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Introduction to the contributions of A. Temkin and R. J. Drachman to atomic
physics

A. K. Bhatia
NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771

Dr. Aaron Temkin and Dr. Richard J. Drachman have made significant contributions in the
field of atomic physics during nearly the last fifty years. It is not possible to enumerate all of their
contributions but I will describe a few, first those of Temkin and then of Drachman. Some of the
topics of their research are discussed in the articles that follow this one.

Method of Polarized Orbitals

Their work, as is the work of most atomic theorists, is concerned with solving the Schrodinger
equation accurately for wave function in cases where there is no exact analytical solution. In
particular, Temkin is associated with electron scattering from atoms (and ions). When he started
there already were a number of methods to study the scattering of electrons from atoms. The
simplest approximation for a hydrogenic target is the static approximation

\I'(rly 1‘2) = u(rl)q)target(rZ)» (].)

where u(ry) is the scattering function. This gives rise, in a partial wave expansion, to differential
equations which can be solved easily. An important improvement on this approximation is the
exchange approximation of Morse and Allis [1] in which the target is assumed to remain in its
original state in the presence of the incident electron but the ansatz for the wave function is
explicitly (anti)symmetrized

‘Il(rla 1'2) = u(rl)q)target(r2) * u(rZ)q)ta.rget(rl), (2)

where the upper sign refers to singlet scattering and the lower sign to the triplet scattering. This
gives rise to an integro-differential equation which will be given later.

But in reality, the target does not stay in its original state and various forms of polarization
potentials have been added to the equation for u(r) to take into account this distortion. The
method of polarized orbitals proposed by Temkin [2] was the first method to include the effect of
polarization in the ansatz for the total wave function. It has been used for scattering of slowly
moving electrons from various targets so that the target is distorted adiabatically. This means the
target is assumed to follow the instantaneous motion of the scattered electron. The basic problem
is how to take into account this distortion mathematically. I will discuss it for a simple target like
the hydrogen atom in its ground state (1s), following Temkin [3]. The Hamiltonian H (in Ry units)
for two electrons in the field of the nucleus of charge Z is given by

H=-Vi-vj-22_24 =, 3)
which for an incoming electron 1 can be written as

H = Ho+ V(ry,r2), (4)
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where Hj also contains V?

H0=—V§—V2—E————rl , ()
2 2
V(Pl,r2):—r—1+r—127 (6)

and ry3 = |r; — ry|. The first order perturbed wave function of the electron 2 due to the potential
V can be written as

Z’: < nl0|V (ry,1,]100 >

Ppol(r1,T2) = P100(rz) — p— Prio(r2), (™)
n,l n
where integration over continuum states is implied and ¢, = —Z%n~?% is the energy of the nth
hydrogenic state ®,;, which is given by
_ unl(r2)
q)nlm (1‘2) - r—2Y'lm (92) (8)

The perturbing potential V' for ry > ry is given by

l ,
r

V(ry,re) =2 Z _T,l-|2-1 P (cosbs), 9)
I=1"1

where we have fixed the z-axis in the direction of r; and have used the well-known expansion of
1/r12. Noting that the [ = 0 term drops out of V(ry, r2), we can write the matrix in Eq. (7) as

1 1 r1 ! ! ! 1
< 0]V (r1, £)[100 > Yio(@%) = [ /0 it (r) it uso () dr
1
0 ’ 1 ! ’ 2
+rl/ Ui (1y) 5—=Uu10(ry)dr Pi(cosbfs). 10
1 " ( 2) 7'2l+1 10( 2) 2] (47()51 ( ) ( )

The second integral vanishes in the limit r; — oo and the above matrix for large r; can be
approximated by

1 1 0 i / ! i 2
< nl0|V (ry, ry)|100 > Yio(S22) = |:l_+_1_/ unl(r2)r2lu10(r2)dr2} —— Py(cosby), (11)
r /o (4m)2

which can be written as

, 1 / 2
< nl0|V (ry,15)]100 > Yio(Q2) = [——— < nl|rd|10 >] ( Pi(cosbz). (12)

T‘ll+1 7{)%

Now Eq. (7) can be written as
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Uool(r1, ) & ®(ry, 1) = P10 —

1 I —
ot o@n)zr g e-a 2

To sum this series, use the fact that the bound states satisfy

[ vtﬁ Uni(r3) = n“"’( )Pl(cosl92)
T2 r2

and therefore

27 alr
[‘V% - — = 61] Uni(rz) = (€n — 61)u 1 2)P[(cosc92),
T2 )

which implies (letting A® = @199 — ®(ry,1r2))

8

—2 i < nl|r'2’|10 > unl(r2) PI(C()802)
r’l nelt ] (47r)2l
(o]

n=lt1 ra(4m)2

Use now completeness

o0
Z |unl(r2) >< unl(r2)| = 5(7-2 — 7-2),
n=I+1

for any [, so that A® satisfies the differential equation

27 SN
[—V% T 61] AP = 22 —H_2—1<I>100(7“2)Pl(00502),
I=1"1

where we have used Eq. (8) for ®199. Expanding

X Urs—1(r2) /T2 Pi(cosfz)
A® = E EST T
I=1 ™ (4Zm)2

reduces Eq. (18) to the set of uncoupled equations for each {

d? 2Z l(l+1
( - ) _ 61] Uiss1(r2) = 2V Zrhus(rg),

dr? 3

where u14(r) = 2v/Z3re~2". Eq. (20) can be solved analytically

; P2l
Upssi(ry) =272 | 22— 4 2 ).

2. 2 Pycoshy) i < l[r 10 > up(ro)

2 &= P, 7}
E —1— E [uni(re) >< nllr |10 > —[((E—?l—).
rit

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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The method of polarized orbitals uses only the dipole part (I = 1) of A® [4] so that the polarized
part of the target is

orol — ®100 — €(r1,72) Urssp(re) Pr(cosbz)
Pl =

22
i 2 (4Z7r)% ’ 22)
where 6;, is the angle between r; and rs and Temkin has introduced the step function
E(7‘177'2) =1 rmn>r
= 0, r<rs. (23)

which ensures that polarization takes place only when the scattered electron is outside the orbital
electron. The second term in Eq. (22) is called ®°!(r,r;) and gives the distortion of the orbit of
hydrogen atom in its ground state (1s). This then solves the problem of the inclusion of polarization
in the wave function, for substituting Eq. (22) into Eq. (13) one gets the explicit form of the
polarized orbital wave function

U(ry, 1) = u(ry) [‘I’wo(l‘z) + @ (xy, 1'2)] + u(r2) [‘I>100(I'1) + &P (ry, 1'1)] ; (24)
where
u(r) = "Wy @) (25)

The scattering equation is obtained from
| Yio(@)@3(rs) (H — BYW(r,v2)d1dr; = 0, (26)

E=-7%4k% (27)

where H is the Hamiltonian, E is the total energy, k? is the energy of the incident electron and
P90 = . We will derive the scattering equation for any Z, the charge of the nucleus. If the
variational principle were used it would require that we operate on the left by (® + ®°°). This
would give us higher order terms which are not in accord with the first-order perturbation theory.
(It would also give quadratic terms involving ®°' which would be singular if the step function
€(ry,72) were retained in its definition.) Therefore, Temkin has multiplied on the left by ®, only
in Eq. (26). (In retrospect, the main disadvantage of this ansatz is the loss of any bound on the
calculated phase shifts from this equation.) The resulting integro-differential equation for w;(r) [5],
including the p-wave (I=1) correction of Sloan [6] is, letting ri=r,

e (1+1) 00
[%2-+ k?*  tug(r) — ) Jui(r) £ 42327 [(k? + Z2)r510/ drae=Zr2rquy(rq)
0

2 —l/r —Zry I+l 41 [T, €
dr- r2 plt+ + / d
TR 1(r : roe rouy(ry) + 1 i r9 |

Zry
7 U

1(r2))]
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_ B(Zr) w(r)
(ZT‘)“
z Lo 72 12y,3 2 p2y,.2y [ 7
T 4Ze T[§611(—§Z(Z RN 4 (22— k) )/ dry——u(r2)
. 2
Zr3 l 4 [ 4Tz
* 2(_+’"2)(<‘27-T(2T+T’"’ 1/ dry” g u(ro)
HRCERERY S A (r2))]
du
&, —2Zrs 2722 Lo _(2 J
N +22r ur) - (2 4 r) 2y, (28)
where the static potential is given by
(Z — 1) 1 —27Zr
vse(r) =2 . +2(Z+ ;)e , (29)
and the direct polarization potential is given by
B(Zr)/(Zr)* = a/r* fort— o, (30)
where
9 2 27 27 27
ﬂ(z):z 3 e (2® + z + 923 +5 2+—— +Z) (31)

Note that the polarized orbital ansatz Eq. (24) provides a natural cut off for the polarization
potential 3(Zr)/r* — 0 as r — 0 and gives the correct polarizability as r — oo, where a =
9/22* is the dipole polarizability of the target with nuclear charge Z. We get the equation for the
exchange approximation [1] by putting the right hand side equal to 0 and we get exchange adiabatic

approximation by retaining the first term on the right hand side which is the direct polarization
potential.

Eq. (28) can be solved for the function u;(r) with the phase shifts 7; being obtained from the
values of the function at large distance:

lim o0t (r) o sin (kr — 1% + 1) (32)

The phase shifts for electron-hydrogen scattering for S-wave and P-wave are given in Table I for
various k in three different methods: exchange approximation, polarized orbital method and Kohn
variation principle [7,8]. The effect of the polarization is dominated by the direct -a/r* potential
and always has the effect of increasing the phase shifts relative to the exchange approximation. The
effect of exchange polarization terms is smaller and can be either positive or negative depending on
the spin. The 1S and 38 results decrease with increasing k while 3P results increase with increasing
k. The effect of the exchange polarization terms in the ! P case leads to three changes in sign of
phase shift as k increases, indicating that the method does include the essential physics. This is
the first method to give three changes of sign of the ! P phase shifts correctly (cf. Fig. 6-1-5 in [9]).
We will return to the question of bounds in another section.



Symposium on Atomic & Molecular Physics

TABLE I. e-H phase shifts of 1.9, S, 1P, and 3P for various k in different approximations.

Partial Wave k  Exch. PO*  KVP? Exch. PO* KVP?
Singlet Triplet

0° 8.10 5.9 5.965 2.35 1.9  1.7686

0.1 2396  2.583  2.553 2.907 2945  2.939

0.2 1.870 2.144  2.0673 2679 2732 27171

0.3 1508 1.750 1.6964 2461 2519  2.4996

S 04 1.239 1469 1.4146 2.257  2.320 2.2938

0.5 1.031 1.251  1.202 2.070  2.133  2.1046

0.7¢  0.7415 0.947  0.930 1.748  1.815 1.7797

0.8¢ 0.6513  0.854 0.886 1.617 1.682  1.643

0.1 -0.0012 0.0067 0.007 0.00220 0.0109 0.0114
0.2 -0.0084 0.0171 0.0147 0.01666 0.0486 0.0450
0.3 -0.0240 0.0210 0.0170 0.05192 0.1151 0.1063
P 0.4 -0.0461 0.0163 0.0100 0.10497 0.2005 0.1872
0.5 -0.0703 0.0064 -0.0007 0.16935 0.2867 0.2705
0.6 -0.0919 -0.0039 -0.009 0.23183 0.3574 0.3412
0.7 -0.1077 -0.0100 -0.013 0.28329 0.4063 0.3927
0.8 -0.1154 -0.0095 -0.004°¢ 0.32044 0.4351 0.427
0.9 -0.1146 -0.0015 0.34436 0.4487
1.0 -0.1058 0.0135 0.35791 0.4520

@ S-wave phase shifts obtained by Temkin and Lamkin [5] using the method of polarized orbital.
The P-wave results are from Sloan [6].

b Kohn variational results for S-wave are from Schwartz [7] and P-wave results are from Armstead
(8].

¢ The k=0 entries are scattering lengths [5].

4The polarized orbital results are from [9].

~ “Beyond k=0.8 the phase shift becomes positive and in fact goes through a (! P) resonance at
k=0.846

On the other hand, scattering length @, which is defined as

limg_,o kcotn = —1/a, (33)

does have an upper bound, in the variational calculation [7] @exact < @calculated- The scattering
lengths in various approximations are given in Table I. For the triplet state, Rosenberg et al. [10]
had obtained a; < 1.91 for the electron-hydrogen scattering. They used an s-wave function having
a correct asymptotic form at infinity but did not have a slowly vanishing part (}2), as subsequently
pointed out by Temkin [11]. Furthermore, Temkin [11] showed that the expression for the scattering
length calculated at a finite distance R should be corrected

1 a 1a?
a:a(R)—a(E—ﬁ—l—gﬁ), (34)

where « is the true scattering length, and « the polarizabilty of the target. With this modification
Temkin obtained an improved value
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ay = 1.74, (35)

compared to the previous value of 1.91 [5] given in the Table I. After the publication of Temkin’s
formula (34) and his numerical result in Eq. (35), Schwartz [7] did use such a slowly vanishing part
1/r? in his trial wave function, obtaining precision results:

as = 5.965 £ 0.0003 and a; = 1.7686 £ 0.0002, (36)

for the singlet (s) and triplet (¢) scattering lengths.

Symmetric Euler-Angle Decomposition

In most of the scattering and eigenvalue problems, it is necessary to write the required wave
function in terms of a product of two components: radial and angular. Only then the Ilamiltonian
operating on such a wave function gives equations which depend on the internal coordinates only,
with terms arising from the operation of the angular part contained in the Hamiltonian. For
one particle scattering from a fixed center, (or the relative motion of two particles) the Laplacian
operator is of the form

; 2
19,0, 1, 19,0 1 9

2 __ - i (- -
Vo= e 2 Ge o™ ae t snts ag?)

(37)
where the radial and angular parts can be separated and the second term is propotional to the square

of the angular momentum operator. When acting on a wave function which is an eigenfunction of
angular momentum [, the Laplacian simplifies to

b 10920, 104D
v _rzar(r Or) r2

; (38)

thus converting a 3-dimensional partial differential equation into an ordinary differential equation.

In the case of two particles in an external force field, e.g., the field of the fixed nucleus (i.e.,
of infinite mass), the decomposition of the Laplacians is not as simple as in the case of relative
motion of two particles. The wave function describing these particles is a function of the internal
(i.e., meaning coordinates depending on the position of the nucleus and on two electrons in a plane)
coordinates (r1,72,612) or (r1,72,712) and the angular component which is a function of three Euler
angles which describe the orientation of the instantaneous plane formed by the two particles and the
nucleus in space. The Euler angles are not unique. Breit [12] used the Euler angles which Ilylleraas
[13] introduced. These are two spherical angles of one the particles and the angle between the
r1 — z plane and r; — ry plane, the internal coordinates being (ry,r2,6;2). Breit introduced these
angles for P-wave functions and - because they are not symmetrically defined with respect to the
two electrons - it is not easy to generalize this decomposition for all angular momenta. Temkin
introduced a different set of symmetric Euler angles which allowed the separation of the radial part
and angular part for any angular momentum /. The analysis of this problem was carried out by
Bhatia and Temkin [14]. Fig. 1 contains a perspective drawing of the Euler angles which define
the particle plane with respect to the space fixed z, y, and z axes.



Symposium on Atomic & Molecular Physics

Figure 1: Perspective drawing of the Euler angles the unit vector of the problem.

The rotated axes ¢, y', z with respect to the space fixed axes z, y, z are defined by

N f'l X f'2
|1 X Fol
. N N
Having defined z, define &
s N
N z z
2= 077"
|2 x 2]
. N N N
Having defined 2 and &, define g
A N N
g=2xz

The Euler angles are then

O = angle between z and 2',
® = angle between % and X,

¥ = angle between % and (t2 — 11).

The operation of parity (r; — —r; and ry — —r3) only involves the Euler angles

(40)

(42)

(43)

(44)

(45)
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Exchange corresponds to the transformation r; < ry and is given by r; < ro plus the following
transformation of the Euler angles

®O—-r1-0,
P74+,
¥ — 27— W, (46)

The eigenfunctions of total angular momentum are purely functions of the Euler angles. Temkin
has coined the name ”rotational harmonics” for these eigenfunctions (they are usually called D
functions). The angular momentum properties of these functions are

M2DMF = hi(l+ 1)DF, (47)
and
M. D" = hmD]V*. (48)
They transform under parity as
PO (0,®,0) = D/* (0,8, 7+ ¥) = (-1)*D["F(0, @, V), (49)
and exchange as
£12D7F(0,®,0) = D" (r — ©,7 + @, 21 — ¥) = (-1)'D]" 75 (0,9, ). (50)

We see that whereas the D functions are eigenfunctions of parity, that they actually change
indices under £;,. But operation of exchange commutes with the total Hamiltonian, therefore it
must be possible to construct eigenfunctions of exchange: they are linear combinations of the above
D functions. For m=0 they are

DY 4+ (=1)*D) "

ot = , 51
T VA bon(VE - 1) (51)
and
0,k 0,—k
W _1 R'D ’
py- = 2D (52)
2

Under exchange these linear combinations have the property

£2DfE = £(-1)H DfE. (53)

Thus they are indeed eigenfunctions of exchange. Having constructed eigenfunctions (of the angular
part) of exchange, one can construct a total wave function which has the correct properties under
operations of parity and full exchange
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"

\IIIO(rlv 1'2) = Z[f[n-l-(rl, T2, 012)Df+ (@’ Qv \II) + fln_(rlv 2,y OIZ)DI - (@, (I), \Il)]’ (54)

K

where the double prime on the summation indicates that the sum goes over every second value of
k. The operation under exchange on Eq. (54) gives,

"

512‘1’[0(1'1,1'2) = \Ill()(r27rl) = Z[fln-i- (r2,r17012)(—1)l+K’D7+(®7@,‘I’)

K

+ T (r 1, 012) (1)HIDET (0,2, 0)). (55)
If therefore
ff+(r2, r1,012) = :I:(—l)l+"fl"+ (r1, ro, 612), (56)
and
Ji(ra,ri,012) = i(“l)l+ﬂ+1ff—(7’17 r2,612), (57)
then under complete exchange
E12Wio(r1, ) = Yio(re,ry) = £V (ry, ra), (58)

i.e., the total wave function will be symmetric (singlet) or antisymmetric (triplet). Under parity
we see from Eq. (54) that

PWo(ry,ry) = Wio(—ry, —rg) = (—1) "Wy (ry,r2), (59)

so that parity is determined by evenness or oddness of x in Eq. (54).

The kinetic energy part is given by

1 9? 1 9? 1, 1 9 9 19
2 2 _ 1 0% 10" 2= 9 Gne, L
VitVs i 8rfr1+ o 8r%r2 * ri “sinf; 391'Sln + 96, Jrsfifl291 3¢%)
1, 1 8 d 1 0?
1l 9 el L 1 9 60
rg(sineg 6028”1 %96, + sin?f, 8¢%) (60)

Historically, this was the extent of the development when I came to work with Dr. Temkin
in 1963. I worked for almost a year to convert the kinetic energy into Euler angles (plus internal
coordinates) form. The following is the result

1 9? 1 0? 1 1 1 9 i} F, Iy
Viivie =2 pq— 0 (ot inf oL |
1+ Va ry Or? Tt re Or3 ra+ (r% + r2 (sinen 80128m 126012) t r? + r3 (61)

10
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2

I PP BN 1 )
P = %0, [sin® (¥ + 2012)8@2 + cos? (¥ + 012)(:0‘5@)0@

1 92 cot® 0
6 007 +sin(2V +012) 00D

1 02 0?
57003 + sin(2¥ + 012)C0t®8‘1’86

cot® 92 3 0? A 9? B _(2_
500 0000~ ovae, T Mawr T Bigy

1
+ cos? (‘I’ + 5012)

—sin(2W¥ 4+ 012)

— 2cos?(¥ + 5012)

1
A1 =+ (0?0 /sin613)cos* (¥ + 2613) (63)

By = (cosW/sin20y2)sin(V + B12) — [sin (2 + f12) /sin?012sin?0)] — %cot(%Olg). (64)

The expressions for F,, A;, and B, can be obtained by replacing 6,2 by -1 in the above expressions
for Fl, Al, and Bl.

With these results the Schrodinger equation

HVy, = EVy, (65)

for any m, can be reduced to radial equations which are independent of m:

oy + D=V - Gyt UG 4 - S 5
+ %Bf”ﬁ"“” %(1 o — 6ln+62n)Blnf(K' 2)+]
b - plenlgeotha+ g - tae
+ 4]:1n912 fErD 4?1%@ 1= 805 — 81x — 82) Bie f" 7] = 0 (66)
and
Lo+ 2;;6 (E=VlE - (ri% " _‘1%_)[{[(12;39:;2 - %2 + %ﬁ%’([ + 101} f
:;:10012 (1= 80) BFF2fH97 4 %(1 — box — 81 — 020) Bu S
+ (ri% - rl%)[ (;cotom + d%)f*“r 14(;:1“0? Siaft
- %Bﬁzﬁ(nﬂ) + ﬁ(l — Sk — 515 +62x B [0 = 0 (67)

11
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where Lg,, is the S-wave part of the kinetic energy, and is the only term which survives in the
description of S-waves

1 0? 1 02 1 1 1 a . d
Poe = o o G e a0, s o

and

[((—k+1)(I-k+2)((+r)(I+r-1)]2

B = [+ on(vZ - 1)

(69)

B = Biu[1+ 62.(vV2 - 1)]% (70)

The above equations can be written in terms of (ry,rs,712) [14]. These equations have been
generalized to the case when the nucleus is of finite mass [15], and also to the case when all the
particles are of unequal masses [15].

The equation given by Breit [12] for P-wave can be obtained from our equations by noting the
relation between his angles and our Euler angles (cf. Appendix of our paper [14]).

I believe this analysis is one of the major mathematical achievements of Dr. Temkin and I am
happy to have been a part of it. And this laid the mathematical foundation of much of our future
research, also with Dr. Drachman.

Optical Potential Approach for Scattering

We follow here the Feshbach projection operator formalism [16] to obtain equations for the
scattering function giving phase shifts in the elastic region. The phase shifts obtained have property
of having a rigorous lower bounds.

In this formalism, in order to project out the ground state we use symmetric projection operators
P and @, which for the hydrogenic (i.e., one-electron) target can be written expicitly [17]

P=P+ P - PP, (71)

and

Q=1-P, (72)

which implies that P+Q=1 and where the spatial projectors are such that for any arbitrary function
@ (ry,r2)

P& (r1,12) = do(r1) / Go(r}) @1 (), r2)dr). (73)

Note, P, and P, commute with each other and are each idempotent, hence the complete P and @Q
operators are idempotent (P?=P; Q*=Q) and orthogonal (PQ=0). In the lim r — oo,
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P¥;, — sin(kr — Lg— + L), (74)

therefore P¥y, represents a scattering function, and

Q¥ — 0. (75)

Effectively QW describes the short range part of the total wave function of the system ¥r. The

Schrodinger equation is reduced, via an analysis which by now is well known [16], to an equation
for P¥y.

PHQ >< QHP
E-QHQ

The middle term in Eq. (76) is the formal, but well defined expression for the optical potential V,,.

[PHP +

— EJPU, =0 (76)

The total spatial function for the e-H and e-Het for the Lth partial wave is written as

Wy (r1,12) = %Ymmm(rz) + (1 2) +Bp(re,T2), (77)

and

PU; =¥, — &, (78)

where the target function is given by

do(rz) = \/%exp(—Zrz). (79)

The upper and lower signs correspond to singlet and triplet states, respectively. The first two
terms containing uy, explicitly give rise to the exchange approximation [1] and the function ®f, is
the correlation function. For arbitrary L this function is most efficiently written in terms of the
symmetric Euler angles [14]: ®;, has exactly the form of ¥y, in Eq. (54), whereas here the open
channel part is added explicitly in Eq. (77).

The f’s we here take as functions of ry, ry, and ry3. The ur(ry) of the scattered electron in Eq.

(77) is determined by projecting on < Y70(R21)do(r2):

PHQ ><QHP
E-QHQ

Carrying out the integration leads to an integro-differential equation for the scattering function
ur(ry) and letting ri=r,

/ [YLO(QI)qsO(rz)(PHP + E)P\IIL] dQydry = 0, (80)

d*> L(L+1
|:d7—2 - —‘_( r;l_ ) + Vst (r) £ Vez — Vop + k2] ur, =0, (81)

where vy (r) is the direct potential [Eq. (29)] and V., is the non-local exchange potential of the
“exchange approximation” [1] (cf. Eq. (28)). It should be noted that the many-body problem has

13
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been reduced to one-body problem and the Eq. (81) can be solved for uy, easily. The integral of
the optical potential acting on wuy,(r) is:

1

Vopur =r <YLO¢OPHQE__QT{5

QHP\I!L> . (82)

The optical potental is expanded in terms of the eigenspectrum of the QH(Q problem:

5 [< P;QHQPL >] o (83)

<P1QPL >

This leads to eigenfunctions <I>(Ls) and eigenvalues &. By inserting a complete set of the functions
obtained from the above equation into Eq. (82), V,pur can be written as

N < YLo(fl)fﬁo(rz)%Q‘Pf) >< Q@f)%P\PL >

Vopur(ri) =r1 ¢

(84)

s

TABLE II. e-H phase shifts of 1.5, S, 1 P, and ®P states for various k obtained from the method
of polarized orbitals and from the optical potenial approach.

Partial Wave = k& PO* OoP® PO*¢ opP?
Singlet Triplet
0.1 2.583 2.55358 2.945  2.93853
0.2 2144 2.06678 2.732  2.71741
0.3  1.750 1.69816 2.519  2.49975
S 0.4 1.469 1.41540 2.320 2.29408
0.5 1.251 1.20094 2.133  2.10454
0.6 1.04083 1.93272
0.7¢  0.947 0.93111 1.815  1.77950
0.8° 0.854 0.88718 1.682  1.64379

0.1 0.0067  0.0063083 0.0109 0.010382

0.2 0.0171 0.014988 0.0486 0.045345
0.3  0.0210 0.016613 0.1151  0.10679
P 0.4 0.0163 0.099980 0.2005 0.18730

0.5 0.0064 -0.00084017 0.2867  0.27058
0.6 -0.0039 -0.010359 0.3574  0.34128
0.7 -0.0100 -0.013483 0.4063  0.39257
0.8 -0.0095 -0.0048524 0.4351  0.42730

¢ S-wave phase shifts obtained by Temkin and Lamkin [5] using the method of polarized orbital.
The P-wave results are from Sloan [6].

> Phase shifts obtained from the optical potential approach. S-wave results are from Ref. [19] and
P-wave results are from Ref. [20].

“The polarized orbital results are from [9].
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For S-wave (i.e., L=0), Dr=constant and the correlation function is only a function of the radial
coordinates. The formalism up to this point had already been developed. The innovation which
Dr. Temkin and I introduced was the use of a correlated function of Hylleraas form

Ny
Prg=e 1702 Z Clmnriryrly + (1= 2). (85)

lmn

In particular the projection of P; on &, requires a nontrivial analytical integration [18]. Here the
sum includes all triples such that [+m +n=w and w= 10,1, 2, ...... , 7,8,9. The number of terms for
each w depends on spin and whether y=4 or not. For P-wave (i.e., L=1) the correlation functions
fgi are also taken of the Hylleraas form.

To summarize the calculations, the @ HQ problem is solved (for a given L, v and § and N,).
The result is a set of eigenvalues & (s=1,2,...... N,) and associated eigenfunctions ®G). From
them the optical potential, Eq. (82) is constructed, and the integro-differential Eq. (81) is solved
noniteratively. The solution is unique (up to an arbitrary normalization) with asymptotic form

2 L (2ke) + arglr(1 ~ E Dy 4. (36)

Jim g, (r) o sin(kr — L% +

Electron-hydrogen phase shifts (i.e., Z=1) are given in Table II. For 1S-wave scattering, the
optical potential (OP) phase shifts converged to the accuracy shown when the maximum number
of terms in the wave function was 95 and in 3S-wave the convergence was obtained when the
number of terms was 84. The P-wave phase shifts converge slowly compared to the S-wave results.
Therefore, the computation was carried up to 220 terms. The convergence [19, 20] of results suggest
that they are accurate up to five significant figures after the decimal and to that accuracy they
are rigorous lower bounds, provided the total energy of the system is less than those of all the
resonance positions [21] . Phase shifts are compared in Table II to the polarized orbital results
of Temkin and Lamkin [5] for S-wave, for P-wave with those of Sloan [6], including the exchange
polarization terms. The polarized orbital method does not provide any bound on the phase shifts
but they are seen to contain the dominant part of the correlation enhancement over the exchange
approximation. In particular the polarized orbital ! P results show the correct undulations (as a
function of k) as the precision results.

A similar calculation has been carried out for the scattering of electrons from helium ions [22,23].
The non-Coulomb part of the phase shifts as a function of k are given in Tables III for 1S, 35, 1P
and 3P. In this case because the Coulomb field extends very far, Eq. (81) has to be integrated to
large distance especially for small values of k.

In the singlet P case, the exchange approximation results are negative and there is a lot of
cancellation with the contributions to the phase shifts from the optical potential, unlike in the
triplet case where the exchange approximation results are always positive.
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TABLE III. e-He* phase shifts of 1.9, 35, ! P, and 3P states for various k obtained from the
method of polarized orbitals and from the optical potenial approach.

Partial Wave &k Exch PO° OoP? Exch. PO¢ oP®
Singlet Triplet
0.4 0.4301  0.42601 0.9235 0.91300
0.5 0.41964 0.90275
0.6 0.4153  0.41278 0.9015 0.89050
S 0.7 0.34871 0.40561 0.87640
0.8 0.33949 0.3986  0.39857 0.85195 0.8723 0.86069
0.9 0.33100 0.39202 0.83444 0.84356
1.0 0.32302 0.3823  0.38634 0.81645 0.8371 0.82531
1.1 0.31577 0.38187 0.79764 0.80625
1.2 0.30940 0.3685  0.37899 0.77821 0.7984 0.78666
1.3 0.30400 0.37832 0.75851 0.76684
1.4 0.29957  0.3579  0.38560 0.73872 0.7591 0.74697
0.1 -0.070322 -0.038311 0.17705 0.21516
0.2 -0.074161 -0.0404 -0.038958 0.17913 0.2232 0.21681
0.3 -0.075219 -0.039911 0.18238 0.21944
P 0.4 -0.076473 -0.0428 -0.040971 0.18653 0.2290 0.22283
0.5 -0.077742 -0.041951 0.19123 0.22661
0.6 -0.078820 -0.0450 -0.042633 0.19615 0.2364 0.23048
0.7 -0.079501 -0.042834 0.20096 0.23415
0.8 -0.079626 -0.0457 -0.042383 0.20540 0.2429 0.23744
0.9 -0.079078 -0.041158 0.20927 0.24008
1.0 -0.077762 -0.0436 -0.039036 0.21245 0.2469 0.24202
1.1 -0.075639 -0.035948 0.21489 0.24322
1.2 -0.072707 -0.0384 -0.031838 0.21659 0.2479 0.24378
1.3 -0.068996 -0.026592 0.21757 0.24370

1.4 -0.064574 -0.0301 -0.019982 0.21790 0.2317 0.24320

¢S-wave and P-wave phase shifts obtained by Sloan [6] using the method of polarized orbital.
b Phase shifts obtained from the optical potential approach: S-wave results are from Ref. [22] and
P-wave results are from Ref. [23].

Resonances in Two-Electron Systems

In the above section, projection operators P and () for one-electron targets were given. These
have been used to calculate resonance parameters for a number of 135, 1:3P, and 13D states in H™
and He. Unlike other methods where one has to hunt for resonance positions, they are obtained by
optimizing the functional < PQHQ® >/< ®Q® > by using the Rayleigh-Ritz variation principle.
The positions obtained do not include the shift due to their being embedded in the continuum [17]
and this shift is calculated separately using various approximations for the continuum functions.
For illustration, only two sets of results (positions and widths) are given in Table IV for 1S in H~
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Table IV. Some results for resonance states in H~ and He

State Position(eV) Width(eV) Position(eV) Width(eV)
IS(H-) 9.55735+0.00005% 0.000471740.00002  9.558+0.010°

LP(He)  60.133+0.015° 0.038+0.004 60.151+0.010¢  0.0380.002¢

*Resonance position is with respect to the ground state of H atom [24]
"Experimental result are from Sanche and Burrow [27].

“Resonance position is with respect to the ground state of He atom [25].
dExperimental results are from Morgan and Ederer [28].

[24] and ! P states in He [25]. This odd-parity resonance is the lowest one in the series of resonances
observed in vacuum ultraviolet absorption by Madden and Codling [26].

We see that results have been calculated with high precision and they agree with the experimental
results. The line shape parameter ¢=-2.801+0.025 which we have precisely defined and calculated

by further manipulation of the Feshbach theory [25] also agrees very well with the experimental
result -2.5540.16 [28].

Projection Operators for More Than Two-electron Systems

For targets with more than one electron, it is difficult to construct projection operators which
are idempotent, i.e., P2=P and Q?=Q. One of the difficulties is that target wave functions for
more than one-electron targets cannot be written down exactly. But we can construct them in such
a way that the matrix elements < ®,,Q%®, > =< ®,,Q®,, > for any arbitrary antisymmetric wave
functions ®,, and ®,. One of our motivations was to study 25 resonance below the 35 (elastic
region) of the helium atom.

In order to include all coordinates explicitly, we assume LS (i.e, Russel-Saunders) coupling
and introduce channel functions in such a way that the ground state ¢ is coupled to the angular
momentum /; and spin % of partial wave of the incoming electron

: 1 : )
Yo(rl) = Z(Loli]\/lomilLM)(SO_éMsomSIS]VIS)¢0(x(1))nimi (@)X 1, (9)- (87)

In Eq. (87) () (both space and spin) indicates the absence of the ith coordinates from the total
(N+1) coordinates in the electron-target system. The z(9) signifies

2@ = (Zit1y Tig2y oo EN41, T1,y T2, oo Timp)- (88)

Eq. (88) ifnplies that the target has N electrons and () in Eq. (87) implies the absence of r;

r) = (Q, si;2(0). (89)

Let p; represent a cyclic permutation, so that
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(—1)P¢ = parity of the permutation which carries [1,2,..N + 1] into [7,i+ 1, .2 — 1]. (90)

Specifically (—1)Pi=1 for (N +1)=odd, (=1)Pi=(~1)""" for (N + 1)=even, and (—1)P*=1 for all N.
Following Feshbach [16], we can define the P¥; part of the total wave function as

N+1 _
PY = Y (=D (ry)vo(r?). (91)
=1
Here u;(r;) are scattering functions which have not been specified but have the asymptotic property

for r; —»

sin(kr; — 7 /2 4+ m)

limy L oou(ri) = kn, ) (92)
which implies that both P¥ and ¥ have the same asymptotic form
si i — 1 .
limg, oo PU = limg, oo = (—1)p S0KE ZIT/2 M) ) (93)

kr;

To derive a specific form of P (and @) we also require that Q¥ have no ground state in it for
any coordinate of the scattered r; (not only as r; — o)

< Yo(r) (1 — P)¥ >=0, (94)

which for the purpose of the derivation can be written

< Po(rN W >=< 1po(r)PT > . (95)

Define the left hand side as

w(ri) = (1P < o(r)¥ > . (96)

Substituting Eq. (91) into Eq. (95), we can express Eq. (96) as

w(ri) = u(ry) — /0 K (rilry)u(ry) r2dr; (97)

where the kernel K is given by

K(rilrj) = (=1)"*HN < go(r)go(r?) > 0 - (98)

Here the integration is over r(¥), which denotes all coordinates except r; and r; (i # j). The kernel
K can be expressed in terms of discrete and orthonormal set of eigenfunctions v,

vo,(rl) = )‘a /OOO K(rllrg)va(rz)r%drz. (99)
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Some reflection will show that K (ry|re) can be written as

K(r1]rs) = i M\M. (100)

p=1 A

then substituting Eq. (100) in Eq. (99) the latter will be an identity. Using Eq. (100) in Eq. (97)
allows u(r;) to be written

u(r) = Y valr) < vau > +w(r) + Y 3’9-(”—;51{’3"-3 (101)
Aa=1 Ap#l B8~

Here vg is the eigenfunction associated with Ag and v, with A,=1. It can be verified that the first

term in Eq. (101) does not contribute to the projection < ¥oP¥ > (cf. Refs. [29,30]). Thus we
can write

< ) > :
< To(rM) PP >= <¢3”Z 1)P [w(r; +Z”ﬂ ”“” o(r®) > ) . (102)

=1

Substituting for w(r;) from Eq. (97) and rearranging, we get

N+1 . . ! L
<Wo(rO)PW >=< Y] Y [o(r >< po(r9) + 3T UL 2y 5 (103)
=1 o

Aa

By comparing the left- and right-sides of Eq. (103), The expression for P can be extracted

N+1 (®) (1)
P= Y [o(r® >< go(r?) +Z rddolr™?) > vatalr Ty (104)
=1 «
which implies
N+1
Q=1-Y [h>< ¢O+ZM]. (105)

=1

These operators are symmetric in all (IV + 1)-particle coordinates and they contain the dependence
on space and spin of all coordinates explicitly. The main advantage of these expressions for P
and @, as compared to the heuristic form given by Feshbach, are they are complete and explicit.

In addition they have been extended to scattering (including resonances) occuring in the inelastic
domain (cf. Appendix B of Ref. [29]).

It has been shown in Ref. [30] that even though the above operators are not idempotent
(P? # P and Q? # Q) as operator identities that the matrix elements are equivalent < ®; P2®; >=
< ®;P®; > and < 9,Q?®; >= < ®;Q®P; > for any arbitrary antisymmetric functions ®; and ;.

When the second term in Eq. (104) and the third term in Eq. (105) are dropped, we get
the quasi-projection operators P and (). These operators were employed by Temkin et al. [31]
to calculate the resonance parameters of the He™ [1s(2s)?] 25 resonance (first observed by Schulz
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Figure 2: Metastable helium excitation from Schultz and Fox [35].

[32]), using open shell and closed shell target wave functions ¢o and an angle-independent trial wave
function as well as a configuration-interaction wave function containing up to 40 configurations.
They obtained E,.s(25)=19.363 eV plus a width ['=0.014 eV. The difference between the results
obtained by using the two different wave functions ¢g is of the order of 0.02 eV. The resonance
position agrees with the experimental result 19.314+0.03 eV of Kuyatt et al. [33]. Calculations have
also been carried out by Berk et al. [34] using target wave functions going up to a 10 term Hylleraas
type wave functions and the full projection operators P and @Q given in Eqs. (104) and (105). Again
configuration interaction type wave functions containing up to 40 terms were employed obtaining
resonance position of (1s2s2)2S He~ which is ~0.013 eV above the experimental position at 19.37
eV given by Schulz and Fox [35]. (That difference is presumably due to the uncalculated shift,
which also occurs in the Feshbach theory.)

Now we come to 2P wide resonance in He™ above the 23S threshold but below the 215 threshold
of He, which has been first observed by Schulz and Fox [35](cf. Fig. 2).

Initially, it was thought to be a shape resonance because of its being above the 3S threshold.
Bhatia and Temkin [36] used the same program which was used to calculate the 25 resonance below
the 2S threshold and where quasi-projection operators were employed. Only those configurations
in the trial wave functions were included which were orthogonal to the 2S state of Ile, thus avoiding
the need to project out the 3S state. The calculations were carried out by using closed shell as
well as open shell functions in the projection operators, giving the resonance position at 20.52489
and 20.56029 eV, repectively, for a trial wave function consisting of 40 terms. The position agrees
with the result 20.536 eV obtained by Chung using his hole-projection technique [37]. The partial
widths to 1S and 3S thresholds were found to be 0.0024 and 0.437 eV, and the calculation also
showed that the total width is dominated by the decay to the (excited) 23S state of He. These
results also indicated that the resonance was a Feshbach resonance associated with the closed 2!S
state of the target He rather than a shape resonance caused by the open 235 state. An accurate
calculation carried out by Junker [38] using the complex rotation method gave 20.33 and 0.575
eV for the position and width, respectively. These results agree with average experimental results
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20.34:0.3 and total width 0.5 eV of Schultz and Fox [35], and Brunt et al. [39].

I shall not discuss here Dr. Temkin’s (and collaborators’) work on dispersion relations [40,
41] and in particular his work on threshold laws for electron-impact ionization of atoms and ions
[which also apply to photon double (detachment/ionization) of (negative ions/atoms)]. The latter
is discussed by Dr. R. Wehlitz in these Proceedings. A dispersion relation (DR) relates the real part
of the scattering amplitude to an integral over the imaginary part, which in turn is proportional to
total cross section. Such relations are important in judging the consistencies and accuracy of both
theoretical calculations and experimental measurements. The problem in electron-atom scattering
has been to correctly include the effects of exchange. Dr. Temkin has proposed using partial wave
dispersion relations to solve this problem. At this point the correct partial wave DR have been
constructed both approximately [42] and exactly [43] in the static-exchange approximation.

Up to now, I have described some of Dr. Temkin’s important contributions in electron-atom
scattering and associated problems in atomic physics mentioned above . He has also made impor-
tant contributions in the field of electron-molecule scattering: Briefly stated, Dr. Temkin (with
various coworkers) introduced the ”fixed nuclei” approximation (as well as the name) in electron-
(diatomic) molecule scattering [44,45]. They showed that the (partial wave) scattering amplitude
could be expressed as the product of the two factors; one of which depends on scattering parameters
resulting from the dynamical interaction of the electron with the molecule, which is most conve-
niently calculated in the body-frame of the molecule, and a second factor, depending on geometrical
functions representing the rotation of the scattering angles from the body to the lab frame. The
cross sections, averaged over orientations of the internuclear axis could then be expressed as a sum
of scattering parameters multiplied by spherical harmonics together with vector coupling coeffi-
cients. A second contribution concerns the ”adiabatic nuclei” approximation, originally introduced
by Chase [46] in the context of nuclear physics. Chase showed that in a cogent approximation that
the amplitude for rotational excitation can be expressed as a matrix element of the fixed-nuclei
amplitude between initial and final rotational states. Because the dependence on the orientation is
analytic (actually D function), these integrals can also be done analytically, again - first - by Temkin
and coworkers [46,47]. (The name adiabatic-nuclei was also coined by Temkin [48].) Temkin was
also involved in other developments, most notably the hybrid theory [49], which will further be
discussed by Dr. B. I. Schneider in his contribution to these Proceedings.

Having described some of Dr. Temkin’s work, I now will describe some of the work carried out
by Dr. Drachman. Perhaps, after Sir Harrie Massey, Dr. Drachman has not only made important
contributions to positron physics but has also made it a popular subject of research.

Scattering of Positrons from Hydrogen Atoms

Calculation of positron-hydrogen scattering at low energies can be carried out by the method of
polarized orbitals as in the case of e-H scattering. Instead, Drachman [50], employing a variation
of the method, chose the wave function of the form

U(ry,r2) = u(ry)[1+ G(r1,r2)]do(rs). (106)

The function G(ry, rp), correct to first order in the potential
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2 2
Vir,ry) = — - —2 107
( 1 2) - |l'1 — I'2| ( )
has been determined by Dalgarno and Lynn [51] as a solution of the differential equation
(G, H(2)]po(rz) = (V= <V >)¢o(rs) (108)
where
H(2)o(rz) = [-V3 - E]¢o(r2) = —¢o(ra), (109)
and
<V>= /dl'2¢o(1'2)v(1'171'2)¢0(1'2)- (110)

The function G includes all multipoles >0. The adiabatic equation, correct to second order in V/,
is given by

[—V% — k? + vg + Va]u(ry) = 0. (111)

In the derivation of the above equation, we have taken < G >=0. Here

1
vt = 27 (14 —), (112)
1
and
Vo =725~ (4ri+8rp +10)e7 1 + (473 + Tr? + 8ry + 5)e” I
—2(r1 4 1)%(e™%" 4 e~ 1) (Ei[2r1] — 2In[27ry))
—2Ei[—2r;]([r1 — 1)%e®* + [r2 4 2r; — 3]+ 4[r; + 1]e™2"1)], (113)

where Iny=0.57721 is the Euler’s constant and

[oe] e—-y
Ei[—7] = -/ ¢y, (114)
z Yy

For small value of ry, vy — 2r1_1-2 and Vo — -1, while for r; — oo Vo= -4.5r~%. Eq. (111)
can be solved for various values of k to determine the phase shifts and the results are given in
Fig. 3. For k=0, the scattering length requires a correction due to the long-range potential [11], as
indicated in Eq. (34), and its value is -2.54 versus Schwartz’s -2.10 [7], which is the upper bound
on the scattering length. This shows that the potential in Eq. (113) is too attractive. Drachman
[50] modified the potential to

Vst + V2 + (Ol - 1)V20, (115)
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Figure 3: Phase shifts in radians for p- and d-wave scattering. The solid curves are for @=0.1, and
the vertical bars indicate a=1.0 and a=0 limits. The triangles are Brandsden’s p-wave values (Ref.

[52]).

where V¢ is the monopole part of V5. The complete suppression of monopole or short-range part
of the potential, i.e., =0 gives scattering length -2.07, in good agreement with Schwartz’s value.
Drachman calculated P-wave and D-wave phase shift for various values of k and found reasonable
agreement with those of Brandsen [52] (cf. Fig. 3).

In the same calculation, Drachman concluded, from the change of sign of the scattering length
with increasing mass of the positron, that there is no bound state of the system et-e™-P unless
the mass of the positron is 3.6m. for @=0.1, while for a=1 it is about 3.1m..

[ouston and Drachman [53] using a more flexible wave function than that of Schwartz [7] in the
Kohn variational method, obtained an upper-bound scattering length a < -2.10278. They obtained
an extrapolated estimate-a= - 2.1036+0.0004. These results are in good agreement with Schwartz’s
result @ < -2.10. They applied the Harris method [54] to obtain S-wave phase shifts at nonzero

energies which are in good agreement with those obtained by the Feshbach formalism [16] described
below.

One of my first calculations with Drachman [55] was the S-wave elastic scattering of positrons
(et) from hydrogen atoms below the positronium pickup threshold. As mentioned above for
electron-hydrogen scattering, rigorous lower bounds have been obtained using the Feshbach projec-
tion formalism [16]. Similarly, the results for e*-H have rigorous lower bounds. Since there is no
exchange between a positron (labeled 1) and an electron (labeled 2) in the hydrogen atom in this
process, the projection operators P and () are defined as

P = |¢o(rz) >< do(ra)l; (116)

23



Symposium on Atomic & Molecular Physics

Q=1-P (117)

such that P operating on the wave function does not change its asymptotic form in the limit r; — oo
PV =0. (118)

TABLE V. et-H phase shifts for S-wave scattering for various k.

S-wave P-wave
k  Schwartz (7] Nextrap An Dfinal Armstead® [8]  7final
0.1 0.151 0.148085 0.000223 0.1483 0.008,0.009(1) 0.0094
0.2 0.188 0.187496  0.000200 0.1877 0.032,0.033(1) 0.0338
0.3 0.168 0.167407 0.000306 0.1677 0.064,0.065(1) 0.0665
0.4 0.120 0.119724 0.000420 0.1201 0.099,0.102(1) 0.1016
0.5 0.062 0.061934 0.000429 0.0624 0.130,0.132(1) 0.1309
0.6 0.007 0.003191 0.000689 0.0039 0.153,0.156(2) 0.1547
0.7 -0.054 -0.052183 0.000980 -0.0512 0.175,0.178(3) 0.1799

* Armstead [8] has given two sets of results. The first entry gives his converged results while
the second entry his estimate of most probable results with uncertainty in the last figure given in
perenthesis.

Here ¥ is given by

U (ry,re) = ur(r1)go(re) + ®(ry, re), (119)

where the generalized Hylleraas function is

N
P = ¢~ (Crityratarz) > Clmnriryrly. (120)

Imn

In the absence of exchange, the et-H problem should be easy to solve but not so due to the
virtual positronium formation. Therefore, we have included e~®"'2 in ®, where ri, is the distance
between the positron and the electron. An integro-differential equation of the form Eq. (81)

(Vez=0 here) is solved for the scattering functions ur(r;) and phase shifts 5y, are obtained in the
limit r; — oo from

ur(r1) = sin(kr; — L7 /2 +n1). (121)

It should be pointed out that the phase shifts are negative in the absence of the optical potential.
The inclusion of the optical potential, which is attractive as in the e-H scattering, increases the
phase shifts from the values obtained in the presence of only the repulsive static potential v in
Eq. (81). The phase shifts were calculated for up to N=84 and extrapolated for N — co. These
phase shifts plus a correction A7 for the long-range polarization potential are compared in Table
V with those obtained by Schwartz [7] using the Kohn variational principle. The long-range effects
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are not well included in a Hylleraas type correlation functions and therefore have to be calculated

separately. Our final results (7final = 7extrapolated + A7), Which, we believe, are accurate within
+0.0002 radians, differ at k=0.6 and 0.7 from those obtained by Schwartz [7].

A similar calculation [56] has been carried out for P-wave scattering. Here the closed channel
function is given by

1 .1 -
P = fICOS(golg)’D}-'- + fzsm(§012)Di . (122)

The f; are taken of the Hylleraas type with two non-linear parameters:

fi = e-(61r1+71r2) Z Z ch(i)nrer 7'12’ (123)

I>1m>0 >0
and
fo= e~ (62r1tmr2) Z Z ZCl(i)nrér{”r? (124)
I>1m>0 >0

The f; are linearly independent functions because the positron and the electron are distinguishable.
Now there are four nonlinear paremeters to be veried to get the best results. The maximum number
of terms for each f is 84, giving a total of 168 terms in ®. Here we have added the dipole adiabatic
and the quadrupole plus nonadiabatic corrections to the extrapolated phase shifts. Our final results
are compared to those of Armstead [8] in Table V. The rigorous lower bound is lost due to the
addition of corrections for the long-range potential. Nevertheless, the results still are accurate.

Needless to say, these results have stood the test of the time and are still considered to be the
benchmark results.

Annihilation of Positrons with Electrons, Z.g

An important process is the annihilation in flight of positrons by atomic hydrogen resulting in
the 511 KeV line which has been observed in solar flares [57] and from the galactic center [58].
This line can be used to infer properties of flares and the solar plasmas. Having calculated the
wave functions for the scattering of positrons from hydrogen atoms, the partial cross sections for
annihilation can be calculated from the expression given below [59]

3

(8%
Oq = Zeﬁ'_

—(mad), (125)

where « is the fine-structure constant, ag is the Bohr radius, and k is the incident positron momen-
tum in units of agl. The quantity Z.¢s, whch is the measure of the probability that the positron
and electron are at the same point, depends on specific properties of the positron-atom system.
Zet is equal to Z, the number of electrons in the atom, when the positron can be represented as a
free particle. For the hydrogen atom

Zegg = //drldr2|\1’(r1,r2)|25(l‘1 —-r2), (126)
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where ¥(ry,r;) is the positron-hydrogen wave function. It should be noted that for the calculation
of Zesy, ur(r) should have a plane wave normalization, i.e.,

in(kr — L7
ur(e) = (20 4+ )2 T oo ) (127)

We present Z.sf for L=0 and 1 [60,61] in Table VI and compare them with those obtained by
Humberston and Wallace [62] and Humberston [63]. For L > 1, we use the plane wave expansion

for the incident positron

[e.e]

Zg(L > 1) =3 (2L +1) / drr?dd ()2 (kr). (128)
L=2 0
Using the identity
Y (2L+1)i=1 (129)
L=0

we get [with ¢o(r) = 2e7"]

Za(L>1) = 4] drr?e=? (1 — j2 — 3j2)
0

k2 6 1

1+ k?/2
SLE S 1+k7/2
k?2+1 k%2 k?

In(1+k?%) — .

). (130)
We give the total Z.g in Table VI.

Table VI. Z. g for et-H annihilation. k=0 results are from Ref. [64,65].

L=0 L=1 Zesi(Total)

k' Zg(L=0) Ref. [62] Zeg(L=1) Ref. [63]

0 8.868
0.1 7.363 7.5 0.13008 0.1335 7.493
0.2 5.538 5.7 0.53994 0.5366 6.079
0.3 4.184 4.3 1.12441 1.114 5.312
0.4 3.327 3.3 1.76292 1.719 5.100
0.5 2.730 2.7 2.33910 2.353 5.091
0.6 2.279 2.3 2.84988 2.823 5.168
0.7 1.950 3.67030 3.637 5.683

We can calculate the thermally averaged annihilation parameter

20) = [ dkfr(k) Zea(h), (131)

where fr(k) is the Maxwell-Boltzman distribution function. We can fit the calculated Zeg(k) to a
sixth-degree polynomial of the form
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Figure 4: Thermally averaged annihilation parameter Z(T) obtained from the polynomial fit
Zegys(k).

Zeg (k) = 26: Znk™. (132)
0

Using this expansion, the integration in Eq. (131) can be carried out analytically and we have

6
Z(T) =Y Zn(T)™?, (133)
n=0
where T is the temperature in units of 10* K and

Zn = anZy Ay (134)

Here Ag=15.789 and Z,, Z,, and «, are given in Table VII.

Table VII. Coeffients of the polynomial, Z,, Z,, and ay,.

n Zn Zn o
0 8.868  8.868 1
1 -7.38  -2.226 2712
2 -102.77 -9.763 3
3 527.38 18971 Ax~l/2
4 -978.68 -14.722 1}
5 773.15 5284 12771/2
6 -197.17 -0.658 s

Now Z(T) can be calculated at any temperature (cf. Fig. 4).
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et-He Scattering

Although accurate calculations for et-H can be carried out because wave functions of hydrogen
atoms are known exactly it is difficult to perform experiments on this system. On the other hand,
et-He experiments can be performed relatively easily but the calculations are rather tedious because
elaborate He functions are difficult to employ. However, Houston and Drachman [53] used those
simple wave functions which gave a reasonable value of the polarizabilty of the He atom. They used
the Harris method [54] to calculate phase shifts at low energies and their results agreed with the
results of the variational calculation of Drachman [65]. They added a term to the wave function to
represent the long-range dipole potential and obtained scattering length a=-0.524 and Z.ff=4.3 at
k%*=0, using the Kohn variational method.

Properties of Ps~ and Photodetachment

The positronium negative ion (Ps™), consisting of two electrons and a positron, is particle stable
and decays only by et-e~ annihilation into gamma rays. Mills [66,67] has produced and detected
this ion and measured its lifetime. Drachman and I [68] calculated its ground state (1S) energy by
using a trial function of the Hylleraas form, calculated expectation values of delta functions, and
cusp conditions given by

vi = <5(rz)5%> < 8(r) >71, (135)

g = <5(r12)0%2> < (rig) >t (136)

Table VIIL. Binding energy (Ry) of 1S state of Ps™, expectation values of § functions, cusp
conditions, and decay rate I'((nsec)™!). [The notation A(—B) stands for A x 107B]

N 0% é Binding energy o(r;) d(r12) v; Vi r

125 0.2585 0.3585  0.024009788 0.020722 1.7151(-4) -0.49910 0.49711 2.0850
161 0.3700 0.3700  0.024010026 0.020732 1.7136(-4) -0.49986 0.49695 2.0860
202  0.380 0.380 0.024010089 0.0200730 1.7129(-4) -0.49740 0.49740 2.0858

120 0.604  0.296 0.024009966 0.020733  1.7190(-4) -0.50000 0.49347 2.0861
165 0.604 0.314 0.024010079 0.020773  1.7164(-4) -0.49999 0.49441 2.0861
220 0.604 0.313 0.024010113 0.020733 1.7150(-4) -0.50000 0.49508 2.0861

Here r; and ry are the relative distances of electrons 1 and 2 with respect to the positron, and
r12 = |r1 — ro|. Results are in given in Table VIII for the Hylleraas wave functions (see Eq. (141)
below) with up to N=203 with v = §, and up to 220 terms with v # &, respectively. These
functions have been used to calculate other properties. The cusp conditions test the accuracy of
the wave functions near points of coalescence, since v = vy = —% and vip = +% for exact solutions
of the Schrodinger equation. The convergence of results, given in Table VIII, shows that our wave
functions should be fairly accurate. To a sufficient accuracy the Ps~ decay rate is given by
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I = 2ra*(c/ao)[l — a(17/7 — 197/12)] < 8(ry) >
= 100.6174 < §(ry) > (nsec)™?, ‘ - (137)

where the correction term proportional to « is due to the triplet lifetime [69] and the leading
radiative correction to the singlet lifetime [70]. Our calculated value is in agreement with the
measured [67] value T' = 2.09 £ 0.09(nsec) !

Mills [71] recognized that the existence of > P¢ state of positronium, as in H™ [72], would have
interesting experimental consequences: The state would be metastable against breakup because
Ps~(3P¢) — Ps('S) + e~ is nonrelativistically forbidden. Using 70-term Hylleraas wave function,
Mills [71] did not find such a state . We [68] too failed to find this state even when we used larger
expansions and also included long-range terms of several types [73].

Photodetachment of Ps™

Mills [66] suggested that Ps™ ion could be used to generate positronium (Ps) beams of controlled
energy; this would involve acceleration of Ps™ ions and photodetachment of one electron. Drachman
and I [74] calculated the dipole transition matrix elements by two simplifications: the intial Ps™
wave function is represented by an asymptotic form whose normalization comes from our most
accurate wave function [68], and the final state is a plane wave.

The Hamiltonian of the system consisting of two electrons (p1, p2) and one positron (x) is

1 1 1
— + .
lpr = x| |p2 = x| |p1— p2l

H=-V) -V? +Vi- (138)

The center-of-mass system is

1
R=_-(p1+p2+x), r1 =p1 —x, r2=p2 —X, (139)

3
where R is the coordinate of the center of mass of the entire system, r; and r, are the distances of
electrons 1 and 2 from the positron, respectively. The Hamiltonian is given by

1, . 11 1

H:—ng—z[vil+v32+vrl-vr2+;;+r—2—r—12 : (140)
Omitting the center of mass coordinate R, which describes uniform motion of the center of mass,
we write a wave function for the Ps~ ground state in the Hylleraas form

\Ili(rl, 1'2) v, (7'1,12, r 12 Z rira 6_7”_67‘2 + 71 i _77‘2_67‘1]7’?2. (141)

Imn

\/__

The final state consists of an electron in a p state moving away relative to the center-of-mass of the
Ps atom. We use the coordinate Ry = ry — r1/2 in place of rg, while retaining ry as the distance
between the positron and electron. The Hamiltonian for these asymmetric coordinates is
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1 1
IRy + 11| |Ry—ir||’

3 1
H=-2|V2 + ZV%Q oot (142)

The final state is given by the p-wave part of the symmetrized product of a plane wave in relative
coordinates:

vy = %M(rl)e““f“ + ¢(r2) e ], (143)

where E = 3k%. The photodetachment cross section in the velocity form can be written as [75]

2kaa?
Ty =—g 8| < WsQv|Ti > |2, (144)

where the dipole transition operator in the velocity form is

QV = 2f{ ) (VPI + sz - Vx), (145)

and w is energy of the incident wave. The finite mass of the positron gives a factor of % when
compared with the photodetachment expression for an infinitely massive atomic ion. The cross
section in the length form can be written as [75]

2kwaal
L=

| < TflQLI¥: > |2, (146)
where the dipole operator in the length form is

Qr=k-(p1+p2 —x). (147)

These transition operators can be written in terms of the unsymmetric coordinates:

-2
QV = k . (§VR + 4Vr1 + 2VR2). (148)
and
- 2

Now we represent the initial loosely bound state function in the following form [76,77]:

—'YRj

R;

v, = S

é(rk), for Ry >> r, (150)

where ¥=0.12651775 from our best variational value [68] of the Ps~ binding energy 0.024010113
Ry.

C(r) = V8rre”W,;(0,r,r). (151)

30



Symposium on Atomic & Molecular Physics

(‘3 gm

Z

2 wb

=

ﬁﬂj i P

o -~ -

g nf ’ >

o 7’ ™

& & s wPes

O if AY

o - %

g . '

=g W VELOLITY AN

¥ 7 . 5

i% il g FLENGTH W, hY

z # A

, ] '’

5 /i u:“} \x
2wk g X Y
% ol i p i i i i )\‘
o 5 10 Y w » 1] » 4

WAVELENGTH & (10°4)

Figure 5: Photodetachment cross sections (dashed lines) in the asymptotic approximation for Ps™
and I~ as functions of wavelengths of the incident light. The length and velocity forms of the 1™
cross sections are from more elaborate theory of K. L. Bell and A. E. Kingston [78] (solid lines).

We find C=0.1856(2) (cf. Ref. [74] for details). We find

7.y KC?
= = (3.824 10~ — 3 152
oy =or = (3.8245 x 10 cm)(k2+72)3 (152)
which can be written as
18 2 k®
We can write the cross section in terms of the wave length of the incident light,
o = (650 x 10_180m2)(7\)\—)3/2(1 - /\1)3/2, forh < Ao, (154)
0 0

where \g=37953.46 A . In Fig. 5 we have plotted the present results [Eq. (154)], compared with
the corresponding results [77] for H™. In the latter case the asymptotic approximation is seen to
compare fairly well with the more elaborate calculations of Bell and Kingston [78], and we expect
the present results to be similarly reliable.

A scattering calculation for the final state has been carried out by Ward, Humberston and
McDowell [79] to calculate the photodetachment cross section of Ps™. See the article by Dr. S. J.
Ward in these Proceedings.

Muonic Molecules

There have been speculations of the possibility of realizing useful muonic catalyzed fusion. The
Born-Oppenheimer approximation has been used traditionally to calculate energy levels of muonic
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systems. Drachman and I [80], for the first time, using Hylleraas type wave functions for such
systems, carried out straightforward Rayleigh-Ritz variational calculations and showed that the
binding energy of even the weekly bound tdu molecular state of the angular momentum equal to 1
and vibrational state 1 (J = 1,v = 1) can be obtained fairly accuarately. We [81] further studied
the deexcitation of tdy muonic molecule by internal conversion and also calculated the J = 2
binding energy. We wrote an easy-to-read review article [82] on this subject. I will not discuss
further our work because Prof. E. A. G. Armour has carried out extensive work on muonic systems
and has written an article on muonic physics which appears in these Proceedings.

Polarizabilities of Two-Electron Systems

We will see in the subsequent section that in order to calculate the Rydberg levels of three-
electron systems, the interaction between valence electron and core should be known. This inter-
action can be represented by the potential

Uz) = et gglz—_(;—g—z— + higher — order terms, (155)

where z is the relative distance between the valence electron and the core, and «; and oy are dipole
and quadrupole polarizabilities, respectively, and 5, is the first nonadiabatic coefficient. These
polarizabilities, in the second-order perturbation calculations, are given by the general expression

3 < 0Jv;|N >< N|v;|0 >
Gp = 3 <0 o

(B —Fo)F , (156)

El

N

where |0 > represents the ground state of the core and |V > intermediate states, determined by
diagonalizing the appropriate Hamiltonian. We can write

< 0lv;|N >< N|v;|0 >
Si1i=o= - , 157
1 %: (EN _ EO) ( )

< 0v;|N >< Nlv;|0 >
So =0 = , 158
2, IB ; (EN — E0)2 ( )

and

&JE%=§:<NMN><NMM>. (159)

N (EN - E0)3

The potential between the valence electron at a distance z from the nucleus and the core can be
expanded in the form

~ 2 (160)

T x? 23

where
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v1:2[1+K—(ZT_—2—)] (W-X%), (161)
and
vy =2 [rEPy(f1 - %) + 1§ Pa(2 - X) — Kw?Py(W - %)) . (162)

Here w =r; +ry, K =2/(1+ M), M is the nuclear mass, and Z is the nuclear charge. Drachman
and I [83] calculated various quantities in Eq. (156) using the pseudostate summation method. We
used Hylleraas type wave functions for the ground state and intermediate states. The nonlinear
parameters in intermediate states are optimized by maximizing «;, which according to the varia-
tional principle, has a lower bound to the exact a;. In Table IX, we give our results for various
ions.

Table IX. Adiabatic and nonadiabatic polarizabilities
for three isoelectronic systems. A(-B)implies Ax10~5
System Lit Bet? B+3

o) 0.192485 0.052282 0.019651

B 0.03529 4.919(-3) 1.125(-3)

v 6.806(-3) 4.847(-4) 6.723(-5)

@z 0.11389  0.01532 3.427(-3)

B, 0.01668 1.132(-3) 1.524(-4)

v 2.584(-3) 8.819(-5) 7.136(-6)

Polarizabilities of He and H™

We now turn to calculations of such quantities for He and H™, where the convergence is rather
slow for He and even slower for H™. For He, we [84] used up to 525 terms for the ground state, 364
terms for the P-wave intermediate states. For D-wave intermediate states, both sd and pp terms
are required, and therefore we used up to 165 sd terms and up to 56 pp terms in our wave function.
In Table X, we show our final results for He.

Table X. Adiabatic and nonadiabatic polarizabilities
for *He. We also give the estimated errors.
k i=1(Dipole) i=2(Quadrupole)
1 0;=1.383 241 013 80+10 y=2.443 372 616 0620

2 ($;=0.707 521 492 749+£55 B2=1.035 440 519 0320

3 71=0.375 538 368 4131+21 v2=0.467 345 191 67+23

Since we include the mass polarization term in the Hamiltonian, it is interesting to see how
large an effect this has on various polarizabilities. Therefore, we carried out our calculations, using
the largest expansion lengths, for K=0 and for finite K, both for “He and *He. We present the
results in Table XI.
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Table XI. Effect of the finite nuclear mass on the polarizabilities
of both isotopes of helium. A is the difference between the results
for finite and infinite mass.

Quantity A(He) A('He)
a 6.4798(-5) 1.88345(-5)
B 1.5044(-5) 1.1341(-5)
" 4.5918(-6) 3.4638(-6)
oy -2.270054(-3)  -1.7107096(-3)
Bs -8,70263(-4) -6.55793(-6)
"2 -3.64039(-4) -2.74316(-4)

We carried out a similar calculation for H™ for finite K, except that in this case we used 615
terms in the ground state wave function. The quantities are much larger than in the case of He
and the results are given in Table XII.

Table XII. Adiabatic and nonadiabatic polarizabilities
for H™. We also give the estimated errors.
k i=1(Dipole) i=2(Quadrupole)
1 01=206.148 7618+37 0=T7766.79 374+£48

2 [51=1886.699 325434 B2=70 155.536 09+25

3 v1=20 046.0671+30 v2=T711 88.8802+96

To ckeck the accuracy of our results, we consider two special cases, related to So; and S; ;.
The first one tests the completeness of pseudostates that we are using without considering the
ground-state accuracy:

Y <0lw-%|N >< N|w - %0 >=< 0|(w-%)%0 > (163)
N

Comparison between the left and right sides of Eq. (163) gives a measure of completeness of the
set N. We give results in Table XIII, along with the difference of the ratio from unity.

Table XIII. Comparison between left and right side of Eq. (163).
A=difference of the ratio from unity.
System left hand side right hand side A
He 0.752 552 891 661 0.752 552 891 770 1.0(-9)

H- 7.488 423 814 28  7.488 424 910 34 1.5(-7)

The second test is the Thomas-Reiche-Kuhn sum rule, which for the finite-nuclear mass takes the
form

Y <O0lw %N >< N|w-%[0> (Ey — Ep) =2+ K (164)
N

Now the extent of the agreement between the left and right sides of Eq. (164) measures both the
accuracy of the ground state |0 > and the completeness of intermediate states [N >. We find
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the ratio of the left side to the right side is 0.999 999 87 for He, and the corresponding ratio for
H™ is 0.999 9787, respectively. All these tests show that H™ is a more sensitive system than He.
Nevertheless, our results are accurate to the accuracy given.

Polarizabilities of H and D}

Having calculated polarizabilities of two-electron sytems, it must appear that there should be
no difficulty in calculating polarizabilities of molecular ions H} and D;", the only difference being
that two light particles have been replaced by two heavy particles and the mass-polarization term
becomes as important as other kinetic energy terms in the Hamiltonian. Since, with a hammer
in hand the whole world looks like a nail, I just went ahead with the calculations for H} and
D7} systems using Hylleraas type wave functions, with the appropriate change of masses in the
Hamiltonian. But I found no expansion length in these functions was adequate enough for ap-
proaching the known results obtained using the Born-Oppenheimer approximation, leaving aside
to surpass them. The problem remained dormant till Drachman heard from Steve Lundeen about
his experimental results on high Rydberg states of Hy. It is possible to extract accurate properties
like quadrupole moment and the parallel and perpendicular polarizabilities of the molecular ion
HZ from these results [85,86]. The Born-Oppenheimer results [87] disagreed with the experimental
results. We tried to resurrect our old work and tried various extrapolations, but had no success.
Drachman came up with an excellent idea: simply raise r;2 (the interparticle distance between
similar particles) to a power close to 30 or so and choose the nonlinear parameter o in €~%"12 equal
to half of that power of 7|5 in the Hylleraas functions being used. This was a miracle in the sense
that nearly six terms in the Hylleraas expansion now were equivalent to hundreds of terms in the
earlier expansion! It is easy to understand, after the fact, that now two protons stayed clamped
at their respective positions whereas they enjoyed the same freedom as electrons with the usual
generalized Hylleraas functions. This was just what was needed to get excellent results without
making Born-Oppenheimer like approximations. The expression for polarizability [88] is given by

4 | <0|za+2B|N > |2 4
o) = ag,
P31+ p)? %: En — Eq °

(165)

where z4 =r4 - € and zg = rp - €, € being the direction of the external electric field which can be
considered to be in the z direction, r4 and rpg are the distances of the electron from protons A and
B, respectively. The reduced mass p = M/(M +1). It should be pointed out that we are treating all
the particles on an equal footing and we do not refer to any special ”molecular” quantum numbers.
Thus we are not interested here in the ”axial” or ”transverse” polarizabilities that appear in the
Born-Oppenheimer approximation.

With these modified Hylleraas functions, we obtained ground state energy E(H})=-1.194 277
909 Ry, differing by only about 2.2x10~" Ry from the accurate value [89]. We calculate the
intermediate P states also using high powers of 713 (cf. [88] for details). Our final results for Hf
and D} are given in Table XIV.
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Table XIV. Polarizabilities of H} and D} obtained in different ways,
both theoretically and experimentally. Quantities in perentheses
are errors in the last decimal place given.

Method a1 (HY) a1(D3)
Experiment® 3.1681(7) 3.0712(7)
Born-Oppenheimer * 3.1713 3.0731
Modified generalized 3.1680 3.0671
Hylleraas functions
Finite element® 3.1682(4) 3.0714(4)

@Jacobson et al. [86]. *Bishop and Lam [87]. °Shertzer and Greene [90].

It is obvious that the results for D} are not as close to the experimental results as in the case
of Hf, showing that even the modified wave functions have limitations: as the nuclei get heavier
it becomes more difficult to generate a well-enough localized two-nucleus part of the trial wave
function. Clearly, the method fails as the nuclei become infinity heavy.

Dr. J. Shertzer discusses in these Proceedings the results obtained by the finite-element method.

Polarizabilities of HD™*

After we had studied the polarizability of the homonuclear molecular ions it should have been
simple to extend our methods to the heteronuclear ion HD*. Janine Shertzer reminded Drachman
that in this case there would be dipole coupling between rotational levels with J=0 and J=1, which
was not possible in the earlier cases because of symmetry. In addition she pointed out that the
lowest-lying J=1 level is so close to the ground state that one would expect a very high value
of polarizability, since the denominator of the second-order perturbation sum would be so small.
Drachman and I [91] carried out calculations to see if this prediction was borne out.

The dipole polarizability «; is given by the second-order perturbation theory:

d|N N|d
al_Z<O| IN >< N| |0>a3

— . 166
< EN _ EO 4] ( )
The dipole operator d depends on masses of the nuclei and is given by
o [Mp+1 | Mp+1_ 1 .
d=2 [ My r; + My ra| - €, (167)

where the unit vector € is in the direction of the applied electric field, Mp and Mp are the masses
of the proton and deuteron nuclei and

Mr =Mp+ Mp + 1. (168)

The calculation of the dipole polarizability of HD? is similar to that of Hf and DJ: we treat all
three particles on an equal footing and do not refer to any special ”molecular” quantum numbers.
We use the modified generalized Hylleraas type wave functions, i.e., we use very high powers of n in
ri,e”%"12 and « is of the order of n/2. The energy eigenvalues using the Rayleigh-Ritz variational
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principle are Ep=-1.195 795 889, using 560 terms, and E,=-1.195 372 602 Ry, using 728 terms, for
the ground S state and the lowest P state, respectively. These compare well with Fp=-1.195 795
931 and E,=-1.195 396 2560 Ry obtained by Moss [92]. The energies of these two states are so
close to each other that they are almost degenerate states of opposite parity. This is the important
difference between the homonuclei H and DJ, and heteronuclei HD* molecules.

The polarizability due to the lowest P term alone in Eq. (166) is 392.0814a3 and the sum over
the remaining intermediate states contributes &;=3.2076a3. The total polarizability, a1=395.289a3,
is very much larger than might be expected from the results [88] in Hf and DF. This can be traced
to the fact, as indicated above, that there is a coupling between the two lowest S and P states
due to their closeness in energy. If we exclude the ground state, we can calculate the polarizability
of the lowest P state by summing over all the intermediate S states. We find this result to be
a,=2.03008a3.

But second-order perturbation theory can only be legitimately carried out if the perturbation
is small compared to the spacing of the unperturbed energies, and this condition is hard to satisfy
in the present case. If the perturbation is due to a unit charge it must lie further from the ion
than about 32ag for the perturbation theory to be valid. What happens for larger fields or smaller
distances? Clearly, for these larger fields the opposite parity levels act essentially as degenerate
levels, so the techniques of degenerate perturbation theory must be applied. This leads to an energy
shift that is linear in the electric field, falling like R=% rather than R~* as we expect for ordinary
polarizability. This is usually described as the effect of a permanent dipole moment. We then went
on to diagonalize the perturbation matrix in various approximations and were able to give a good
description of the energy shift as a function of R.

In observing the Rydberg states of HD, the effective polarizability should be @;=3.2076a3, which
is close to the polarizabilities of Hf and D} [88]. With this value, we have calculated energy shifts

1
AnL = —ds/‘I’NL(R)ﬁ\I’NL(R)dR’ (169)

using hydrogenic wave functions. We give these energy shifts Ay of a series of Rydberg levels
due to the polarizability of the HID* ionic core omitting the lowest rotationally excited level in the
summation over intermediate states.

Table XV. Energy shifts Axr,
of a series of Rydberg levels.
N L -Anr(MHz)

9 4 - 11501
3943.6
1594.9
720.08
350.41

0 N S U

10 8527.4
2951.8
1208.8
554.8
275.89

145.2

© 00~ O Ot
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Figure 6: Diagrams symbolizing the nonrelativistic calculation of a(w), with energies of each state
indicated.

Optical Properties of He Including Relativistic Corrections

An interesting application of polarizabilities is the calculation, which Drachman and I [93]
carried out, of the index of refraction n of He from which the Verdet constant V', which measures
the rotation of the plane of polarization in the Faraday effect, can be obtained. The rotation ,
measured in degrees, is given by

9 = VBIL, (170)

where B is the magnetic field and L is the length traversed by light. If the static field is replaced
by an oscillating field (an electromagnetic wave), it is possible to define a frequency-dependent
polarizability «a(w) from which the index of refraction can be obtained (cf. Fig 6). The expression
for the polarizability is given by

1 1 1
@ = = < 0|Z|N >< 0|Z|N >
(@) 2%: 1] 1] EN—(E0+w)+(EN+2w)—(EO+w)
-3 < 0|Z|N >< N|Z|0 > (Ey — Eo) (171)
- N (EN — E0)2 — w? ’
where N = p and the dipole operator Z is given by
Z = 2(21 + Zz). (172)
We can define a set of ”generalized dipole polarizabilities” as follows
< 0|Z|N >< N|Z|0 >
[01,ﬂ1’71»51,€17§1,771]=2 Z] 7] (173)

v (EN - Eo)(1234567) "
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As indicated earlier, we use Hylleraas basis sets for the ground state as well as for pseudostates N
and the results for various quantities are given in Table XVI.

Table XVI. Various quantities

for *He.
fa%1 1.383 241 01
b1 0.707 521 493
" 0.385 538 368
& 0.218 735 026
€1 0.127 538 649
& 0.075 827 657
m 0.045 731 135

The denominator in Eq. (171) can be expanded in powers of w/(Ex — Eg) <0.2 for wavelengths of
visible light:

a(w) = a; + nw? + quwt + b + ... (174)

The relativistic corrections are calculated by using the Breit-Pauli relativistic Hamiltonian which
has the following form:

1 1 R .
B = a? {—Z[V% + Vg] + 27‘&'[6(1‘1) + 6(1‘2)] + 27!'(5(1‘12) + E[VI -Vo + g (7‘12 . VI)Vz]} . (175)

This requires a third-order-perturbation theory, with B retained to first order and Z to the second
order. Up to w* the expansion corresponding to Eq. (174) gives the following numerical result

Aa(w) = —8.0029 x 1075 — 8.1516 x 107 5w? 4 3.006 x 10~ 7w?, (176)

and the relativistic expression for the frquency-dependend polarizability of helium becomes

oel(w) = 1.383160981 + 0.385530216w? + 0.12753895w* 4 0.04573114w5. (177)

The last term Eq. (177) has not been modified from its nonrelativistic value, since the effect of

relativity here would be absolutely negligible. In order to write the above expression in terms
wavelength, we use

o= dmag ~911.39198
T a(l-K/2)N A ’

(178)

where K=2.741 493x10~* for *Ile and the wavelength is in A units. We obtain the expression for
polarizability in terms of wavelength in the form:

3.204546 x 10° N 8.822907 x 1010 N 2.624092 x 1016a3

arel(N) = 1.383729930 + (179)
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Optical measurements usually give n — 1, where n is close to 1 for helium. The higher-order
corrections in the relation between the polarizability (a single atom property) and the index of
refraction, due to the effects in the medium, are accounted for by the Lorenz-Lorentz equation:

n?—1 4

a3 Npad = 16.67718 X 10 % (N) = 2 (180)

where Ny, is Loschmid’s number. Solving for n to second order in z, we find

8.016511 N 2.207154 x 106 n 6.564503 x 10%!

n—1~§z+ﬁ—3461527x10“6+
- g — T A2 I 26

5 (181)

The Verdet constant is given by

e .dn 1616813 x 107 | 4 5506521 x 10° 4 2:456618 10t

V= T omerdh T A2 A2 e

p min/oer cm, (182)

where min refers to rotation. We get from the above equation V=0.661 2240.00025 at A=5000A
versus the experimental value 0.637 of Leonard [94], while at A=8000A we get V=0.254 816+0.000
015 compared with the experimental value 0.246 (all in units of u min/oer cm). This shows
that there is a significant discrepancy here that is larger than the relativistic effects that we have
considered. The experimental results do not appear to be very accurate and new measurements are
required of the refractive index n of helium to have a better comparison between our theoretical
results and measurements.

Another Way to Calculate Lamb Shift

One of the most difficult parts in two-electron Lamb shift calculations is the Bethe logarithm
given by

Y, < 0|V|n >< V|0 > (B, — E)®In(E, — Eo)

(K} = S < OV >< a[V]0 > (En — Fo)®

N
D7

Il

(183)

where |n > are L=1 eigenstates, both bound and continuum, of the Hamiltonian describing the
two-electron system. Instead, we use the pseudostate summation method. The interaction V is
given by

V = 21 4 29 = ricosf; 4 r9c0s6,. (184)

Having used pseudostates in the polarizability calculations, it should have been easy to calculate
In(K') given by the above expression in the length form. But the result obtained using either the
length, or velocity, or acceleration form never seemed to approach the known results, no matter how
large the psoudostate expansion was in the above expression. The basic reasons are the power of
(En—Ep) which is 3 instead of -1, as in the polarizability expression, and the presence of In(E, — Ep)
in the numerator, which makes matters worse. Combined together, the convergence of the results
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becomes extremely slow. Out of frustration, I sought Drachman’s help. To solve this problem, he
came up with several tricks which I prefer to call good insight. We could then obtain results as
accurate as available in the literature. I have used a slightly different notation in this section for
the pseudostates in order to conform with our published paper [95].

The Denominator

We transform the denomenator D in Eq. (183) in a form which does not have an intermediate
sum |n > by using the commutation relation

< nl[H, V1|0 >=< n[V|0 > (E, — Eo) (185)

three times, in order to remove (E, — Ey):

D= §(2 + ) {<O[H, (Vi+ V2)]- (Vi + V2)[0 > = <0|(Vy+ V2) - [H, (Vi + V2)][0 >}
(186)

Since the potential term in the Hamiltonian does not commute with V; + V4, the above expression
can be put in the form

167Z(1+ K)

Doy = 3

< 0[5 (r1) + 6(r2)]0 >, (187)
where closure over the intermediate states |n > has been invoked and Poisson’s equation has been
used to introduce § functions. As before, K = 2/(M + 1), where M is the mass of the nucleus
in units of the electron mass. The terms of the order K? have been dropped; within this error
the expression is exact. It does depend on the accuracy of the ground state wave function which
consists here of 525 terms. Therefore, the error due to the accuracy of the ground state wave
function is negligible.

Table XVII. In(K) as a function of 7 and Pekeris number ,.

QP g Dgc. Nace IH(I(—)

3 3.644 529 94.114 569 301.053 261 3.198 796
4  4.080 394 101.216416 346.195 202 3.420 346
5 4.425096 104.957 668 373.513 205 3.558 703
6 4.849 542 108.413 460 399.676 322 3.686 593
7 5179484 110.403 345 416.057 508 3.768 523
8 5.588226 112.320411 432.319315 3.848 983
9 5.888 226 113.508 976 442.840 189 3.901 367
10 6.305 080 114.676 534 453.744 402 3.956 373
11  6.623 156 115.446 146 461.125 678 3.994 293
12 7.004 813 116.207 693 468.586 094 4.032 316
13 7.3 116.735 692 473.876 067 4.059393

Because of the In(E, — Ey) term, it is not possible to reduce N to a similar form. However,
we expect the convergence of pseudostates will be similar for N and D. We use the commutation
relation [Eq. (185)] twice for each matrix element of Eq. (183) to obtain the acceleration form
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Figure 7: Behavior of D, for helium as a function of the nonlinear parameter . The crosses are

for Q,=3, and the plus signs are for 2=4. The dotted line is the "exact” value, obtained from Eq.
(187).

< 0|U|n >< n|U|0 >

Dyce = ""8Z2(1 + I{) Z E E !
0 — L

n

(188)
where

0 9
v="0 0 2 (189)
1

3

7

This expression for D, looks like the second-order energy shift induced by the potential U, and
it has a variational bound [95]. We can, therefore, choose the nonlinear parameter v in the pseu-
dostates to maximize D, in Eq. (188) (cf. Fig. 7).

As the number of |n > is increased the D, approaches D, which for He from Eq. (187) is
121.335 143. We calculate N for the same v and the same number of |n > as for Dy... We give
values of In(K) as a function of the Pekeris number ©Q, in Table XVIL

Extending The Upper Limit

We assume that the contribution of each term in the pseudostate summation is exact and the
remaining error in the total is due to the fact that that the sum does not extend to infinity. We
use the method of Dalgarno and Stewart [96] to account for the remainder of the sums beyond the
highest pseudoenergy. For high energies they used the following simplified form:

1 [k\Y? ik-r ik-r
Woacleirs) = 5 (5) 1 lan (0™ + un(ra)e™) (190

to represent the singly ionized states in the expression that replaces the discrete one in Eq. (188):
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_16Z%(1+ K) 2

r | ]

1 2

(191)

Here € = k%, I, is the ionization-excitation potential of two-electron systems, and u, is the wave
function of the one-electron system left after single ionization. Without loss of accuracy, we fitted
Fy(€) to the form [A, + (Bn/k)tan~'(Cp/k)]e"3/? and included s states up to n=4. Higher states
were included approximately by an exression falling like 1/n%. We adjust € so that

Dex = Dace + / de Y Fole). (192)
€0 n

The critical step is now to correct N using the same value of ¢y as for the denominator, modifying
the integral by the inclusion of the appropriate logarithmic factor. In Table XVIII, to obtain the
exact value of the denominator we give the required value of ¢, the corrected value of the numerator
and the improved value of In(K); the convergence with €, is significantly improved.

Table XVIII. The €g, corrected values of Ny, and In(K).

Q, € Neorr In(K)

3  361.0613 520.267 518 4.287 855

4 724.0096 521.248 382 4.295 939

5 1143.441 523.110 217 4.311 284
6 1912.977 524.085 779 4.319 324
7
8
9

2734.433 525.086 045 4.327 568
4108.808 525.799 439 4.333 447
5524.324 526.334 777 4.337 859
10 7729.503 526.911 785 4.342 614
11 9964.945 527.307 234 4.345 874
12 13 253.52 527.650 177 4.348 700
13 16 564.86 527.870 611 4.350 517

Extrapolation and Results

We extrapolate our results by using the deviation AD of the denominator from its exact value:

AD = D¢y — Dyee (193)

This quantity approaches zero as €, increases. We plot the uncorrected and corrected In(K) (cf.
Fig. 8). ‘

The slope of the line fitted to the corrected points is 12 times smaller than the uncorrected

slope, indicating the improved convergence we expected. The extrapolated result for helium is
In(K)=4.367 58(46).

In Table XIX we show the values of In(K’), obtained by this method, for a range of atomic
numbers Z and compare them with those obtained from the approximate expression of Goldman
and Drake [97]. Their approximate expression has been obtained using an expansion in 1/7:

In(K) = In[19.7692669(Z — 0.00615)]. (194)
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Figure 8: In(K) for helium as a function of AD. The plus signs show the uncorrected values, using
the data from Table XVII, and the crosses are the corrected values from Table XVIII. Linear fits
have been made in both cases, and the improved convergence of the corrected values is clear.

Table XIX. Results for a series of two-electron systems.

System Z In(K) In(K)*
He 2 4.367 578 4.364 263
Lit 3 5.177 763  5.177 249
Bet? 4 5.753 615 5.753 640
Net8 10 7.586 072 7.588 068
“From Eq. (14) of Ref. [97] which is the same as Eq. (194) given above.
A good fit to our results is the form:
In(K) = In[19.705541(Z + 1.35 x 107°)?]. (195)

The present results may represent the two-electron ground state Bethe logarithm well over the
range 2< Z <10.

In(K) for Atomic Hydrogen

It is an obviously interesting question to see how well the above method works for the simpler
and better known one-electron (atomic hydrogen) case. Here the ground state wave functtion is
known exactly and the pseudostates are of a simple one-electron form:

—y Qp
€ r 2: ) +
\Po—m, \Iln=€ A'IP1(0) ICJT (19())
]=
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Figure 9: In(XK) for hydrogen as a function of AD. The alternating convergence pattern discussed

in the text leads to two distinct lines: crosses are for even values and plus signs are for odd values
of Q
p-

The denominator can be evaluated exactly: D=16/3. All other steps described above can be
applied to the one-electron system.

In Fig. 9 we show the unexpected results. In place of the linear relation found for two-electron
systems, we obtain an alternating convergence pattern. As (2, increases from an odd value to the
next even value the numerator increases significantly while the denominator remains unchanged
to 7 or 8 significant figures. With the next increase in €2, the increase in D resumes. This effect
produces two distict lines. We were able to carry the calculations up to €,=22, at which point
AD=0.057. The extrapolations to AD=0 give In(K)=2.987 125 (from odd values of 2,) and
In(K)=2.978 329 (from even values). Combining the two results we can report a ”best” value of
In(K)=2.9827 £0.0044 which should be compared to the accurate value of Haywood and Morgan
I11 [98] In(kK)=2.984 129; our generous error does include this value.

We have not been able to understand this irregular convergence and this remains an interesting
unanswered question.

Rydberg States of Li

Traditionally, eigenvalues and eigenfunctions are calculated by the use of the Rayleigh-Ritz
variational principle. This procedure has been carried out for states with high quantum numbers,
N and L, as well [99]. The disadvantage is eigenvalues of all the states below the state of interest
have to be calculated. Drachman realized that when N is large, say 10, the outer electron is so far
away [100 ¢o compared to ag for the core electrons] from the spherically symmetric core that it does
not have much electron-electron correlations, the type taken into account by the Hylleraas functions,
with the core electrons. Even the exchange is not important, and most of the of correlations can
be taken into account by considering only the long-range interactions. On this basis, he developed
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a formalism [100] to calculate energies of states of interest only, using the Feshbach projection
operator technique. Since the exchange can be ignored Eq. (71) simplifies to

P = P = |¢o >< ¢ol. (197)

The formalism is rather complicated and I give the final result for the effective potential seen by
the outer electron at a distance z from the nucleus:

6981 — a2 . 0+ 16¢°1/5
V) = -y HAe or 1% n/

L D0 + 15¢8; — € + a1 51 — 72¢*y1[1 + L(L + 1) /10]
xs

...... (198)

I alluded to this form in Eq. (155), where I indicated the importance of polarizabilities in the
Rydberg states. The core coefficients are described below:

; < 0|Vi|n >< n|V;]|0 >
52 sierys S ><alin >

(199)

Here, as mentioned before, a; = Sl i3 = Sa,i, and ; = S3;. The third-order polarizability has
the form:

_ o= < 0|Viln >< n|Vj|lm >< m|Vi]|0 >
0= Y T B ) (B — )

(200)

n,m

The values that (ijk) can take are all the permutations of [112]. Finally, the fourth-order hyper-
polarizabilty involving the dipole terms has the form:

28 Z < 0|V1|’Il >< n|V1|m >< m|V1|p >< p|V1|O > .

(Er — Eo)(Em — Fo) (E, — Eo) (201)

n,m,p

Drachman [100] developed the formalism for helium atoms and showed that he could obtain
the same result as Drake [99] did for the eigenvalues, e.g., N=10 and L=6 his result £=-105.829
80+0.00014 compares very well with -105.829 683 489 MHz of Drake (cf. Table III of Ref. [100]).

Up to now I have not given the interaction potentials Vi, V3, and V3. We are now interested in
the Rydberg states of Li where the spherical core is He-like and therefore, I give below expressions
[101] for three-electron systems:

_2¢%w [24+(Z - 1)K A
Vi= 2 [ 2+ K ] Pl(w X), (202)
2¢° | . o . A . 4K + ZK? . o
Vy, = Py [rsz(rl -X) + r%PZ(r2 -X) — szPg(w x)] , (203)
2-K . . 4K - 2K?* - ZK? o
V3 == .’13_4 I:H—K[T?P:«;(rl . X) + T%Pg,(l‘z . X)] - (2 T I{)B w3P3(w . X)] y (204)
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where w = r; +r; and ¢ ~1+K?2/2. In Table XX we give the various quantities for “Lit and
6Lit, which have been calculated by using the appropriate Hylleraas type wavefunctions for the
ground state and intermediate pseudostates of angular momentum L=1, 2, and 3. Again we use
the method of pseudostate summation.

Table XX. Best values of the core parameters used in
constructing the effective potential. The upper
entry is for ®Li and the lower one is for “Li.
a1 B N Qi
0.192 490 771 0.035 286 879 0.006 806 377 0.113 825 934
0.192 485 410 0.035 286 017 0.006 806 227 0.113 834 685

B2 Y2 ) €
0.016 670 328 0.168 351237 0.121 337 559 0.027 039 600
0.016 671 511 0.168 362 339 0.121 345411 0.027 038 073

From the core parameters of Table XX the effective potential of Eq. (198) can be constructed
explicitly. Numerically, this potential is

0.19248540  0.097881 0.143125  0.428584 + 0.049005L (L + 1)
- z? T z8 T z7 - x8

U(z) = (205)
for the case of “Li. We use the following expression for the energy shift A(NL) away from the
unperturbed energy -R/N?

ANE) = R [(Us+ Us) + 307+ Usl) £ 5[ + Uil (206)

where the reduced Rydberg R=3.289 584 678 x10° MHz for "Li, and where Uy, is the expectation
value of that term in U(x) which goes like z7*. Since the unperturbed wavefunction of the outer
electron is purely hydrogenic, these expectation values can be evaluated analytically and exactly.
Some results are given in Table XXI for N=10 and various values of L (cf. Table II of Ref. [101]
for values for other NV and L).

Table XXI. Level shifts (in MHz) for "Li for N=10
due to the effective potential terms Uy. The total
and error are obtained as described in Eq. (206).

Uy Us Ur+ Us Total Error
-511.674 2.332 -0.229 -509.457  0.115
-177.1181  0.3007 -0.0022 -176.8185 0.0011
-72.5341 0.0541 0.0005 -72.4798  0.0003

-33.29026  0.01190  0.00014 -33.27829 0.00007
-16.554171 0.002929 0.000033 -16.51226 0.000017
-8.712722  0.000738 0.000007  -8.711981 0.000004

© 00 1O U

Since Us has been included, a;/z* should also be included to the second order. That is
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A = 2’: < NL|oy/2*|N'L >< N'L|ay/z4|NL >
2= En — Eny

(207)
N

Here the intermediate states N’L are the hydrogenic states of the outer electron. This quantity
has been calculated for He [100], A, for "Li can be obtained by scaling the results for He; A being
proportional to a?. The results, given in Table XXII, are again shown only for the N=10 and
various L. The large relativistic correction due to increase in mass with velocity has been discussed
by Bethe and Salpeter [102] and some details are given in [101], as well. We obtained the following

expression for the leading relativistic correction:

o®R[ 3 K 2

e T Prde R T

(208)
which is accurate up to order K%. Again some results are given in Table XXII.

Table XXII. Second-order corrections, leading realtivistic
corrections, and the final total shifts for “Li in MHz for N=10.

L A, Arel Total+Ag+Are

4 -0.097 -25.790 -535.3434+0.115

5 -0.0090 -18.7122 -195.5397+0.0011

6 -0.0012 -13.8122 -86.293240.0003

7 -0.0022 -10.218 88 -43.497 3940.000 07

8 -0.000 046 -7.471035 -24.022 31+£0.000 02

9 -0.000 011 -5.301687 -14.013 67940.000 0004

The fine-structure splitting for the N=10 manifold are shown in Table XXIII, where they are
compared with the accurate measurements of Rothery et al. [103].

Table XXIII. Fine-structure splitting for the N=10 manifold of "Li.

Interval Enegy shift(MHz) Experiment [103] (MHz)
10G-10H 339.80+0.011 339.7186+0.0031
10H-101 109.246 6+0.001 1 109.2140+0.0047
107-10K 42.795 84+0.000 3

10K-10L 19.475 0840.000 07
10L-10M 10.008 6340.000 02

Considering the accuracy of the measurements, the agreement between theory and experiment
is not very good. Drachman and I [104] extended our work [101] to included corrections to the
third order to improve the agreement.

Relativistic Correction to the Polarization Potential

We wish to compute a correction to the energy shift of a Rydberg level due to the Breit-Pauli
relativistic Hamiltonian of order o?. Thus we must carry out a third-order perturbation calculation
which has the form

0|k h h|0 0|k h|0
V3(93)=Z< |h|n >< nlh|lm >< m|h|0 > Z< |h|n >< nlh| ><0|h10>, (209)

(Eo — En)(Eo — Em) - (Eo — Ey)?

n,m
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where h=Il4ip + Hpp. The expression for the Breit-Pauli Hamiltonian Hpp = B has been given in
Eq. (175) and

2 .
Hdip = z—2(r1 + 1‘2) - X. (210)

Keeping terms to order o? results in the following:

Va2 _ Z [< O‘Hdip|n >< n|Hgp|m >< m|Hgip|0 > +2< 0|Hgip|n >< andip|m >< m|Hgp|0 >
’ n,m (EO - Eﬂ) (EO - Em) (EO - En) (EO - Em)
< OIHdip|n >< andiplo >
Aal

where we have taken account of the facts that the ground state has angular momentum L=0, the
excited states n,m are L=0 or 1, and Hpp is rotationally invariant. Our best-converged result,
obtained with 161 terms with L=0 and 165 terms with L=1 is Aa; =-4.518x107°.

Retardation Corrections

As indicated earlier, the Rydberg electron is at a distance from the nucleus much greater
compared to the radius of the core. When the distance is greater than 137ag, the interaction is no
longer purely Coulomb in character. This is because the delay due to the finite light propagation
time between the core and the outer electron is comparable to the characteristic time ¢ = ao/v.
This retardation (or Casimir effect) brings in a new type of term [105] in the effective potential
acting on the Rydberg electron that falls off like =>. Au, Feinberg, and Sucher [106] have given
the following expressions for the modification of the effective potential producing the energy shift
in the state (1s2NL):

16 « |< 1|21 + 220 > |2
NL :
~ s I, 212
ARet T & (En — EO)Z ( )
© dt o dr —22nt 2 4 3
L= /0 m/() FRNL(fE)e [3 =52, + 2 + (62 — 22,)1]
00 dl’ 2 z3 37T
_Zn _ 97 1
-|-/0 —s Bk (@) [6zn 5 2} : (213)

where zn:%ax(En — Ep). The evaluation of this correction is rather complicated. Nevertheless,
we have evaluated the retardation corrections from N=>5 to N=21. We give results for the N=10
manifold only in Table XXIV.

Table XXIV. Retardation corrections for lithium in MHz for N=10 manifold.
L=9 L=8 L="7 L=6 L=5 L=4
0.000646286 0.00142682 0.00325464 0.00790948 0.0212477 0.0653658

49



Symposium on Atomic & Molecular Physics

Lamb-Shift Corrections

Since we are interested in the L-dependent fine-structure splitting of the Rydberg levels only the
change in the Lamb shift of the two-electron core due its interaction with the outer electron needs to
be calculated. The main parts of the Lamb shift (mass renormalization, vacuum polarization, and
radiative corrections to the magnetic moment) can be written in terms of (< §(ry) >+< §(rz) >),
and it is necessary to calculate the dependence of these § functions on the state of the outer electron.
Following Goldman and Drake [107] we can write the expression for the two-electron Lamb shift as

AN = ;Zoz2 —2lna + ;l;g - an] (< 8(ry) >+ < 8(r2) >). (214)

Here the é functions refer to the two core electrons but are influenced by the outer electron. This
correction is proportional to the expectation value of 1/z* and behaves like another correction to
the dipole polarizability of the two-electron core. We can write the relativistic corrections as

1
Anr = [1.486 x 10° — 3.103 x 10%] <F> + ARE (215)
NL
where the quantities in the square bracket are the coefficients (in MHz) of the relativistic po-

larizability and Lamb-shift corrections, respectively. In Table XXV we show the three types of
corrections for the experimentally interesting N=10 and their total in MHz.

Table XXV. Relativistic, polarizablity, retardation, Lamb shift corrections
and the total uncorrected interval from Table XXII, in MHz, for N=10 manifold.

Uncorrected Relativistic

L shift polarizability Retardation Lamb shift Total

4 -535.343+0.115 0.1201 0.0654 -0.0252 -535.183+0.115
5 -195.5397+0.0011 0.0416 0.0212 -0.0087 -195.4864+0.0011
6 -86.2932+0.0003 0.0170 0.0079 -0.0036  -86.2719+0.0003
7 -43.49739+0.00007 0.0078 0.0033 -0.0016  -43.4879+0.0001
8  -24.02231+£0.00002 0.0039 0.0014 -0.0008 -24.0178

9 -14.01367940.000004 0.0020 0.0006 -0.0004 -14.0115

Finally, in Table XXVI we compare the experimental fine-structure intervals for lithium [103]
with the theoretical totals including the uncorrected values and the three small corrections. It is
clear that there is better agreement when the small corrections are included. IHowever, higher-order
corrections and more measurements seem to be warranted.

Table XXVI. Comparison of level differences for lithium,
in MHz, between theory and experiment [103].

Interval Experiment-Theory Standard deviation
10G-10H 0.02 0.11
10H-101 0.0003 0.0048

We [108] have carried out a similar calculation for CIV, O VI, and Ne VIII. But at present there
are no measurements accurate enough to compare with our calculations.
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Even though there are other interesting topics on which Dr. Drachman and I have worked
on together, I stop here. Instead, I mention below two more topics: one with others and one by
himself.

Positronium-hydrogen scattering resonances

Drachman once tried to insert the statement ”Nobody likes a smooth cross-section” in an article
on resonances, but the referee vetoed it. Nevertheless, there is much more interest in scattering
resonances than in bland nonresonant behavior. The Ps-H system is rich in interesting physics:
There is one particle-stable state called positronium hydride [PsH] with an energy of about 1 eV
below the free Ps+H threshold. Using both the stabilization method and the complex rotation
method Drachman and Houston [109] found an s-wave resonance in elastic Ps-H scattering at
about 4.5 eV.

Since interesting physics usually emerges from the analysis of resonances, it was of interest to
understand the mechanism producing this resonance. At first, it was thought that it was due to
some threshold process like that producing resonances in electron-hydrogen scattering below the
n=2 threshold, but the position obtained was not close enough to a threshold to make this plausible.
The best explanation describes it as a Feshbach resonance [110] in which the closed-channel part
of the scattering function is the re-arranged system et-H™, corresponding to perturbed hydrogenic
bound states. Because of the long-range Coulomb potential between the positron and the negative
hydrogen ion one can predict that there should be an infinite series of resonances, of which the one
found by Houston and Drachman [109] is just the first. Since the hydrogen ion exists only in the
singlet spin state these resonances should not occur in the triplet state. No reliable calculation has
found triplet resonances.

There are more subtleties in this system, including some problems with the low-lying resonances
expected for L >0 [111] and these have been examined very recently by De Rienzi and Drachman
[112,113]. More about this interesting system can be found in the presentation by Dr. H. R. J.
Walters in this volume.

Hyperfine Splitting in Muonic Helium

Huang and Hughes [114] calculated the Fermi contact term which yields the hyperfine splitting
of the ground state of the muonic helium system (a**pu~e™) by using a Hylleraas expansion. They
required hundreds of terms in the expansion because of the slow convergence. Drachman [115]
noticed that the first term in this expansion gave 99.4% of the contribution, suspecting that a per-
turbative treatment could be an appropriate way of calculating the Fermi contact term. The large
ratio of muonic mass to electron mass suggests an adiabatic Born-Oppenheimer approximation.

The nonrelativistic Hamiltonian of this system is

1 1 4 4 2
2 2 _Z_Z2 4

H=-—V2__Vv2_ _Z
M'® m' " =z r |x-—r|

(216)
x and r are the coordinates of the muon and electron, respectively, relative to the nucleus. The

reduced masses are M=201.069 and m=0.999863 in units of m.. The hyperfine splitting is given
by
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Av =K / dxdr¥?(x,r)8(x — 1), (217)

where U is the ground state eigenfunction of H, and K= 14196.11 MHz. In the Born-oppenheimer
method, two of the particles are held fixed while we solve for the wave function of the other particle.
We hold the muon (x) fixed and solve for 9 (r) of the electron with x as a parameter

(V2= 24 Vixr) - ) i) =0, (218)

where V(x,r) = -2 +

2r|' As indicated in Eq. (106), the solution of Eq. (218) can be written as

x—

¥x(r) = Po(r)[1 + G(x,1)], (219)
where
3\ /2
Po(r) = <?) e ™", (220)

satisfies the Coulomb problem and G is due to the adiabatic perturbation V(x,r). At this point,
Drachman expands G in a perturbation series in V' and its first order satisfies the equation (108)
0G,
ar

1
EVZGI -2 =V-<V>, (221)

where

<V o= [drpne)Vi(r) = 201 /e - m - e (1/2 + m)] (222)

is the expectation value of V. Dalgarno and Lynn [51] have solved an equation similar to Eq. (221)
but for an electron in the field of two fixed positive charges. Using their solution with suitable
modification, Drachman obtains

Gi(x,x) = g—x—(Q/:v)El(Zr)—(1/:v+1)ln(2'yx) —e—zx{%+2x+(1/x+1)[21n(27}()—Ei(2x)]}, (223)

where F; is an exponential integral and Ei is defined in Eq. (114). Now we can solve Eq. (218) for

E; to obtain £, = —m+ <V > + < VG, > and determine the muonic wave function by solving
the equation

4

ivi -~ — B - E]2(x) = 0. (224)

= M

Since muon is close to the nucleus due to its large mass, only small values of z are significant and
the Coulomb term dominates. Therefore ignoring the third term, the solution is hydrogenic:

®(x) = (BM3 /) /22 Me, (225)
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Finally, letting ¥(x,r) = ®(x)¥x(r), Eq. (217) can be written explicitly as

Av = ﬁ(JVIm)S/ dza?e™/*[1 + 2G (mx, mx)], (226)
0

T

where @ = [4M + 2m]~! = 1.24 x 1073, and the term quadratic in G; has been dropped for
consistency, since it is of second order in V.

Expanding (G and retaining only the linear term in z, we obtain

Av =~ (32K/m)(mM)3(2a? — 12ma*)
(4483.38 — 33.36) MHz
= 4450.02 MHz. (227)

The quadratic term in G; contributes 0.689 MHz, while the cubic term is -0.005 MHz. Taking half
of the quadratic term as an error, the final result is thus Ay=4450.44-0.4 MHz. This agrees with

the result of Huang and Hughes [114] and is also close to the result obtained by Lakdawala and
Mohr [117].

This is an excellent example of good physics where a rather complicated problem has been
reduced by Dr. Drachman to a relatively simple problem by realizing that the muon is so close
to the nucleus that it acts as a hydrogenic system and the rest of the problem is amenable to an
adiabatic perturbation treatment, where already some available results could be used gainfully to
obtain fairly accurate results. Understanding the intricacies of a problem and solving it in a simple
way has been the hallmark of Dr. Drachman’s research work throughout.

[ wish to thank Keith Feggans for retrieving figures, given in this article, from various published
papers.
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