Lunar Frozen Orbits

Background

© The direction of NASA's ESMD for exploration architectures
© Focus on the need for minimal stationkeeping cost and constant (maximum) range for relay and communications to robotic and sortie locations
$\mathbb{\circledR}$ Recent advances in lunar mission design experience and associated model updates from Lunar Prospector ('99) at 100 km and 30 km circular mean altitudes and Clementine ('94) in an elliptical 400 km by 3000 km altitude
© Previous (1963) and recent work on the interaction of perturbations that permit lunar frozen orbits (LFO).

- Lidov, m.L., (1963), Ely and Lieb (2005),
- Ramanan and V. Adimurthy (2005), Park S.Y. and Junkins (1995)
- Elipe and Lara, (2003), Folta (1998, 1999 (post-LP mission results))
\mathbb{C} Global analysis at two orbit regimes: elliptical orbits and low lunar orbits

Basic Lunar Orbit Mechanics

A Few Observations From GSFC Operational Experience

Goddard Space Flight Center

Lunar Orbit

- For Polar orbit, orbit plane is inertial fixed, no major precession in orbit node
- Lunar Gravity (potential) is major perturbation below 500km altitude
- Best available gravity model is from Lunar Prospector mission (deg and order of 165)
\checkmark No data is available from far-side of moon (no tracking exist)
- Potential causes eccentricity to increase, lowering periapsis, and argument of periapsis to drift \checkmark Lunar impact in ~ 4 weeks from $30 \mathrm{~km}, \sim 6$ weeks from $50 \mathrm{~km}, \sim 4$ months from 100 km
- Uncertainty in navigation accuracy (e.g. at 50 km mean altitude, uncertainty is $\sim 50 \mathrm{~m} 1 \sigma$)
- Inclination varies sinusoidally $+/-0.5$ deg over several days with several deg secular drift per year
- Earth and Sun are major perturbations above 500 km
- Effects depend on orbit shape
\checkmark Highly elliptical, e.g. $2000 \times 10000 \mathrm{~km}$ orbits impact within weeks \checkmark Have high rotation rate of line of apsides, e.g. 10deg over 1 month
\checkmark Inclination changes are large
- Circular orbits are more stable but show inclination drift

Frozen Orbits - Earth, a Review

Useful for maintaining a, orbit altitude repeatability, and $e \& \omega$ control

$$
\begin{gathered}
\frac{\partial \Omega}{\partial t}=-\frac{3}{2} \mathrm{~J}_{2} \sqrt{\mu_{\oplus}} R_{\oplus}^{2} a^{-\frac{7}{2}}\left(1-e^{2}\right)^{-2} \cos i \\
\frac{\partial e}{\partial t}=-\frac{3}{2} \mathrm{~J}_{3} \sqrt{\mu_{\oplus}} R_{\oplus}^{3} a^{-\frac{y}{2}}\left(1-e^{2}\right)^{-2} \sin i\left(1-\frac{5}{4} \sin ^{2} i\right) \cos \omega \\
\frac{\partial \omega}{\partial t}=3 \mathrm{~J}_{2} \sqrt{\mu_{\oplus}} R_{\oplus}^{2} a^{-\frac{7}{2}}\left(1-e^{2}\right)^{-2}\left(1-\frac{5}{4} \sin ^{2} i\right)\left\{1+\frac{\mathrm{J}_{3} R_{\oplus}}{2 \mathrm{~J}_{2} a\left(1-e^{2}\right)}\left(\frac{\sin ^{2} i-e^{2} \cos ^{2} i}{\sin i}\right) \frac{\sin \omega}{e}\right\}
\end{gathered}
$$

General Lunar Orbit Properties

- Lunar Orbit is affected by
o Third-body accelerations
o Lunar gravity (potential model)
o Solar radiation pressure

© Semi-major (a) axis remains constant.
- Minor changes to orbital velocity, but usually balanced.
© Ascending Node (Ω) remains inertially fixed for low lunar orbits at $i=90^{\circ}$.
- Small torques on orbit angular momentum in the lunar equator frame as a result of Earth gravity.
\mathbb{C} Argument of Periapsis (ω) will drift within the orbit plane.
© Eccentricity (e) will oscillate and have secular drift.

Planetary Equations and Forcing Functions
 (Lidov Reference)

© Established the perturbation frame, and derived the $3^{\text {rd }}$ body disturbance function averaged over one month (one apparent orbit of the Earth about the Moon) and one spacecraft orbit
© Applied to Lagrange Planetary Equations $F_{\text {Yields: }}=\frac{1}{2} n^{2} a^{2}\left[\left(1+3 e^{2}\right)+30 e^{2} \sin ^{2} i \cos 2 \omega\right]$
Semi-major axis: $\quad \frac{\partial a}{\partial t}=0$

Eccentricity:

$$
\frac{\partial e}{\partial t}=\frac{15}{8} \frac{n_{3}^{2}}{n} e\left(1-e^{2}\right)^{\frac{1}{2}} \sin ^{2} i \sin 2 \omega
$$

Inclination:

$$
\frac{\partial i}{\partial t}=-\frac{15}{16} \frac{n_{3}^{2}}{n} \frac{e^{2}}{\left(1-e^{2}\right)^{\frac{1}{2}}} \sin 2 i \sin 2 \omega
$$

Ascending Node:

$$
\frac{\partial \Omega}{\partial t}=\frac{3}{8} \frac{n_{3}^{2}}{n} \frac{1}{\left(1-e^{2}\right)^{\frac{1}{2}}}\left[5 e^{2} \cos 2 \omega-3 e^{2}-2\right] \cos i
$$

Arg. of Periapsis:

$$
\frac{\partial \omega}{\partial t}=\frac{3}{16} \frac{n_{3}^{2}}{n} \frac{1}{\left(1-e^{2}\right)^{\frac{1}{2}}}\left[\left(3+2 e^{2}+5 \cos 2 i\right)+5\left(1-2 e^{2}-\cos 2 i\right) \cos 2 \omega\right]
$$

Equations Applied to Elliptical Lunar Orbits

© There are no closed-form analytical solutions for frozen orbits below critical inclination of 39.23°
© For any inclinations between 39.23° through 140.77° (where $\omega=90^{\circ}$ or 270°), there exists an eccentricity which can be used to set both ω and e rates to zero; hence the frozen condition is satisfied.

Real solutions only

 when $i>39.23^{\circ}$$$
\omega=90^{\circ}, 270^{\circ}
$$

Evolution of e and ω

© For a given set of orbital parameters, we can use the relationship between eccentricity and inclination to find e for the given i and i for the given e.
\mathbb{c} Eccentricity and ω vary between their frozen values for e given i and i given e.

$e=0.6$	\Rightarrow	$i=51.707^{\circ}$
$i=45^{\circ}$	\Rightarrow	$e=0.4082$

Evolution of e and ω

© Increasing inclination, the oscillatory loops growing smaller until an inflection point is reached and the loops begin to grow in the opposite direction, where the e given i point has now become the upper point and similar, if less stable oscillatory behavior is observed.
© Inflection inclination is defined as the inclination at which the $e-i$ point converge to a single point.
© Inherent instability is observed in the outward spiral seen in the long-term orbit evolution
© The closer eccentricity and inclination conform to the frozen condition, the more stable the orbit becomes.

Global Frozen Conditions for Elliptical Lunar Orbits

© Using formulation, the evolution of e and ω can be derived for any i.
© Starting at $\omega=270$ or $\omega=90,(\cos (\omega)=0)$, the orbit evolves along the i contour, with e increasing and decreasing.
© Some a and e combinations will not permit a full cycle

Evolution with $e=0.6$ and various i

Evolution of e and ω Effects of Variation in Initial e

© As e is reduced, inclination inflection point also changes © Critical inclination is still the the same at 39.23°

Inflection points

Evolution of e and ω Numerical Verification

© Using full ephemeris and perturbation models with RK8/9 integration.
© Small loops due to changes in accelerations from lunar orbit eccentricity and orbital alignment WRT Earth. © Shows general analytical form is preserved.

a: Analytical Solution
b: Numerical Solution

Lunar Frozen Orbit

Periapsis at south pole $\sim 30 \mathrm{~km}$ Apoapsis at north pole $\sim 150-230 \mathrm{~km}$

Lunar Gravity Accelerations From the 165 Degree and Order Potential Model

LP165 Lunar Potential Model Accelerations

LP165 Lunar Potential Model Accelerations

Low Lunar Orbit Polar Phase Plot

 Initial Conditions of $e=\mathbf{0 . 0}, \boldsymbol{i}=90^{\circ}, a=1838 \mathrm{~km}$© Lunar non-spherical gravity creates a predictable pattern in e vs ω polar phase plot.

- Assumes fixed Semi-Major Axis
© Pattern is repeatable every lunar sidereal period.
- Pattern repeats and is continuous
- Complete pattern generally moves left to right with side-by-side repeated sidereal patterns

© Pattern begins to warp outside of $e>0.02$ circle.

Low Lunar Orbit Polar Phase Plot $e=0.0, i=90^{\circ}, a=1838 \mathrm{~km}$

© Plot shows effect of lunar potential at 50 km mean altitude. © Point every ascending node.
© Lunar longitude labeled.

Low Lunar Orbits below 500 km altitudes

© Low lunar orbit dominated by lunar gravity potential.
© Gravity model defines the secular drift rates and the e and ω drift pattern.
\mathbb{C} Lunar prospector operational data show a secular drift about a centered location.
\mathbb{C} Use of simple differential corrector to vary initial conditions and target on minimal drift in e and ω.

Secular Drift with initial $e=0.0$,
$\omega=0.0^{\circ}, i=90^{\circ}, a=1838 \mathrm{~km}$

Frozen conditions with initial $e=0.043, \omega=$ $270^{\circ}, i=90^{\circ}, a=1861 \mathrm{~km}$

Repeatable Frozen Orbit Phase Plot

No secular growth in e or ω because initial/final conditions match

- Minimum eccentricity of 0.0408 equal to $45 \times 197 \mathrm{~km}$
- Maximum eccentricity of 0.0509 equal to $26 \times 216 \mathrm{~km}$

Examnle Onlv_- Your recults

Lunar Elliptical Frozen Orbit Applications

【 Coverage to south pole with 62° inclination or two s / c in 45° inclination \mathbb{C} With $\mathrm{i}=62^{\circ}$ and a period of 12 hours, elevation angle near 60°, duration of 9 hours in a frozen orbit.
© With $\mathrm{i}=45^{\circ}$ and a period of 12 hours, elevation angle near 35°, duration of 6 hours, two s/c can provide continuous coverage in a frozen orbit.

- 5180 _-45i-40e

Time

Global Coverage using Frozen Orbits

\mathbb{C} Constellation Parameters: $2 \mathrm{~s} / \mathrm{c}$ per orbit plane, 18 hr orbits ($a \sim 8049, e=0.4082$) \mathbb{C} Orbit planes at right angle to each other but at $i=45^{\circ}$
\mathbb{C} For continuous and simultaneous coverage, two orbit planes with $\omega=90^{\circ}$ and 270° © Nodes separated by 180°
© Utilize 8 or 12 spacecraft

Precision landing Impact of Navigation Errors

Analysis of initial navigation impact on landing location from a low lunar orbit

Anticipated 100 km orbit navigation accuracy with current gravity model

- Long arc solutions (55 hrs): 50 m definitive and $<60 \mathrm{~m}$ predictive
- Short arc solutions (6 hrs): 400m definitive and $<450 \mathrm{~m}$ predictive

Assumed initial orbit navigation errors at start of descent:

- $\quad \mathrm{S} 1=25 \mathrm{~m}, 100 \mathrm{~m}, 100 \mathrm{~m}$ RIC (Radial, In-Track, Cross-Track) and no velocity error
- $\mathrm{S} 2=50 \mathrm{~m}, 200 \mathrm{~m}, 200 \mathrm{~m}$ RIC and no velocity error
- $\mathrm{S} 3=50 \mathrm{~m}, 200 \mathrm{~m}, 200 \mathrm{~m}$ RIC and $200 \mathrm{~mm} / \mathrm{s}, 200 \mathrm{~mm} / \mathrm{s}, 50 \mathrm{~mm} / \mathrm{s}$ RIC
- 1,000 trial Monte-Carlo simulation propagated with the nominal steering law.
- Mean position error and standard deviation
- $\quad \mathrm{S} 1$ is 125 m and 65 m respectively
- S2 with a mean of 253 m and a standard deviation of 134 m .

Precision landing Impact of Navigation Errors

Results

- Figures show distribution of landing location on the moon surface for each 1000 Monte-Carlo cases.
- Each red circle represents a distance in meters from the landing site.
- The grid lines represent latitude and longitude line on the moon surface.

State error	State error 50,200,200
$25,100,100$	w/ no vel error

Navigation
 Rendezvous and ProxOps

Navigation

Orbit Insertion and Pre-descent: All Architectures
 This navigation scenario taken from Operational experience of Lunar Prospector at $100 \mathrm{~km}, 40 \mathrm{~km}$, and 30 km circular orbit altitude and Clementine orbit of $400 \times 3000 \mathrm{~km}$.

- Continuous range and Doppler tracking from 12 hours before insertion
- Doppler accuracy of a least $8 \mathrm{~mm} / \mathrm{s}$
- North/South Stations when visible with convergence at 4 hours after start of solution using converged a-priori
- Continuous tracking of spacecraft through Lunar Insertion to descent phases
- Accuracy of $\sim 1 \mathrm{~km}$ and $\sim \mathrm{cm} / \mathrm{s}$ pre insertion
- Continuous tracking of a 55 hour data arc to provide convergence [note: short arc solutions are being analyzed]
- Accuracy of 50 m and $1 \mathrm{~cm} / \mathrm{s}$ anticipated post insertion (based on reprocessing of Lunar Prospector data)
- Continuous tracking during and after first Hohmann transfer maneuver to lower periapsis for final descent phase and hand-over.
- Accuracy of predicted state for handover to final autonomous landing is 100 m tbd and $2 \mathrm{~cm} / \mathrm{s}$ tbd.

Rendezvous \& Proximity Ops

Possible Rendezvous Sensor Capabilities

Accuracies are estimates only

Sensor/Measurement	Requirement		Design Capability	
Ground-based S-band ranging		Operational Range	Accuracy	Operational Range
- Doppler	When in view	1 km OD	When ground signal received	6 Hz
- Range	When in view	1 km OD	When ground signal received	$300-600 \mathrm{~m}$
Relative S-band ranging		$10 \mathrm{~km}-500 \mathrm{~m}$	$6 \mathrm{~Hz}(1 \mathrm{~m} / \mathrm{s})$	$20 \mathrm{Km}-250 \mathrm{~m}$
- Doppler	$10 \mathrm{~km}-500 \mathrm{~m}$	100 m	$20 \mathrm{Km}-250 \mathrm{~m}$	$30-60 \mathrm{~m}$
- Range				
Optical tracking	$10 \mathrm{~km}-2 \mathrm{~m}$	1 arcmin	$10 \mathrm{Km}-2 \mathrm{~m}$	$10 \mathrm{~cm} / \mathrm{s})$
- Bearing angles	$500 \mathrm{~m}-2 \mathrm{~m}$		1 m	$50 \mathrm{~m}-2 \mathrm{~m}$
- Range	$500 \mathrm{~m}-2 \mathrm{~m}$	$10 \mathrm{~cm} / \mathrm{s}$	$50 \mathrm{~m}-2 \mathrm{~m}$	10 cm
- Range Rate		$1 \mathrm{~cm} / \mathrm{s}$		

Launch and Orbit Raise

Using Lunar Potential to Raise Periapsis and Extend Lifetime

- The optimal orbit that results in greater than a 45 day lifetime, taking into account longitudes, overall altitudes and lifetimes and trying to minimize fuel used is
\checkmark Periapsis Altitude $=10 \mathrm{~km}$
\checkmark Apoapsis Altitude $=200 \mathrm{~km}$
\checkmark Lunar Launch Longitude $=40$ degrees (0-180 range)
- From the first day the orbit shows an increasing instantaneous periapsis altitude (e decreases without ω drift)
- Sensitivity analysis performed on optimal orbit shows a +/- 1deg pitch tolerance and a 2% maneuver performance limit. Yields an attitude margins $\sim 50 \%$.

Longitude vs. Lifetime for Various Periapsis and Apoapsis Combinations

Lifetime for Various Thrust and Pitch Combinations

Post Ascent LSSR Orbit Spherical Altitude

- Full Fidelity with Lunar Gravity (100deg \& order)
- 30-day Simulation of 90-deg and 1-deg Inclinations
- Use of Natural Perturbations to Increase Perilune and Extend lifetime
- Based on GSFC Lunar Prospector Operational Support (30km orbit)

General Lunar Mission Design Slides John move to where you need them:

- Direct vs. Weak Stability Transfer
- Launch Energy and Insertion Δ Vs
-Return 1 Vs

Robotic Lunar Missions - Successes and Failures 57 missions - 9 failures, 24 US Missions

Pioneer program

Pioneer 0 (USA, 1958) - failure - orbiter Pioneer 1 (USA, 1958) - failure - orbiter Pioneer 3 (USA, 1958) - failure - flyby Pioneer 4 (USA, 1959) - partial success - flyby Luna programme

See also: Lunokhod programme
Luna 1 (Soviet Union, 1959) - success - flyby
Luna 2 (Soviet Union, 1959) - success - impactor
Luna 3 (Soviet Union, 1959) - success - flyby
Luna 4 (Soviet Union, 1963) - partial failure - lander (became probe)
Luna 9 (Soviet Union, 1966) - success - lander
Luna 10 (Soviet Union, 1966) - success - orbiter Luna 11 (Soviet Union, 1966) - success - orbiter Luna 12 (Soviet Union, 1966-67) - success - orbiter Luna 13 (Soviet Union, 1966) - success - lander Luna 14 (Soviet Union, 1968) - success - orbiter Luna 16 (Soviet Union, 1970) - success - sample return Luna 17 (Soviet Union, 1970) - success - lander

Lunokhod 1 (Soviet Union, 1970-71) - success - rover
Luna 19 (Soviet Union, 1971-72) - success - orbiter
Luna 20 (Soviet Union, 1972) - success - lander
Luna 21 (Soviet Union, 1973) - success - lander
Lunokhod 2 (Soviet Union, 1973) - success - rover
Luna 22 (Soviet Union, 1974-75) - success - orbiter Luna 24 (Soviet Union, 1976) - success - lander

Ranger program

Ranger 3 (USA, 1962) - failure - impactor
Ranger 4 (USA, 1962) - success - impactor
Ranger 5 (USA, 1962) - partial failure - impactor (became flyby)
Ranger 6 (USA, 1964) - failure - impactor
Ranger 7 (USA, 1964) - success - impactor
Ranger 8 (USA, 1964) - success - impactor
Ranger 9 (USA, 1964) - success - impactor

Zond program

Zond 3 (Soviet Union, 1965) - success - flyby
Zond 5 (Soviet Union, 1968) - success - flyby
Zond 6 (Soviet Union, 1968) - success - flyby
Zond 7 (Soviet Union, 1969) - success - flyby
Zond 8 (Soviet Union, 1970) - success - flyby

Surveyor program

Surveyor 1 (USA, 1966) - success - lander Surveyor 2 (USA, 1966) - crashed - lander Surveyor 3 (USA, 1967) - success - lander Surveyor 4 (USA, 1967) - crashed - lander Surveyor 5 (USA, 1967) - success - lander Surveyor 6 (USA, 1967) - success - lander Surveyor 7 (USA, 1968) - success - lander

Lunar Orbiter program

Lunar Orbiter 1 (USA, 1966) - success - orbiter
Lunar Orbiter 2 (USA, 1966-67) - success - orbiter Lunar Orbiter 3 (USA, 1967) - success - orbiter Lunar Orbiter 4 (USA, 1967) - success - orbiter Lunar Orbiter 5 (USA, 1967-68) - success - orbiter [Explorer 35
Explorer 35 (USA, 1967-73) - success - orbiter
Hiten
Hiten (Japan, 1990-93) - success - orbiter
Hagoromo (Japan, 1990) - failure - orbiter

Clementine

Clementine (USA, 1994) - success - orbiter
Lunar Prospector
Lunar Prospector (USA, 1998-99) - success - orbiter SMART-1
SMART-1 (ESA, 2003-06) - success - orbiter
Selene (JAXA, 2007-) - success - orbiter
Chang'e (China, 2007-) - success - orbiter
$\underline{\boldsymbol{L R O}}$ (USA, Launch 2008-) - - orbiter

High Priority Lunar Exploration Sites

North Pole
tAristarchus Plateau
+Rima Eode

South Pole
Near Side

17

Far Side

Sample C3 and a Polar Lunar Orbit Insertion $\Delta \mathrm{V}$ Variation over a Month

Sample Comparison of Direct and Weak Stability Boundary Transfers to a Low Lunar Orbit

Variation in Earth Return DVs
 for Selected Inclinations of 0,30,60,\& 90 degrees

-Figure show ΔV dependency on orbit plane angle to Earth (x-axis) and true anomaly (y-axis)

- Note: $\Delta \mathrm{Vs}$ are in $\mathrm{ft} / \mathrm{sec}$

