange. Having constructed eigenfunctions (of the angular 
part) of exchange, one can construct a total wave function which has the correct properties under 
operations of parity and full exchange 
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where the double prime on the summation indicates that  the sum goes over every second value of 
6. The operation under exchange on Eq. (54) gives, 

11 

E l ~ X U 1 ~ ( r ~ :  1'2) = * ~ 0 ( ~ 2 ,  11) = C [ f / +  ( ~ 2 ,  012) ( - l ) l t K ~ ; +  (@, a, *) 
K 

+ f/-(rz,  r l ,  dl,)(-1)'' K + l ~ i ; - ( ~ >  iD1 XU)]. (5.5) 

If therefore 

then under complete exchange 

i.e., the total wave function will be symmetric (singlet) or antisymmetric (triplet). Under parity 
we see from Eq. (54) tha t  

P'&o(r1, r2) = '@10(-r1, -4 = (- l )KQlo(r l ,  r,), 

so tha t  parity is determined by evenness or oddness of K in Eq. (54). 

The  kinetic energy part is given by 

Historically, this was the extent of the developrne~it when I came to work with Dr.  Terriki~i 
in 1963. I worked for almost a year t o  convert the kinetic energy into Euler angles (plus internal 
coordinates) form. The following is the result 
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1 d2 
- sin ( 2 8  + 012) - - 

d2 + sin(28 + Ol2)cotO- 
s ine  8Od@ d 8 a O  

1 c o t e  d2 d2 iI2 d 
- 2c0s2 (8 + -612) -- - 

2 s ine  i)*i)a]- a * i ) ~ ~ ~  
+.41- + B 8 la9 

The expressions for F2, A2, and B2 can be obtained by replacing 012 by -612 in the a,bove expressions 
for PI, A1, and B1. 

With these results the Schrodinger equation 

for any m, can be reduced to radial equations which are independent of m: 

and 
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where Lo,, is the S-wave part of the kinetic energy, and is the only term which survives in the 
description of S-waves 

and 

The above equations can be written in terms of ( r l ,  7-2, r12) [14]. These equations have been 
generalized to the case when the nucleus is of finite mass [Is],  and also t o  the case when all the 
particles are of unequal masses [15]. 

The equation given by Breit [12] for P-wave can be obtained from our equations by noting the 
relation between his angles and our Euler angles (cf. Appendix of our paper [14]). 

I believe this analysis is one of the major mathematical achievements of Dr.  Temkin and I am 
happy t o  have been a part of it. ,4nd this laid the mathematical foundation of much of our future 
research, also with Dr. Drachman. 

Op t i ca l  P o t e n t i a l  A p p r o a c h  fo r  S c a t t e r i n g  

Fie follow here the Feshbach projection operator formalism [16] to obtain equations for the 
scattering function giving phase shifts in the elastic region. The  phase shifts obtained have property 
of having a rigorous lower bounds. 

In this formalism, in order t o  project out the ground state  we use symmetric projection operators 
P and Q ,  which for the hydrogenic (i.e., one-electron) target can be written expicitly [17] 

and 

which implies t ha t  P+Q=1 and where the spatial projectors are such that  for any arbitrary function 
@L (r1, r 2 )  

Note, PI and P2 commute with each other and are each idempotent, hence the complete P and Q 
operators are idempotent ( p 2 = p ;  Q2=Q) and orthogonal (PQ=O). In the lim r -t co, 
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therefore PXPL represents a scattering function, and 

Effectively &qL describes the short range part of the total wave function of the system XPL. The  
Schrodinger equation is reduced, via an analysis which by now is well known 1161, to  an equation 
for PQL.  

PHQ >< Q H P  
[pHp+ E - QHQ - E]PQL = 0 

The middle term in Eq. (76) is the formal, but well defined expression for the optical potential V,,. 

The total spatial function for the e-H and e-HeS for the Lth partial wave is written as 

and 

where the target function is given by 

The upper and lower signs correspond to  singlet and triplet states, respectively. The  first two 
terms containing U L  explicitly give rise to  the exchange approximation [I] and the function @ L  is 
the correlation function. For arbitrary L this function is most efficiently written in terms of the 
symmetric Euler angles [14]: GL has exact,ly the form of 9~ in Eq. (54). whereas here the open 
channel part is added explicitly in Eq. (77). 

The f ' s  we here take as functions of rl, r2, and 1'12 The uL(rl)  of the scattered electron in Eq. 
(77) is determined by projecting on < YLO (C21)40(rZ): 

PHQ >< Q H P  
- E) PXPL dQldr2 = 0: 

E - QHQ 1 
Carrying out the integration leads to  an integro-differential equation for the scattering function 
UL(T-1) and letting r l= r ,  

where vSt(r) is the direct potential [Eq. (29)] a,nd I/,, is the non-local exchange potential of the 
"exchange approximation" [I] (cf. Eq. (28)). It should be noted that  the many-body problem has 
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been reduced to  one-body problem and the Eq. (81) can be solved for UL easily. The  integral of 
the optical potential acting on UL (r) is: 

1 

E - Q H Q  QHPQL). 

The optical potental is expanded in terms of the eigenspectrum of the Q H Q  problem: 

This leads to  eigenfunctions and eigenvalues Es.  By inserting a complete set of the functions 
obtained from the above equation into Eq. (82), Vo,uL can be written as 

TA4BLE 11. e-H phase shifts of '$9, 3,S, ' P ,  and 3P states for various k obtained from the method 
of polarized orbitals and from the optical potenial approach. 

Partial Wave k POa O p b  POa 0p6 
Singlet Triplet 

0.1 2.583 2.55358 2.945 2.93853 
0.2 2.144 2.06678 2.732 2.71741 
0.3 1.750 1.69816 2.519 2.49975 

s 0.4 1.469 1.41540 2.320 2.29408 
0.5 1.251 1.20094 2.133 2.10454 
0.6 1.04083 1.93272 
0.7" 0.947 0.93111 1.815 1.77950 
0 . 8 9 . 8 5 4  0.88718 1.682 1.64379 

" S-wave phase shifts obtained by Tenlkin and Lamkin [5] using the method of polarized orbital. 
The P-wave results are from Sloan [6]. 

Phase shifts obtained Gorri the optical po t e~~ t i a l  approach. S-wave results are from Ref. [19] and 
P-wave results are from Ref. 1201. 
"The polarized orbital results are frorn [9]. 
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For S-wave (i.e., L=O), VL=constant and the correlation function is only a function of the radial 
coordinates. The formalism up t o  this point had already been developed. The innovation which 
Dr. Temkin and I introduced was the use of a correlated function of Hylleraas form 

1% 

- 7 ~ 1  -6r2 aLZO = e c ~ ~ , , ~ ~ ~ ~ r ~ ~ ~ r . ; ? 2  i (1 + 2). 
linn 

In particular the projection of PI on aLo requires a nontrivial ana,lytical integration [18]. Here the 
sum includes all triples such that  l+ rn+n=w and w= 0, 1, 2, ......, 7,8,9. The number of terms for 
each w depends on spin and whether y=S or not. For P-wa,ve (i.e., L = l )  the correlation functions 
fc' are a,lso taken of the Hylleraas form. 

To summarize the calculations, the Q H Q  problem is solved (for a given L ,  7 and S and N,) .  
The result is a set of eigenvalues E, (s=1,2, ...... N,) and associated eigenfunctions a("). From 
them the optical potential, Eq. (82) is constructed, and the integro-differential Eq. (81) is solved 
noniteratively. The solution is unique (up t o  an arbitrary normalization) with asymptotic form 

lim uL ( r )  cc sin (kr - 
T - + m  

Electron-hydrogen phase shifts (i.e., Z=1) are given in Table 11. For '5'-wave scattering, the 
optical potential (OP) phase shifts converged t o  the accuracy shown when the maximum number 
of terms in the wave function was 95 and in 3S-wave the convergence was obtained when the 
number of terms was 84. The P-wave phase shifts converge slowly compared to  the S-wave results. 
Therefore, the computation was carried up to  220 terms. The convergence [19, 201 of results suggest 
that  they are accurate up to  five significant figures after the decimal and to  that  accuracy they 
are rigorous lower bounds, provided the total energy of the system is less than those of all the 
resonance positions [21] . Phase shifts are compared in Table I1 t o  the polarized orbital results 
of Temkin and Lamkin [5] for S-wave, for P-wave wit11 those of Sloan [6], including the exchange 
polarization terms. The polarized orbital method does not provide any bound on the phase shifts 
but they are seen to contain the dominant part of the correlation enhancement over the exchange 
approximation. In particular the polarized orbital ' P  results show the correct undulations (as a 
function of k) as the precision results. 

A similar calculation has been carried out for the scattering of electrons from helium ions [22,23]. 
The non-Coulomb part of the phase shifts as a function of k are given in Tables I11 for IS, 3S, ' P  
and 3P. In this case because the Coulomb field extends very far, Eq. (81) has to  be integrated to  
large distance especially for small values of I c .  

In the singlet P case, the exchange approximation results are negative and there is a lot of 
cancellation with the contributions to  the phase shifts from the  optical potential, unlike in the 
triplet case where the exchange approximation results are always positive. 
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TABLE 111. e-He+ phase shifts of IS, 3S, IP, and 3P states for various k obta.ined from the 
method of polarized orbitals and from the optical potenial approach. 

Partial Wave k Exch POa OPb  Exch. POa OPb 
Singlet T r i ~ l e t  

"S-wave and P-wave phase shifts obtained by Sloan [6] using the method of polarized orbital. 
Phase shifts obtained from the optical potential approach: S-wave results are from Ref. r22] and 

P-wave results are from Ref. [23]. 

Resonances in Two-Electron Systems 

In the above section, projection operators P and Q for one-electron targets were given. These 
have been used t o  calculate resonance parameters for a number of 's3,S. '13P, and 1>3D states in H- 
and He. Unlike other methods where one has to  hunt for resonance positions, they are obtained by 
optimizing the f~inctional < @QHQ@ >/< @Q@ > by using the Rayleigh-Ritz variation principle. 
The  positions obtained do not include the shift due t o  their being embedded in the continulim [17] 
and this shift is calculated separately using various approximations for the continuum functions. 
For illustration, only two sets of results (positions and widths) are given in Table IV for 'S in H- 
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Table IV. Some results for resonance states in H- and He 

State Position (eV) Width(eV) Position (eV) Width(eV) 

aResonance position is with respect t o  the ground state  of H atom [24] 
b~xper imenta l  result a.rc from Sanche and Burrow [27]. 
"Resonance position is with respect t o  the ground state  of He atom [25]. 
d~xper imenta l  results are from Morgan and Ederer [28]. 

[21] and P states in He [25]. This odd-parity resonance is the lowest one in the series of resonances 
observed in vacuum ultraviolet absorption by Madden and Codling [26].  

We see that  results have been calculated with high precision and they agree with the experimental 
results. The line shape parameter q=-2.80k0.025 which we have precisely defined and calculated 
by further manipulation of the Feshbach theory [25] also agrees very well with the experimental 
result -2.5550.16 ['L8]. 

Projection Operators for More Than Two-electron Systems 

For targets with more than one electron, it is difficult to  construct projection operators which 
are idempotent, i.e., P2=P and Q2=Q. One of the difficulties is that  target wave functions for 
more than one-electron targets cannot be written down exactly. But we can construct them in such 
a way that  the matrix elements < @,Q2@, > =< @,Q@, > for any arbitrary antisymmetric wave 
functions a, and @,. One of our motivations was t o  study 2,S resonance below the 3S (elastic 
region) of the helium atom. 

In order to  include all coordinates explicitly, we assume L S  (i.e, Russel-Saunders) coupling 
and introduce channel functions in such a way that  the ground state  q5o is coupled t o  the angular 
momentum I ,  and spin $ of partial wave of the incoming electron 

1 
$lu(r(')) = ~ ( ~ o i ; ~ \ f ~ r n ;  1 LA.!!) ( ~ ~ ~ . % f ~ ~  m i ~ ~ ~ ~ ) ~ O ( x ( i ) ) ~ Z m ,  (Ri)ximS ( i ) .  

2 

In Eq. (87) x(') (both space and spin) indicates the absence of the i th  coordinates from the total 
(N+1)  coordinates in the electron-target system. The x(" signifies 

Eq. (88) implies that  the target has N electrons and r( i )  in Eq. (87) implies the absence of ri 

Let pi represent a cyclic permutation, so that  
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(-1)"- parity of the permutation which carries [ I ,  2,  ..N + 1] into [ i ,  i + 1, ..i - 11. (90) 

Specifically (- 1)"'=1 for (N  + l )=odd,  (- l)pz =(- 1)"' for (N + l)=even, and (- 1)1)'=1 for all N . 

Following Feshbach [16], we can define the P9[ part of the total wave function as  

iv+ 1 

P U I  = (-I)'~U[ ( r , )  $u(r(')) 
7 = 1  

IIere ul(r i )  are scattering functions which have not been specified but ha.ve the asymptotic property 
for r; -+ m 

sin(kri - 17r/2 + 71) 
lim,.i+mul (ri) = 

kr; I 

which implies that  both P9 and \[I have the same asymptotic form 

l i ~ n ~ ~ + ~ P X l l  = l imr,+m9 = (-1)Pl 
sin(kri - 17r/2 + 7,) 

kr; $0 ( r q .  

To derive a specific form of P (and Q) we also require tha t  Q 9  have no ground state  in it for 
any coordinate of the scattered r ,  (not only as r ,  + m) 

wl~icli for the purpose of tlie deriva,tion can be written 

< po(r( ' ) )q >=< ' $ l 0 ( r . ( ' ) )~9  > . 

Define the left hand side as 

w(rJ  -- (-qpZ < $0(d2))Xll  > T ( t )  . 

Substituting Eq. (91) into Eq. (95), we can express Eq. (96) as 

where ~11e  ker~iel K is given by 

Here the integration is ovcr r( ' j ) ,  which denotes a,ll coordinates except r; and r j  (i # j ) .  The kernel 
K call be expressed in t e r ~ n s  of discrete and orthonorrnal set of eigenfunctions u, 
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Some reflection will show tha t  K( r l l r z )  can be written as 

then substituting Eq. (100) in Eq. (99) the latter will be an identity. Using Eq. (100) in Eq. (97) 
allows u(r i)  to  be written 

vp(r,) < vpw > 
u(r;) = C u,(ri) < Z ' , U  > +w(r,) + C 

X,=l A,#1 
X p  - 1 

Here vp is the eigenfunction associated with Xo and v, with X,=l.  It can be verified that  the first 
term in Eq. (101) does not contribute to  the projection < !POP* > (cf. Refs. [29,30]). Thus we 
can write 

Substituting for w(r.;) from Eq. (97) and rearranging, we get 

N+ 1 I 

< * O ( ~ ( ' ) ) P P  >=< C [$i.g(i-(') >< qo(r( ' ) )  + vp(r,) < vpw > 
A, - 1 

18 > . (103) 
1 = 1  0 

By comparing the left- a.nd right-sides of Eq. (103), The  expression for P can be extracted 

which implies 

These operators are symmetric in all (N + 1)-particle coordinates and they contain the dependence 
on space and spin of all coordinates explicitly. The  main advaritage of these expressio~is for P 
and Q ,  as compared to  the heuristic form given by Feshbach, are they are complete and explicit. 
In addition they have been extended to  scattering (including resonances) occuring in the inelastic 
domain (cf. Appendix B of Ref. [29]). 

It has been shown in Ref. [30] that  even though the above operators are not idempotent 
(p2 # P and Q 2  # Q) as operator identities that  the matrix elements are equivalent < @,p2@, >= 
< @,P@, > and < @,Q2@, >= < (P,Q@, > for any arbitrary antisymmetric functions @, and a,. 

When the second term in Eq. (104) and the third term in Eq. (105) are dropped, we get 
the quasi-projection operators P and Q. These operators were employed by Temkin et (11. [31] 
to  calculate the resonance parameters of the He- [ls(2s)'] 2S resonance (first observed by Schulz 
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E l r t e ~ g n  bls$giilrdllfip 110fMg11 E V I  

Figure 2: Metastable helium excitation from Schultz and Fox 1351. 

[32]), using open shell and closed shell target wave functions q5o and an angle-independent trial wave 
function as well as a configuration-interaction wave function containing up t o  40 configurations. 
They obtained ~ , , , ( ~ S ) = 1 9 . 3 6 3  eV plus a width r=0.014 eV. The  difference between the results 
obtained by using the two different wave functioris $o is of the order of 0.02 eV. The  resonance 
position agrees with the experimental result 19.31k0.03 eV of Kuyatt et a l .  [33]. Calculations have 
also been carried out by Berk el al.  [34] using target wave functions going up to a 10 term Hylleraas 
type wave functions and the full projection operators P and Q given in Eqs. (104) and (105). Again 
configuration interaction type wave functions containing up to  10 terms were employed obtaining 
resonance position of ( l s 2 ~ ~ ) ~ S  He- which is -0.013 eV above the experimental position a t  19.37 
eV given by Schulz and Fox 1351. (That  difference is presumably due to  the uncalculated shift. 
which also occurs in the Feshbach theory.) 

Now we come to  2~ wide resonance in He- above the 23S threshold but below the 2'5' threshold 
of He, which has been first observed by Schulz and Fox [35](cf. Fig. 2). 

Initially, it was thought to  be a shape resonance because of its being above the 3S threshold. 
Bhatia and Temkin 1361 used the same program which was used t o  calculate the 2S resonance below 
the 3S threshold and where quasi-projection operators were employed. Only those configurations 
in the trial wave functions were included which were orthogonal t o  the 3S state  of IIe, thus avoiding 
the need t o  project out the 3S state. The  calculations were carried out by using closed shell as 
well as open shell functions in the projection operators, giving the resonance position a t  20.52489 
and 20.56029 eV, repectively, for a trial wave function consisting of 40 terms. The  position agrees 
with the result 20.536 eV obtained by Chung using his hole-projection technique [37]. ?'he partial 
widths to  'S and 9 thresholds were found to  be 0.0024 and 0.437 eV, and the calculation also 
showed that  the total width is dominated by the decay to  the (excited) 2% state  of He. These 
results also indicated tha t  the resonance was a Feshbach resonance associated with the closed 2'5' 
s tate  of the target He rather than a shape resonance caused by the open 2"s state.  ,4n accurate 
calculation carried out by Junker [38] using the complex rotation method gave 20.33 and 0.575 
eV for the position and width, respectively. These results agree with average experinlental results 
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20.3f 0.3 and total width 0.5 eV of Schultz and Fox [35], and Brunt e t  a l .  [39]. 

I shall not discuss here Dr. Temkin's (and collaborators') work on dispersion relations [40, 
411 a.nd in particular his work on threshold laws for electron-impact ionization of atoms and ions 
[which also apply to  photon double (detachment/ionization) of (negative ions/atoms)]. The latter 
is discussed by Dr. R. LVehlitz in these Proceedings. A dispersion relation (DR) relates the real part 
of the scattering amplitude to  an integral over the imaginary part,  which in turn is proportional t o  
total cross section. Such relations are important in judging the consistencies and accuracy of both 
theoretical calculations and experimental measurements. The problem in electron-atom scattering 
has been to  correctly include the effects of exchange. Dr. Temkin has proposed using partial wave 
dispersion relations to  solve this problem. ,4t this point the correct partial wave DR have been 
constructed both approximately [42] and exactly [43] in the static-exchange approximation. 

Up to  now, I have described some of Dr. Temkin's important contributions in electron-atom 
scattering and associated problems in atomic physics mentioned above . He has also made impor- 
tant  contributions in the field of electron-molecule scattering: Briefly stated, Dr. 'l'emkin (with 
various coworkers) introduced the "fixed nuclei" approximation (as well as the name) in electron- 
(diato~nic) nlolecule scattering [44,45]. They showed tha t  the (partial wave) scattering amplitude 
could be expressed as  the product of the two factors; one of which depends on scattering parameters 
resulting from the dyr~arriical interaction of the electron with the molecule, which is most conve- 
niently calculated in the body-frame of the molecule, and a second factor, depending on geometrical 
functions representing the rotation of the scattering angles from the body to  the lab frame. The  
cross sections, averaged over orientations of the internuclear axis could then be expressed as a sum 
of scattering parameters multiplied by spherical harmonics together with vector coupling coeffi- 
cients. -4 second contribution concerns the "adiabatic nuclei" approximation, originally introduced 
by Chase [46] in the context of nuclear physics. Chase showed that  in a cogent approximation tha t  
the amplitude for rotational excitation can be expressed as a matrix element of the fixed-nuclei 
amplitude between initial and final rotational states. Because the dependence on the orientation is 
analytic (actually 27 function), these integrals can also be done analytically, again - first - by Temkin 
and coworkers [.16,47]. (The name adiabatic-nuclei was also coined by Temkin [.18].) Temkin was 
also involved in other developments, most notably the hybrid theory [49], which will further be 
discussed by Dr. B. I. Schneider in his contribution to  these Proceedings. 

Having described some of Dr. Temkin's work, I now will describe some of the work carried out 
by Dr. Drachman. Perhaps, after Sir Harrie Massey, Dr. Drachman has not only made important 
contributions to  positron physics but has also made it a popular subject of research. 

Sca t t e r ing  of  P o s i t r o n s  f r o m  H y d r o g e n  A t o m s  

Calculation of positron-hydrogen sca,ttering a t  low energies can be carried out by the method of 
polarized orbitals as in the case of e-H scattering. Instead, Drachman [SO], employing a variation 
of the method, chose the wave function of the form 

The function G ( r l ,  r2), correct to  first order in the potential 
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has been determined by Dalgarno and Lynn [51] as a solution of the differential equation 

[G', H(2)14o(r2) = (V-  < V >)vJ,(r,) 

where 

and 

The function G' includes all multipoles 2 0 .  The adiabatic equation, correct to  second order in V ,  
is given by 

I11 the derivation of the above equation, we have taken < G' >=O.  Here 

and 

where lny=0.57721 is the Euler's constant a,nd 

For small value of r l ,  vst t 21';'-2 and V2 -+ -1, while for r l  t co V2= -4.51'-% Eq. (111) 
can be solved for various values of k to  dctermine the phase shifts and the results are given in 
Fig. 3. For k=O, the scattering length requires a correction due to  the long-range potential [ l l ] ,  as 
indicated in Eq. (34), and its value is -2.54 versus Schwartz's -2.10 [7], which is the upper hound 
on the scattering length. This shows that  the potential in Eq. (113) is too attractive. Drachman 
[SO] modified the potential to  
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Figure 3: Phase shifts in radians for p- arid d-wave scattering. The solid curves are for u=O.l, and 
the vertical bars indicate a=l.O and cu=O limits. The triangles are Brandsden's p-wave values (Ref. 

[=I 1. 

where is the monopole part of Vz. The complete suppression of monopole or short-range part 
of the potential, i.e., cu=O gives scattering length -2.07, in good agreement with Schwartz's value. 
Drachman calculated P-wave and D-wave phase shift for various values of k and found reasonable 
agreement with those of Brandsen [52] (cf. Fig. 3). 

In the same calculation, Drachman concluded, from the change of sign of the scattering length 
with increasing mass of the positron, that  there is no bound state  of the system es-e--P unless 
the mass of the positron is 3.6m, for a=0.1, while for a=l it is about 3.1me. 

IIouston and Drachrnan [53] using a more flexible wave function than that  of Schwartz [7] in the 
Kohn variational method, obtained an upper-bound scattering length a -2.10278. They obtained 
an extrapolated estimate*a= - 2.1036k0.0004. These results are in good agreement with Schwartz's 
result a 5 -2.10. They applied the Harris method [Tj4] to  obtain S-wave phase shifts a t  nonzero 
energies which are in good agreement with those obtained by the Feshbach formalism [16] described 
below. 

One of my first calculations with Drachnlan [55] was the S-wave elastic scattering of positrons 
(e+) from hydrogen atoms below the positronium pickup threshold. As mentioned above for 
electrori-hydrogen scattering, rigorous lower bou~ids have been obtairied usi~ig the Fesl~bach projec- 
tion formalism [16]. Similarly, the results for e+-H have rigorous lower bounds. Since there is no 
exchange between a positron (labeled 1) and an electron (labeled 2) in the hydrogen atom in this 
process, the projection operators P and Q are defined as 
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such tha,t P operating on thc wa,ve function does not change its asymptotic form in the limit rl + oo 

TABLE V. e+-H phase shifts for S-wave scattering for various k.  

k Schwartz [7] qextlap Arl qfi1131 Armstead" [8] qfinal 
0.1 0.151 0.148085 0.000223 0.1483 0.008,0.009(1) 0.0094 
0.2 0.188 0.187496 0.000200 0.1877 0.032,0.033(1) 0.0338 
0.3 0.168 0.167407 0.000306 0.1677 0.064,0.065(1) 0.0665 
0.4 0.120 0.119724 0.000420 0.1201 0.099,0.102(1) 0.1016 
0.5 0.062 0.061934 0.000429 0.0624 0.130,0.132(1) 0.1309 
0.6 0.007 0.003191 0.000689 0.0039 0.153,0.156(2) 0.1547 
0.7 -0.054 -0.052183 0.000980 -0.0512 0.175,0.178(3) 0.1799 

" Armstead [8] has given two sets of results. The first entry gives his converged results while 
the second entry his estimate of most probable results with uncertainty in the last figure given in 
perent hesis. 

Here 9 is given by 

where the generalized Hylleraas fu~~c t ion  is 

lmn 

In  he absence of exchange, the ef-H problem should be easy to  solve but not so due to   he 
virtual positronium formation. Therefore, we have included e-"'" in a, where rl2 is the distance 
between the positron and the electron. An integro-differential equation of the form Eq. (81) 
(V,,=O here) is solved for the scattering functions u L ( r l )  and phase shifts I ~ L  are obtained in the 
limit rl + rn from 

It should be pointed out that  the phase shifts are negative in the absence of the optical potential. 
The inclusion of the optical potential, which is attractive as in the e-H scattering, increases the 
phase shift,s from the values obtained in the presence of only the repulsive static potential us+ in 
Eq. (81). The phase shifts were calculated for up to  N=84 and extmpolated for N -+ m. These 
phase shifts plus a correction A7 for the long-range polarization potential are compared in Table 
V with those obtained by Schwart ,~ [7] using the Kohn variational principle. The long-range effects 
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are not well included in a Hylleraas type correlation functions and therefore have to  be calculated 
separately. Our final results (qfinal = qextrapoiated + Aq). which, we believe, are accurate within 
f 0.0002 radians, differ a t  k=0.6 and 0.7 from those obtained by Schwartz [7] .  

,4 similar calculation [56] has been carried out for P-wave scattering. Here the closed channel 
function is given by 

The f ,  are taken of the Hylleraas type with two non-linear parameters: 

and 

The f, are linearly independent functions because the positron and the electron are distinguishable. 
Now there are four nonlinear paremeters t o  be veried to  get the best results. The maximum number 
of terms for each f is 84, giving a total of 168 terms in @. Here we have added the dipole adiabatic 
and the quadrupole plus nonadiabatic corrections t o  the extrapolated phase shifts. Our final results 
are compared t o  those of hrmstead [8] in Table V. The rigorous lower bound is lost due t o  the 
addition of corrections for the long-range potential. Nevertheless, the results still are accurate. 

Needless t o  say, thcse results have stood the test of the time and are still considered to  be the 
benchmark results. 

Annihilation of Positrons with Electrons, Zeff 

,4n important process is the annihilation in flight of positrons by atomic hydrogen resulting in 
the 511 KeV line which has been observed in solar flares [57] and from the galactic center [58]. 
This line can be used to  infer properties of flares and the solar plasmas. Having calculated the 
wave functions for the scattering of positrons from hydrogen atoms, the partial cross sections for 
annihilation can be calculated from the expression given below [59] 

where (Y ib the fine-structure constant. (LO is tlie Bohr radius, and k is the i~icident positron InorneIi- 
tum in units of a;'. The quantity ZeJf, whch is the measure of the probability tha t  the positron 
and electron are a t  the same point, depends on specific properties of the positron-atom system. 
Zeff is equal t o  Z,  the number of electrons in the atom, when the positron can be represented as a 
free particle. For the hydrogen atom 
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where !P(rl, r2) is the positron-hydrogen wave function. It  should be noted that  for the calculation 
of Ze f l  u L  (r) should have a plane wave normalization, i.e., 

We present Zeff for L=O a,nd 1 [60,61] in Table VI and compa,re them with those obtained by 
Humberston and Wallace [62] and Humberston [63]. For L > 1, we use the plane wa,ve expansion 
for the incident positron 

Using the ident,ity 

we get [with do(r )  = 2e-'1 

We give the total Zeff in Table VI. 

Table VI. Zeff for ef -H annihilation. k=O results are from Rcf. [64,65]. 

L=O L = l  Z,ff(Total) 
k Zeff(L=O) Ref. [62] Z e f f ( L = l )  Ref. [63] 
0 8.868 

We can calculate the thermally averaged annihilation pa.rameter 

where fT(k) is the Maxwell-Boltzman distribution function. We can fit the calculated Zeff(k) to a 
sixth-degree polynomial of the form 
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Figure 4: Thermally averaged annihilation para,meter Z(T) obtained from the  polynomial fit 

&if ( k . ) .  

ZeR (k) = Z, k T L .  

Using this expansion, the  integration in Eq. (131) can be carried ou t  analytically and we have 

where T,l is the  temperature  in units of lo4 K and 

Here Ao=15.789 and Z,,, z,: and Q,  amre given in Table VII. 

Table VII. Coeffients of the  polynomial, Z,, E l  and a,. 

n 2, z, Qn 

0 8.868 8.868 1 
1 -7.38 -2.226 2;7-'I2 
2 -102.77 -9.763 3 

2 
3 527.38 18.971 4n-1/2 

- 4 -978.68 -14.722 1,6 
5 773.15 5.284 12~- '1" 

- 6 -197.17 -0.658 I?" 

Now Z(T) can be  calculated at any temperature (cf. Fig. 4).  
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ef -He Sca t t e r ing  

Although accurate calculations for c+-H can be carried out because wave functions of hydrogen 
atoms are known exactly it is difficult to  perform experiments on this system. On the other hand, 
ef -He experiments can be performed relatively easily but the calculations are rather tedious because 
elaborate He functions are difficult t o  employ. However, Houston and Drachman [53] used those 
simple wave functions which gave a reasonable value of the polarizabilty of the He atom. They used 
the Harris method [54] to  calculate phase shifts a t  low energies and their results agreed with the 
results of the variational calculation of Drachman [65]. They added a term to  the wave function t o  
represent the long-range dipole potential and obtained scattering length a=-0.524 and Zejj=4.3 a t  
k2=0, using the Kohn variational method. 

P r o p e r t i e s  o f  P s -  a n d  P h o t o d e t a c h m e n t  

The positronium negative ion (Ps-) ,  consisting of two electrons and a positron, is particle stable 
and decays only by e+-e- annihilation into gamma rays. Mills [66,67] has produced and detected 
this ion and measured its lifetime. Drachman and I [68] calculated its ground state  (IS) energy by 
using a trial function of the Hylleraas form, calculated expectation values of delta functions, and 
cusp conditions given by 

Table VIII. Binding energy (Ry) of '5' s tate  of Ps- ,  expectatior~ values of S functions, cusp 
conditions, and decay rate I'((nsec)-l). [The notation A(-B) stands for A x 

N r̂' S Binding energy 6(r i)  S(r12) u, v12 r 
125 0.2585 0.3585 0.024009788 0.020722 1.7151(-4) -0.49910 0.49711 2.0850 

Here r l  and r 2  are the relative distances of electrons 1 and 2 with respect t o  the positron, and 
7-12 = Irl - r21. Results are in given in Table VIII for the Hylleraas wave functions (see Eq. (141) 
below) with up  t o  N=203 with 3. = 6, and up t o  220 terms with y # 6, respectively. These 
functions have been used to  calculate other properties. The  cusp conditions test the accuracy of 
the wave functions near points of coalescence, since ul = u2 = -; and ul2 = +; for exact solutions 
of the Schrijdinger equation. The convergence of results, given in Table VIII, shows that  our wave 
functions should be fairly accurate. To a sufficient accuracy the Ps- decay rate is given by 
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where the correction term proportional t o  cu is due to  the triplet lifetime [69] and the leading 
radiative correction to  the singlet lifetime [YO]. Our calculated value is in agreement with the 
measured [67] value r = 2.09 f 0.09(nsec)-l. 

Mills [71] recognized that  the existence of 3 ~ e  state of positronium, as in H- [72], would have 
interesting experimental consequences: The s tate  would be metastable against breakup because 
P s - ( ~ P " )  -+ Ps(lS) + e -  is nonrelativistically forbidden. Using 70-term Hylleraas wave function, 
Mills [71] did not find such a s tate  . We [68] too failed t o  find this s tate  even when we used larger 
expansions and also included long-range terms of several types [73]. 

Photodetachment of Ps- 

Mills [66] suggested tha t  Ps- ion could be used t o  generate positronium (Ps) beams of controlled 
energy: this would involve acceleration of Ps- ions and photodetachment of one electron. Drachman 
and I [74] calculated the dipole transition matrix elements by two simplifications: the intial Ps- 
wave function is represented by an asymptotic form whose normalization comes from our most 
accurate wave function [68], and the final s tate  is a plane wave. 

The  Hamiltonian of the system consisting of two electrons (pl,  p2) and one positron (x) is 

1 1 
II = -v ;~  - v;, + v; - - - --- 1 + I P ~  - X I  I P ~  - X I  Ip1 - p2J' 

The center-of-mass system is 

where R is the coordinate of the center of mass of the entire system, rl and 1-2 are the distances of 
electrons 1 and 2 from the positron, respectively. The Hanliltonian is given by 

Omitting the center of mass coordinate R, which describes uniform motion of the center of mass, 
we write a wave function for the Ps- ground state  in the Hylleraas form 

The  final s tate  consists of an electron in a p state  moving away relative to  the center-of-mass of the 
P s  atom. We use the coordinate R2 = 1'2 - r1/2 in place of 1-2, while retaining rl as the distance 
between the positron and electron. The Hamiltonian for these asymmetric coordinates is 
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The final state is given by the pwave  part of the  symmetrized product of a plane wave in relative 
coordinates: 

where E = 2 k 2 .  The photodetachment cross section in the velocity form can be written as [75] 

where the dipole transition operator in tlie velocity form is 

and w is energy of the incident wave. The finite mass of the positron gives a factor of $ when 
compared with the photodetachment expression for an infinitely massive atomic ion. The cross 
section in the length form can be written as 17.51 

where the dipole operator in the length form is 

Q ~ = k . ( p l + p z - x ) .  

These transition operators can be written in terms of tlie urisyrrirrietric coordinates: 

and 

2 
Qr = k . ( R + r l + - R Z ) .  

3 (149) 

Now we represent the initial loosely bound state  function in the following form [76,77]: 

e - ~ R ~  
qi = C-$(rk), for Rj >> rk, 

4 
where -y=0.12651775 from our best variational value [68] of the Ps- binding energy 0.024010113 
Ry. 

C ( r )  f  fire^^^^ (0, r ,  r ) .  (151) 
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Figure 5: Photodetachment cross sections (dashed lines) in the asymptotic approximation for Ps- 
and II- as functions of wavelengths of the incident light. The  length and velocity forms of the H- 
cross sections are from more elaborate theory of E;. L. Bell and A. E. Kingston [78] (solid lines). 

We find C=0.1856(2) (cf. Ref. [74] for details). We find 

QV = aL = (3.8245 x 10-17cm2) 
k3C2 

(k2 + 72)3 ' 

which can be written as 

We can write the cross section in terms of the wave length of the incident light, 

where Ao=37953.46 8, . In Fig. 5 we have plotted the present results [Eq. (154)], compared with 
the corresponding results [77] for H-. In the latter ca,se the asyrllptotic approximation is seen to  
compare fairly well with the more elaborate calculations of Bell and Kingston [78], a,nd we expect 
the present results to  be similarly reliable. 

h sca,ttering ca,lculation for the final s tate  has been carried out by Ward, Humberston and 
McDowell [79] t o  calculate the photodetachment cross section of Ps-. See the article by Dr. S. J. 
Ward in these Proceedings. 

Muonic Molecules 

There have been speculations of the possibility of realizing useful ~riuo~iic catalyzed fusion. The  
Born-Oppenheimer approximation has been used traditionally to  calculate energy levels of muonic 
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systems. Drachman and I [go], for the first time, using Hylleraas type wave functions for such 
systems, carried out straightforward Rayleigh-Ritz variational calculations and showed tha t  the 
binding energy of even the weekly bound t d p  molecular s tate  of the angular momentum equal t o  1 
and vibrational state 1 ( J  = 1, v = 1) can be obtained fairly accuarately. lVe [81] further studied 
the deexcitation of tdp muonic molecule by internal conversion and also calculated the J  = 2 
binding energy. We wrote an easy-to-read review article [82] on this subject. I will not discuss 
further our work because Prof. E. ,4. G. Armour has carried out extensive work on muonic systems 
and has written an article on muonic physics which appears in these Proceedings. 

Polarizabilities of Two-Electron Systems 

lVe will see in the subsequent section tha t  in order t o  calculate the Rydberg levels of three- 
electron systems, the interactior~ between valence electron and core should be k~lown. This inter- 
action can be represented by the potential 

6% - 0 2  -+  + higher - 
2 4  x 

order terms, (155) 

where z is the relative distance between the valence electron and the core, and a1 and a2 are dipole 
and quadrupole polarizabilitics. respectivcly, and ;Jl is the first nonadiabatic coefficient. These 
polarizabilities, in the second-order perturbation calculations, are given by the general expression 

where 10 > represents the ground state  of the core and IN > intermediate states, determined by 
diagonalizing the appropriate Hamiltonian. l i e  can write 

and 

The  potential between the valcnce clcctron a t  a distance x from the nucleus and thc core can be 
expanded in the form 

where 

32 
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and 

Here w = rl + r2, K = 2/ (1+ M ) ,  lVf is the nuclear mass, and Z is the nuclear charge. Drachman 
and I [83] calculated various quantities in Eq. (156) using the pseudostate summation method. We 
used Hylleraas type wave functions for the ground state  and intermediate states. The nonlinear 
parameters in intermediate states are optimized by maximizing al, which according t o  the varia- 
tional principle, has a lower hound to  the exact a l .  In Table IX, we give our results for various 
ions. 

Table IX. Adiabatic and nonadiabatic polarizabilities 
for three isoelectronic systems. A(-B)implies A x  

Svstem Li+ Bef B + ~  

Polarizabilities of He and H- 

We now turn t o  calculations of such quantities for He and H-, where the convergence is rather 
slow for He and even slower for H-. For He, we [84] used up to  525 terms for the ground state ,  364 
terms for the P-wave intermediate states. For D-wave intermediate states,  both sd and pp terms 
are required. and therefore we used up to 165 sd terms and up to  56 pp terms in our wave function. 
In Table X, we show our final results for He. 

Table X. Adiabatic and nonadiabatic polarizabilities 
for "e. We also give the estimated errors. 

k i=1 (Dipole) i=2(Quadrupole) 
1 a1=1.383 241 013 8 0 f  10 a2=2.443 372 616 06620 

Since we include the mass polarization term in the Hamiltonian. it is interesting to see how 
large an effect this has on various polarizabilities. Therefore, we carried out our calculations, using 
the largest expansion lengths, for K=O and for finite K ,  both for %e and 3He. We present the 
results in Table XI. 
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Table XI. Effect of the finite nuclear rrlass on the polariza,bilities 
of both isotopes of helium. A is the difference between the results 

for finite and infinite mass. 
Ouantitv A ( 3 ~ ~ \  A (''He) 

l i e  carried out a similar calculation for H- for finite K ,  except that  in this case we used 615 
terms in the ground state  wave function. The  quantities are much larger than in the case of He 
and the results are given in Table XII. 

Table XII. Adiabatic and nonadiabatic polarizabilities 
for H-. JVe also give the estimated errors. 

k i=1 (Dipole) i=2(Quadrupole) 
1 al=2O6.148 7618f 37 a2=7766.79 374f48  

To ckeck the accuracy of our results, we consider two special cases. related to  So,l and SI,-l. 
The first one tests the completeness of pseudostates that  we are using without considering the 
ground-state accuracy: 

Comparison between the left and right sides of Eq. (163) gives a measure of completeness of the 
set N .  lVe give results in Table XIII. along with the difference of the ratio from unity. 

Table XIII. Comparison between left and right side of Eq. (163). 
A=difference of the ratio from unity. 

Svstem left hand side right hand side A 

The second test is the Thomas-Reiche-Kuhn sum rule, which for the finite-nuclear mass takes the 
form 

Now the extent of the a,greement between the left and right sides of Eq. (164) mea,sures both the  
accuracy of the ground state 10 > and the conlpleteness of intermediate states IN >. J i e  find 
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the ratio of thc left side t o  the right side is 0.999 999 87 for He, and the corresponding ratio for 
H- is 0.999 9787, respectively. All these tests show tha t  H- is a more sensitive system than He. 
Nevertheless, our results are accurate t o  the accuracy given. 

Polarizabilities of HZ and D$ 

Having calculated polarizabilities of two-electron sytems, it must appear that  there should be 
no difficulty in calculating polarizabilities of molecular ions H; and D$, the only difference being 
that  two light particles have been replaced by two heavy particles and the mass-polarization term 
becomes as important as other kinetic energy terms in the Hamiltonian. Since, with a hammer 
in hand the whole world looks like a nail, I just went ahead with the calculations for HZ and 
~ z f  systems using Hylleraas type wave functions, with the appropriate change of masses in the 
Hamiltonian. But I found no expansion length in these functions was adequate enough for ap- 
proaching the known results obtained using the Born-Oppenheimer approximation, leaving aside 
to  surpass them. The problem remained dormant till Drachman heard from Steve Lundeen about 
his experimental results on high Rydberg states of H2. It is possible t o  extract accurate properties 
like quadrupole moment and the parallel and perpendicular polarizabilities of the molecular ion 
HZ from these results [85,86]. The Born-Oppenheimer results [87] disagreed with the experimental 
results. We tried to resurrect our old work and tried various extrapolations, but had no success. 
Drachman came up with an excellent idca: simply raise rlz (the interparticle distance between 
similar particles) to  a power close to 30 or so and choose the nonlinear parameter cr in e-"'12 equal 
to  half of that  power of rl2 in the Hylleraas functions being used. This was a miracle in the sense 
that  nearly six terms in the Hylleraas expansion now were equivalent t o  hundreds of terms in the 
earlier expansion! It is easy t o  understand, after the fact, that  now two protons stayed clamped 
a t  their respective positions whereas they enjoyed the same freedom as electrons with the usual 
generalized Hylleraas functions. This was just what was needed to  get excellent results without 
making Born-Oppenheirner like approximations. The expression for polarizability [88] is given by 

where z~ = r.4 . i and zg = rg . i ,  t being the direction of the external electric field which can be 
considercd to  be in the z direction. rA and r B  are the distances of the clectron from protons A and 
13, respectively. The  reduced mass p = ,VI/(,VI + 1). It should be pointed out tha t  we are treating all 
the particles on an equal footing and me do not refer to  any special "molccular" quantum numbcrs. 
Thus we are not interested here in the "axial" or "transverse" polarizabilities t ha t  appear in the 
Born-Oppenheimer approximation. 

With these modified Hylleraas functions, we obtained ground state  energy ~ ( ~ ; ) = - 1 . 1 9 4  277 
909 Ry, differing by only about 2 . 2 x 1 0 - ~  Ry from the accurate value [89]. We calculate the 
interrnedia,te P states also using high powers of 7-12 (cf. [88] for details). Our final results for H$ 
and ~ z f  are given in Table XIV. 
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Table XIV. Pola,rizabilities of H; and D; obta,ined in different ways, 
both theoretically and experimentally. Quantities in perentheses 

are errors in the last decimal place given. 
Method @ I  (H?) 01 (D?) 

Born-Oppenheimer 3.1713 3.0731 
Modified generalized 3.1680 3.0671 
Hylleraas functions 
Finite elementc 3.1682(4) 3.0714(4) 

"Jacobson et a l .  [86].  isho hop and Lam [87]. "Shertzer and Greene [go]. 

It is obvious that  the results for D$ are not as  close to  the experimental results as in the case 
of H$, showing that  even the modified wave functions have limitations: as the nuclei get heavier 
it becomes more difficult to  generate a well-enough localized two-nucleus part of the trial wave 
function. Clearly, the method fails as the nuclei become infinity heavy. 

Dr. J .  Shertzer discusses in these Proceedings the results obtained by the finite-element method. 

Polarizabilities of HDS 

After we had studied the polarizability of the homonuclear molecular ions it should have been 
simple to  extend our methods t o  the heteronuclear ion HD+. Janine Shertzer reminded Drachman 
that  in this case there would be dipole coupling between rotational levels with J=O and .J=1, which 
was not possible in the earlier cases because of symmetry. In addition she pointed out that  the 
lowest-lying J=l level is so close t o  the ground state  tha t  one would expect a very high value 
of polarizabiiity, since the denominator of the second-order perturbation sum would be so small. 
Drachman and I [91] carried out calculations to  see if this prediction was borne out.  

The dipole polarizability a1 is given by the second-order perturbation theory: 

The dipole operator d depends on masses of the nuclei and is given by 

where the unit vector i is in the direction of the applied electric field, ,$Ip and ,+ID are the masses 
of the proton and deuteron nuclei and 

The calculation of the dipole polarizability of HDf is similar to  that  of HZ and D;: we treat all 
three particles on an equal footing and do not refer to  any special "molecular" quantum numbers. 
We use the modified generalized Hylleraas type wave functions, i.e., we use very high powers of n in 
r&e-"T12 and a is of the order of 7212. The energy eigenvalues using the Rayleigh-Ritz variational 
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principle are Eo=-1.195 795 889, using 560 terms, and Ep=-1.195 372 602 Ry, using 728 terms, for 
the ground S state and the lowest P state, respectively. These compare well with Eo=-1.195 795 
931 and E,=-1.195 396 2560 Ry obtained by Moss [92]. The  energies of these two states are so 
close to  each other tha t  they are almost degenerate states of opposite parity. This is the important 
difference between the homonuclei H; and D;, and heteronuclei HDS molecules. 

The polarizability due t o  the lowest P term alone in Eq. (166) is 392.0814~: and the sum over 
the renlaining intermediate states contributes &s=3.2076ai. The total polarizability, cr1=395.289~;, 
is very much larger than might be expected from the results [88] in H; and D;. This can be traced 
to  the fact, as indicated above, that  there is a coupling between the two lowest S and P states 
due to  their closeness in energy. If we exclude the ground state,  we can calculate the polarizability 
of the lowest P state  by summing over all the intermediate S states. We find this result to be 
o1~=2.03008n~. 

But second-order perturbation theory can only be legitimately carried out if the perturbation 
is small compared t o  the spacing of the unperturbed energies, and this condition is hard t o  satisfy 
in the present case. If the perturbation is due to a unit charge it must lie further from the ion 
than about 32no for the perturbation theory t o  be valid. What  happens for larger fields or smaller 
distances? Clearly, for these larger fields the opposite parity levels act essentially as degenerate 
levels, so the techniques of degenerate perturbation theory must be applied. This leads to  an energy 
shift that  is linear in the electric field, falling like R-2 rather than R-4 as we expect for ordinary 
polarizability. This is usually described as the effect of a permanent dipole moment. We then went 
on to  diagonalize the perturbation matrix in various approximations and were able t o  give a good 
description of the energy shift as a function of R. 

In observing the Rydberg states of HD, the effective polariza,bility should be &s=3.2076n~, which 
is close to the polariza,bilities of H$ and D; [88]. With this value, we have calculated energy shifts 

using hydrogenic wave functions. We give these energy shifts A,vL of a series of Rydberg levels 
due to  the polarizability of the fIDf ionic core omitting the lowest rotationally excited level in the 
summation over intermediate states. 

Table XV. Energy shifts A,vL 
of a series of Rydberg levels. 

N L -ANL(MHz) 
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Figure 6: Diagrams symbolizing the nonrelativistic calculation of cu(w), with energies of each state  
indicated. 

Optical Properties of He Including Relativistic Corrections 

An interesting a,pplication of polarizabilities is the ca,lculation, which ~ r a c h r n a n  and I [93] 
carried out,  of the index of refraction n of He from which the Verdet constant I/, which measures 
the rotation of the plane of polarization in the Faraday effect, ca,n be obtained. The  rotation 6 ,  
measured in degrees, is given by 

6  = V B L ,  (170) 

where B is the magnetic field and L is the length traversed by light. If the static field is replaced 
by an oscillating field (an electromagnetic wave), it is possible t o  define a frequency-dependent 
polarizability a ( w )  from which the index of refraction can be obtained (cf. Fig 6). The  expression 
for the polarizability is given by 

where N p and the dipole operator Z is given by 

z= 2(z1 + z 2 ) .  

We can define a set of "generalized dipole polarizabilities" as follows 
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-4s indicated earlier, we use IIylleraas basis sets for the ground state  as well as for pseudostates N 
and the results for various quantities are given in Table XVI. 

Table XVI. Various quantities 
for 4He. 

01 1.383 241 01 
01 0.707 521 493 
71 0.385 538 368 
61 0.218 735 026 
6 1 0.127 538 649 
(1 0.075 827 657 
771 0.045 731 135 

The denominator in Eq. (171) can be expanded in powers of w/(EJv - Eo) 50.2 for wavelengths of 
visible light: 

The relativistic corrections are calculated by using the Breit-Pauli relativistic Hamiltonian which 
has the following form: 

This requires a third-order-perturbation theory, w i ~ h  B retained to  first order and Z to the second 
order. Up t o  w4 the expansion corresponding t o  Eq. (174) gives the following numerical result 

and the relativistic expression for the frquency-dependend polarizability of helium becomes 

The last term Eq. (177) has not bee11 modified from its nonrelativistic value, since the effect of 
relativity here would be absolutely negligible. In order to  write the above expression in terms 
wavelength, we use 

where 1<=2.741 493x for "Ie and the wavelength is in A units. We obtain the expression for 
polarizability in terms of wavelength in the form: 
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Optical measurements usually give n - 1, where n is close to  1 for helium. The higher-order 
corrections in the relation between the polarizability (a single atom property) and the index of 
refraction, due to the effects in the medium, are accounted for by the Lorenz-Lorentz equation: 

where NL is Loschmid's number. Solving for 72 to  second order in z,  we find 

The Verdet constant is given by 

e dn 1.616813 x lo7 V = - -  A- = 5.506521 x lo5 2.456618 x 10'' 
A 2  A 2  A" I + p min/oer cm, (182) 

2mc2 dA 

where min refers t o  rotation. We get from the above equation V=O.G61 2 2 5  0.00025 a t  A=5000X 
versus the experimental value 0.637 of Leonard [94], while a t  A=8000,k we get 5/=0.254 816f  0.000 
015 compared with the experimental value 0.246 (all i r ~  units of p ~ri i~l /oer  cm).  This shows 
that  there is a significant discrepancy here that  is larger than the relativistic effects that  we have 
considered. The experimental results do not appear to be very accurate and new measurements are 
required of the refractive index n of helium to  have a better comparison between our theoretical 
results and measurements. 

Another Way to Calculate Lamb Shift 

One of the most difficult parts in two-electron Lamb shift calculations is the Bethe logarithm 
given by 

ln(K) = C,  < OIVln >< nlVO > (En  - ~ o ) ~ l n ( ~ ,  - Eo) 
C ,  < OIVln >< nlT/IO > (E,, - E o ) ~  

- N - - 
- D '  

(183) 

where In > are L = l  eigenstates, both bound and continuum, of the Hamiltonian describing the 
two-electron system. Instead, we use the pseudostate sunlnlation rnethod. The interaction V is 
given by 

Having used pseudostates in the polarizability calculations, it should have been easy t o  calculate 
l n (K)  given by the above expression in the length form. But the result obtained using either the  
length, or velocity, or acceleration form never seemed t o  approach the known results, no matter how 
large the psoudostate expansion was in the above expression. The basic reasons are the power of 
(En- Eo) which is 3 instead of -1, as in the polarizability expression, and the presence of ln(E,- Eo) 
in the numerator, which makes matters worse. Combined together, the convergence of the results 
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becomes extremely slow. Out  of frustration, I sought Drachman's help. To solve this problem, he 
came up with several tricks which I prefer to  call good insight. We could then obtain results as  
accurate as available in the literature. I have used a slightly different notation in this section for 
the pseudostates in order t o  conform with our published paper [95]. 

The Denominator 

We transform the denomenator D in Eq. (183) in a form which does not have an intermediate 
sum ( n  > by using the commutation relation 

three times, in order to  remove (En - Eo): 

Since the potential term in the Hamiltonian does not commute with Vl  + V 2 ,  the above expression 
can be put in the form 

where closure over the intermediate states In > has been invoked and Poisson's equation has been 
used t o  introduce S functions. .4s before, I< = 2 / ( M  + 1). where hf is the mass of the nucleus 
in units of the electron mass. The terms of the order K 2  have been dropped; within this error 
the expression is exact. It  does depend on the accuracy of the ground state  wave function which 
consists here of 525 terms. Therefore, the error due t o  the accuracy of the ground state  wave 
function is negligible. 

Table XVII. ln (K)  as a function of y and Pekeris number a,. 
am r̂' Dnrr X,, ,, In(I<) 

Because of the ln(E,, - Eo) term, it is not possible to reduce N to  a similar form. However, 
we expect the convergence of pseudostates will be similar for N and D. We use the comrrlutation 
relation [Eq. (185)] twice for each matrix element of Eq. (183) to  obtain the acceleration form 
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Figure 7: Behavior of D,,, for helium as a function of the nonlinear parameter y. The crosses are 
for Rp=3, and the plus signs are for R=4. The dotted line is the "cxact" value, obtained from Eq. 
(187). 

< OICTln >< nlUIO > 
D,,, = - 8 z 2 ( l  + K )  C 1 

n EO - En 

where 

This expressio~i for D,,, looks like the second-order energy sliift induced by the pote~ltial U ,  and 
it has a variational bound [95]. We can, therefore, choose the nonlinear parameter -y in the pseu- 
dostates to maximize D,,, in Eq. (188) (cf. Fig. 7). 

As the number of ( n  > is increased the D,,, approaches D,, which for He from Eq. (187) is 
121.335 143. LVe calculate rV for the same -y and the same number of In > as for D,,,. We give 
values of ln (K)  as a function of the Pekeris number R, in Table XVII. 

Extending T h e  U p p e r  Limit 

Lie assume that  the contribution of each term in the pseudostate summation is exact and the 
remaining error in the total is due to  the fact that  that  the sum does not extend t o  infinity. We 
use the method of Dalgarno and Stewart [96] to  account for the remainder of the sums beyond the 
highest pseudoenergy. For high energies they used the following simplified form: 

112 (9 )u,(rl)e1k'r2 + u ~ ( ~ ~ ) c ~ ~ ~ ~ ~ I ,  q n , k  (rlt r 2 )  = - 2 2 (190) 

to  represent the singly ionized states in the expression that  replaces the discrete one in Eq. (188): 



Symposium on Atomic & Molecular Physics 

Here E = k 2 ,  In is the ionization-excitation potential of two-electron systems, and u, is the wave 
function of thc one-electron system left after single ionization. Without loss of accuracy, we fitted 
F,(E) to  the form [A, + ( ~ , / k ) t a n - ' ( ~ , / k ) ] ~ - ~ / ~  and included s states up to  n=4. Higher states 
wcrc included approximatcly by an exrcssion falling like l /n?  .Tilie adjust €0 so tha t  

The critical step is now t o  correct N using the same value of eo as for the denominator, modifying 
the integral by the inclusion of the appropriate logarithmic factor. In Table XVIII, t o  obtain the 
exact value of the denonlinator we give the required value of €0, the corrected value of the numerator 
and the improved value of ln (K) ;  the convergence with Op is significantly improved. 

Table XVIII. The to, corrected values of Nc,,,, and ln(K)  

RP €0 Ko7-r In ( K )  
3 361.0613 520.267 518 4.287 855 
4 724.0096 521.248 382 4.295 939 
5 1143.441 523.110 217 4.311 284 
6 1912.977 524.085 779 4.319 324 
7 2734.433 525.086 045 4.327 568 
8 4108.808 525.799 439 4.333 447 
9 -5524.324 526.334 777 4.337 859 
10 7729.503 526.911 785 4.342 614 
11 9964.945 527.307 234 4.345 874 
12 13 253.52 527.650 177 3.348 700 
13 16 564.86 527.870 611 4.350 517 

Extrapolation and Results 

We extrapolate our results by using the deviation AD of the denominator from its exact value: 

This quantity approaches zero as Rp increases. We plot the uncorrected and corrected ln(K)  (cf. 
Fig. 8) .  

The slope of the line fitted to  the corrected points is 12 times smaller than the uncorrected 
slope, indicating the improved convergence we expected. The extrapolated result for helium is 
ln(I<)=4.367 58(46). 

In Table XIX we show the values of ln(I<),  obtained by this method, for a range of atomic 
numbers Z and compare them with those obtained from the approximate expression of Goldman 
and Drake [97]. Their approximate expression has been obtained using an expansion in 1 /Z:  
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Figure 8: In(K) for helium as a function of AD. The plus signs show the uncorrected values, using 
the da t a  from Table XVII, and the crosses are the corrected values from Table XVIII. Linear fits 
have been made in both cases, and the improved convergence of the corrected values is clear. 

Table XIX. Results for a series of two-electron systems. 
System Z ln(I<) In(I<)" 

He 2 4.367 578 4.364 263 
Li+ 3 5.177 763 5.177 249 

Be+" 4 5.753 615 5.753 640 
~ e + '  10 7.586 072 7.588 068 

"From Eq. (14) of Ref. [97] which is the same as Eq. (194) given above. 

,4 good fit to  our results is the form: 

Thc present results may rcprcscnt the two-electron ground state  Bethc logarithm well over the 
range 125 Z 510. 

ln(K) for Atomic Hydrogen 

It is an obviously interesting question to  see how well the above method works for the simpler 
and better known one-electron (atomic hydrogen) case. Here the ground state  wave functtion is 
known exactly and the pseudostates are of a simple one-electron form: 
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Figure 9: ln (K)  for hydrogen as a function of A D .  The alternating convergence pattern discussed 
in the text leads to  two distinct lines: crosses are for even values and plus signs are for odd values 
of 0,. 

The denominator can be evaluated exactly: D=16/3. All other steps described above can be 
applied to  the one-electron system. 

In Fig. 9 we show the unexpected results. In place of the linear relation found for two-electron 
systems, we obtain an alternating convergence pattern. .4s R, increases from an odd value t o  the 
next even value the numerator increases significantly while the denominator remains unchanged 
t o  7 or 8 significant figures. With the next increase in R, the increase in D resumes. This effect 
produces two distict lines. l i e  were able t o  carry the calculations up t o  R,=22, a t  which point 
AD=0.057. The extrapolations to  AD=0 give ln(K)=2.987 125 (from odd values of R,) and 
ln(Ii')=2.978 329 (from even values). Combining the two results we can report a "best" value of 
ln(I<)=2.9827 50.0044 which should be compared to  the accurate value of IIaywood and Morgan 
I11 [98] ln(Ir')=2.984 129; our generous crror docs include this value. 

l i e  have not been able to  understand this irregular convergence and this remains an interesting 
unanswered question. 

Rydberg States of Li 

Traditionally, eigenvalues and eigenfunctions are calculated by the use of the Rayleigh-Ritz 
variational principle. This procedure has been carried out for states with high quantum numbers, 
,V and L,  as well [99]. The  disadvantage is eigenvalues of all the states below the s tate  of interest 
have to be calculated. Drachman realized that  when ,V is large, say 10, the outer electron is so far 
away [lo0 no compared t o  a0 for the core electrons] from the spherically symmetric core that  it does 
not have much electron-electron correlations, the type taken into account by the Hylleraas functions, 
with the core electrons. Even the exchange is not important, and most of the of correlations can 
be taken into account by considering only the long-range interactions. On this basis, he developed 



Symposium on Atomic & Molecular Physics 

a formalism [loo] t o  calculate energies of states of interest only, using the Feshbach projection 
operator technique. Since the exchange can be ignored Ecl. (71) simplifies to  

The formalism is rather complicated and I give the final result for the effective potential seen by 
the outer electron a t  a distance x from the nucleus: 

I alluded to  this form in Eq. (155)) where I indicated the importance of polarizabilities in the 
Rydberg states. The core coefficients are described below: 

Here, as ment,ioned before, a; = S1.;, P; = Sz,;, and "Y. = SS3,;. The third-order polarizability ha,s 
the form: 

The values tha t  ( i j k )  can take are a,ll the permutations of [112]. Finally, the fourth-order hyper- 
polarizabilty involving the dipole terms has the form: 

,,x8 C < OIVlln >< nlVllm >< mlV~lp  >< plV1IO > 
n,m,p ( E n  - Eo) (Em - Eo) (Ep - Eo) 

(201) 

Drachman [loo] developed the formalism for helium atoms and showed that  he could obtain 
the same result as Orake [99] did for the eigenvalues, e.g., N=10 and L=6 his result E=-105.829 
80zt0.00014 compares very well with -105.829 683 489 MHz of Drake (cf. Table I11 of Ref. [100]). 

Up to  now I have not given the interaction potentials Vl, V2, and V3. b e  are now interested in 
the Rydberg states of Li where the spherical core is He-like and therefore, I give below expressions 
[ l o l l  for three-electron systems: 
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where w = rl + rz and q -1+K2/2. In Ta,ble XX we give the va,rious quantities for 7 ~ i f  and 
'Lif, wliich have been calculated by using the appropriate Hyllera,as type wavefunctions for the 
ground sta.te and intermediate pseudostates of angular momentum L=l,  2, and 3. Again we use 
the method of pseudostate summa,tion. 

Table XX. Best values of the core pammeters used in 
constructing the effective potential. The  upper 

entry is for 6Li and the lower one is for 7 ~ i .  

From the core parameters of Table XX the effective potential of Eq. (198) ca,n be constructed 
explicitly. Numerically, this potential is 

for the case of 7Li. We use the following expression for the energy shift A ( N L )  away from the 
unperturbed energy -R/N' 

where the reduced Rydberg R=3.289 584 678 x lo9 MHz for 7 ~ i ,  and where Uk is the expectation 
value of that  term in U(z)  which goes like x F k .  Since the unperturbed wavefunction of the outer 
electron is purely hydrogenic, these expectation values can be evaluated analytically and exactly. 
Some results are given in Table XXI for N=10 and various values of L (cf. Table I1 of Ref. [ lol l  
for values for other N and L ) .  

Table XXI. Level shifts (in MHz) for 7 ~ i  for N=10 
due t o  the effective potential terms U k .  The total 
and error a,re obtained as described in Eq. (206). 

L li, CTG U ~ + I J R  Total Error 

Since Us has been included, (u1/x4 should also be included to the second order. That  is 
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Here the intermediate states NIL are the hydrogenic states of the outer electron. This quantity 
has been calculated for He [100], A2 for 7 ~ i  can be obtained by scaling the results for He; A 2  being 
proportional t o  a!. The results, given in Table XXII, are again shown only for the  N=10 and 
various L. The large relativistic correction due to increase in mass with velocity has been discussed 
by Bethe and Salpeter [I021 and some details are given in [ lo l l ,  as well. \Ye obtained the following 
expression for the leading relativistic correction: 

which is accurate up to  order K? Again some results are given in Table XXII. 

Table XXII. Second-order corrections, leading realtivistic 
corrections, and the final total shifts for 7Li in MHz for N=10. 

L A2 Are1 Total+Az+Are~ 
4 -0.097 -25.790 -535.34360.115 
5 -0.0090 -18.7122 -195.5397f 0.0011 
6 -0.0012 -13.8122 -86.29326 0.0003 
7 -0.0022 -10.218 88 -43.497 39% 0.000 07 
8 -0.000 046 -7.471 035 -24.022 3160.000 02 
9 -0.000 011 -5.301 687 -14.013 679f0.000 0004 

The fine-structure splittirig for the N=10 rna~iifold are shown in Table XXIII, where they are 
compared with the accurate measurements of Rothery et al .  [103]. 

Table XXIII. Fine-structure splitting for the N=10 ~nanifold of 7Li. 
Interval Enegy shift (MHz) Experiment [I031 (IclHz) 

IOG-lOH 339.80f 0.011 339.7186&0.0031 
10H-1OI 109.246 660.001 1 109.2140f 0.0047 
10I-1OK 42.795 8 f  0.000 3 
10K-1OL 19.475 0 8 f  0.000 07 
10L-lOhl 10.008 6 3 f  0.000 02 

Considering the accuracy of the measurements, the agreement between theory and experiment 
is not very good. Drachman and I [I041 extended our work [ lo l l  to included corrections t o  the 
third order to  improve the agreement. 

Relativistic Correction to the Polarization Potential 

We wish t o  compute a correction to  the energy shift of a Rydberg level due to  the I3reit-Pauli 
relativistic Hamiltonian of order oi2. Thus we must carry out a third-order perturbation calculation 
which has the form 

< Olhln >< nlhlm >< 7nlh10 > < OJhln >< nlhlO > 
V3(4 = C 

- (Eo - En)' 
< OlhlO >, (209) 

,,,, (Eo - En) (Eo - Em) 



Symposium on Atomic & Molecular Physics 

where h=Ibip + IIBP. The expression for the I3reit-Pauli IIamiltonian H B p  G B has been given in 
Eq. (175) and 

Keeping terms to  order a2 results in the following: 

where we have taken account of the facts that  the ground state  has angular momentum L=0, the 
excited states n, m are L=O or 1, and H B p  is rotationally invariant. Our best-converged result, 
obtained with 161 terms with L=O and 165 terms with L = l  is Acrl =-4 . .518~10-~ .  

Retardation Corrections 

As indicated earlier, the Rydberg electron is a t  a distance from the nucleus much greater 
coinpared t o  the radius of the core. When the distance is greater than 137a0, the interaction is no 
longer purely Coulomb in character. This is because the delay due t o  the finite light propagation 
time between the core and the outer electron is comparable t o  the characteristic time t = ao/w. 
This retardation (or Casimir effect) brings in a new type of term [I051 in the effective potential 
acting on the Rydberg electron tha t  falls off like x - ~ .  ,4u, Feinberg, and Sucher [I061 have given 
the following expressions for the modification of the effective potential producing the energy shift 
in the s tate  ( l s 2 N L ) :  

where t , = i a x ( ~ ~  - Eo). The evaluation of this correction is rather complicated. Nevertheless, 
we have evaluated the retardation corrections from N = 5  t o  N=21. We give results for the N=lO 
manifold only in Table XXIV. 

Table XXIV. Retardation corrections for lithium in MHz for ,V=10 manifold. 
L=9 L=8 L=7 L=6 L=5 L=4 

0.000646286 0.00142682 0.00325464 0.00790948 0.0212477 0.0653658 



Symposium on Atomic & Molecular Physics 

Lamb-Shift Cor rec t ions  

Since we are interested in the L-dependent fine-structure splitting of the Rydberg levels only the 
change in the Lamb shift of the two-electron core due its interaction with the outer electron needs t o  
be calculated. The main parts of the Lamb shift (mass renormalization, vacuum polarization, and 
radiative corrections to  the magnetic moment) can be written in terms of (< 6(r l )  >+< S(rz)  >), 
and it is necessary to  calculate the dependence of these S functions on the s tate  of the outer electron. 
Following Goldman and Drake [I071 we can write the expression for the two-electron Lamb shift as 

Here the S functions refer to  the two core electrons but are influenced by the outer electron. This 
correction is proportional t o  the expectation value of l / r%nd behaves like another correction t o  
the dipole polarizability of the two-electron core. We can write the relativistic corrections as  

where thc quantities in the square bracket are the coefficients (in MHz) of the relativistic po- 
larizability and Lamb-shift corrections, respectively. In Table XXV we show the three types of 
corrections for the experimentally interesting N=lO and their total in MHz. 

Table XXV. Relativistic, polarizablity, retardation, Lamb shift corrections 
and the total uncorrected interval from Table XXII, in MHz, for ,V=10 manifold. 

Uncorrected Relativistic 
L shift polarizability Retardation Lamb shift Total 
4 -535.34310.115 0.1201 0.0654 -0.0252 -535.183f 0.115 
5 -195.53972Z0.0011 0.0416 0.0212 -0.0087 -195.486k 0.0011 
6 -86.29322~ 0.0003 0.0170 0.0079 -0.0036 -86.2719k0.0003 
7 -43.49739k0.00007 0.0078 0.0033 -0.0016 -43.4879k 0.0001 
8 -24.02231k0.00002 0.0039 0.0014 -0.0008 -24.0178 
9 -14.013679~0.000004 0.0020 0.0006 -0.0004 -14.0115 

Finally, in Table XXVI we compare the experimental fine-structure intervals for lithium [I031 
with the theoretical totals including the uncorrected values and the three small corrections. It is 
clear that  there is better agreement when the small corrections are included. IIowever, higher-order 
corrections and more measurements seen1 to  be warranted. 

Table XXVI. Comparison of level differences for lithium, 
in MHz, bctwccn theory and experiment [103]. 

Interval Experiment-Theory Standard deviation 
10G'-10H 0.02 0.11 
IOH-101 0.0003 0.0048 

We [I081 have carried out a similar calculation for CIV, 0 VI, and Ne VIII. But a t  present there 
are no measurements accurate enough to  compare with our calculations. 
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Even though there are other interesting topics on which Dr.  Drachman and I have worked 
011 together, I stop here. Instead, I mention below two more topics: one with others and one by 
himself. 

Positronium-hydrogen scattering resonances 

Drachman once tried t o  insert the statement "Nobody likes a smooth cross-section" in an article 
on resonances, but the referee vetoed it. Nevertheless, there is much more interest in scattering 
resonances than in bland nonresonant behavior. The  Ps-H system is rich in interesting physics: 
There is one particle-stable s tate  called positronium hydride [PsH] with an energy of about 1 eV 
below the free Ps+H threshold. Using both the stabilization method and the complex rotation 
method Drachman and Houston [I091 found an s-wave resonance in elastic Ps-H scattering a t  
about 4.5 eV. 

Since interesting physics usually emerges from the analysis of resonances, it was of interest to  
understand the mechanism producing this resonance. At first, it was thought that  it was due to  
some threshold process like tha t  producing resonances in electron-hydrogen scattering below the 
n=2 threshold, but the position obtained was not close enough t o  a threshold t o  makc this plausible. 
The best explanation describes it as a Feshbach resonance [I101 in which the closed-channel part 
of the scattering function is the re-arranged system ef -H-, corresponding t o  perturbed hydrogenic 
bound states. Because of the long-range Coulomb potential between the positron and the negative 
hydrogen ion one can prcdict that  there should bc an infinite series of resonances, of which the one 
found by Houston and Drachman [I091 is just the first. Since the hydrogen ion exists only in the 
singlet spin state these resonances should not occur in the triplet state.  No reliable calculation has 
found triplet resonances. 

There are more subtleties in this systern, including some problems with the low-lying resonances 
expected for L > O  [ I l l ]  and these have been examined very recently by De Rienzi and Drachnlan 
[112,113]. More about this interesting system can be found in the presentation by Dr. H. R. J .  
Waiters in this volume. 

Hyperfine Splitting in Muonic Helium 

IIuang and IIughes [I141 calculated the Fermi contact term which yields the hyperfine splitting 
of the ground state  of the muonic helium system ( o + + ~ - e - )  by using a Hylleraas expansion. They 
required hundreds of terms in the expansion because of the slow convergence. Drachman [I151 
noticed that  the first term in this expansion gave 99.4% of the contribution, suspecting that  a per- 
turbative treatment could be an appropriate way of calculating the Fermi contact term. The large 
ratio of muonic mass to  electron mass suggests an adiabatic Born-Oppenhcimer approximation. 

The nonrelativistic Hamiltonian of this system is 

x and r are the coordinates of the muon and electron, respectively, relative to  the nucleus. The 
reduced masses are ,bf=201.069 and m=0.999863 in units of me.  The hyperfine splitting is given 

by 
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where 8 is the ground state  eigenfunction of H, and I<= 14196.11 MHz. In the Born-oppenheimer 
method, two of the particles are held fixed while we solve for the wave function of the other particle. 
We hold the muon (x)  fixed and solve for $(r) of the electron with x as a parameter 

where V ( x ,  r) = -2 r + 1x-l-l. As indicated in Eq. (106), the solution of Eq. (218) can be written as 

where 

satisfies the Coulomb problem and G is due to  the adiabatic perturbation ST(x, r ) .  ,4t this point, 
Drachman expands G in a perturbation series in V and its first order satisfies the equation (108) 

where 

< 5/ >= dr$x(r)l.'$x ( r )  = 2[1/:r - m - eZmX (11s + 4 1  (222) 

is the expectation va,llie of V .  Dalgarno a,nd Lynn [51] ha,ve solved an equation similar to Eq. (221) 
but for an electron in the field of two fixed positive cha,rges. Using their solution with suitable 
modification, Drachman obta,ins 

where El is an exponential in~egral  and Ei is defined in Eq. (114). Now we can solve Eq. (218) for 
E, t o  obtain E, = -m+ < V > + < VG1 > and determine the muonic wave function by solving 
the equation 

Since muon is close to  the nucleus due t o  its large rnass, only small values of z are significant and 
the Coulomb term dominates. Therefore ignoring the third term, the solution is hydrogenic: 
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Finally, letting 8(x, r )  = @(x)$,(r), Eq. (217) can be written explicitly as 

where a G [4,$1+ 2m]-I = 1.24 x and the term quadratic in GI has been dropped for 
consistency, since i t  is of second order in V .  

Expanding G1 and retaining only tlie linear term in x ,  we obtain 

Au x ( 3 2 ~ / n )  ( r n ~ 4 ) ~ ( 2 a ~  - 12ma4) 

= (4483.38 - 33.36) MHz 

= 43150.02 MHz. 

The  quadratic term in G1 contributes 0.689 MHz, while the cubic term is -0.005 MHz. Taking half 
of the quadratic term as an error, the final result is thus Av=4450.4f 0.4 MHz. This agrees with 
the result of Huang and Hughes [I141 and is also close to  the result obtained by Lakdawala and 
Mohr [117]. 

This is an excellent example of good physics where a rather complicated problem has been 
reduced by Dr. Drachman to  a relatively simple problem by realizing tha t  the muon is so close 
to  the nucleus that  it acts as  a hydrogenic system and the rest of the problem is a,menable to  an 
adiabatic perturbation treatment, where a,lready some availa,ble results could be used gainfully t o  
obtain fairly accurate results. Understanding the intricacies of a problem and solving it in a simple 
way has been the hallmark of Dr. Drachman's research work throughout. 

I wish to  thank Keith Feggans for retrieving figures, given in this article, fro111 various published 
papers. 
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