Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

Dongming Zhu and Robert A. Miller NASA Glenn Research Center 21000 Brookpark Road, Cleveland, Ohio 44135

Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

Dongming Zhu and Robert A. Miller

Durability and Protective Coatings Branch, Structures and Materials Division NASA John H. Glenn Research Center Cleveland, Ohio 44135, USA

> Contact: Dr. Dongming Zhu (216) 433-5422 Dongming.Zhu@nasa.gov

35th International Conference On Metallurgical Coatings And Thin Films (ICMCTF 2008) San Diego, California, April 27-May 2, 2008

Acknowledgments

This work was supported by NASA Fundamental Aeronautics (FA) Program Supersonics and Subsonic Rotary Wing Projects.

Collaborators

GE Aviation Pratt and Whitney Rolls Royce-Liberty Works SUNY/Mesoscibe Tech. Howmet Coatings Honeywell Engines UCSB Direct Vapor Technol.

Motivation

 Thermal barrier coatings (TBCs) can significantly increase gas temperatures, reduce cooling requirements, and improve engine fuel efficiency and reliability

(a) Current TBCs (b) Advanced TBCs

NASA Ceramic Coating Development Goals

— Meet engine temperature and performance requirements

- improved engine efficiency
- reduced emission
- increase long-term durability
- Improve technology readiness
- The programs require a step-increase in coating capability
- Reliability critical

- Simulated high-heat-flux testing approaches
 - Laser high heat flux
 - Burner and laser high temperature erosion
 - High pressure burner and high heat-flux capability
- Low conductivity thermal barrier coating developments
 - Low conductivity TBC design requirements
 - Performance of low k four-component TBC systems

Conductivity, and cyclic durability

- High toughness Low k four- and six-component turbine airfoil TBC development erosion resistance
- CMAS interaction testing
- Future directions
- Summary

High Heat-Flux Test Approaches

High-heat-flux tests crucial for turbine TBC developments

- CO₂ laser simulated turbine engine high-heat-flux rig
- Atmospheric burner rig simulated heat flux testing
- High pressure burner rig simulated engine heat flux and pressure environments

High Velocity Burner Erosion Rig and Laser high Heat Flux Erosion Test Rig for Turbine TBC Testing

Mach 0.3-1.0 burner erosion rig

Laser heat flux erosion rig

ZrO₂-(7-8) wt%Y₂O₃ Thermal Barrier Coating Systems

- Relatively low intrinsic thermal conductivity ~2.5 W/m-K
- High thermal expansion to better match superalloy substrates
- Good high temperature stability and mechanical properties
- Additional conductivity reduction by micro-porosity

Sintering and Conductivity Increase of ZrO₂-(7-8) wt%Y₂O₃

Sintering Kinetics of Plasma-Sprayed ZrO₂-8wt%Y₂O₃ Coatings

Zhu & Miller, Surf. Coat. Technol., 1998; MRS Bulletin, 2000

Sintering Cracks and Delaminations

 High heat flux surface sintering cracking and resulting coating delaminations

Sintering Cracks and Delaminations - continued

Sintering strain corresponding to the thermal gradient across the coating (T_{surface}=1280°C, T_{interface}=1095°F)

Low Conductivity and Sintering Resistant Thermal Barrier Coating Design Requirements

- Low conductivity ("1/2" of the baseline) retained at 2400°F
- Improved sintering resistance and phase stability (up to 3000°F)
- Excellent durability and mechanical properties
 - Cyclic life
 - Toughness
 - Erosion/impact resistance
 - CMAS and corrosion resistance
 - Compatibility with the substrate/TGO
- Processing capability using existing infrastructure and alternative coating systems
- Other design considerations
 - Favorable optical properties
 - Potentially suitable for various metal and ceramic components
 - Affordable and safe

Low Conductivity Thermal Barrier Coating Design Approaches

- Efforts on modifying coating microstructures and porosity, composite TBCs, or alternative oxide compounds
- Emphasize ZrO₂- or HfO₂-based alloy systems defect cluster approach for toughness consideration
- Advantages of defect cluster approach
 - Advanced design approach: design of the clustering
 - Better thermal stability: point defects are thermodynamically stable
 - **Improved sintering resistance:** effective defect concentration reduced and activation energies increased by clustering
 - Easy to fabricate: plasma-sprayed or EB-PVD processes

Development of Advanced Defect Cluster Low Conductivity Thermal Barrier Coatings

- Multi-component oxide defect clustering approach (Zhu and Miller, US Patents No. 6,812,176, No.7,001,859, and No. 7,186,466)
 - e.g.: ZrO₂-Y₂O₃-Nd₂O₃(Gd₂O₃,Sm₂O₃)-Yb₂O₃(Sc₂O₃) systems Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes

- Defect clusters associated with dopant segregation
- The nanometer sized clusters for reduced thermal conductivity, improved stability, and mechanical properties

Defect Clusters in a Plasma-Sprayed Y₂O₃, Nd₂O₃ and Yb₂O₃ Co-Doped ZrO₂-Thermal Barrier Coating

 Yb, Nd rich regions consisting of small clusters with size of 5 to 20 nm

Yb, Nd rich region clusters

Yb rich region EDS

Low Conductivity Defect Cluster Coatings Demonstrated Improved Thermal Stability

 Thermal conductivity significantly reduced at high temperatures for the low conductivity TBCs

Thermal Conductivity of Defect Cluster Thermal Barrier Coatings

 $(k_0, k_5 \text{ and } k_{20} \text{ are the initial thermal conductivity, and the conductivity at 5 and 20 hours, respectively)$

Thermal Conductivity of Defect Cluster Thermal Barrier Coatings

 Thermal conductivity benefit of oxide defect cluster thermal barrier coatings demonstrated

 $(k_0, and k_{20} are the initial thermal conductivity, and the conductivity at 5 and 20 hours, respectively)$

Furnace Cyclic Behavior of ZrO₂-(Y,Gd,Yb)₂O₃ Thermal Barrier Coatings

- t' low k TBCs had good cyclic durability
- The cubic-phase low conductivity TBC durability needed improvements

Furnace Cyclic Behavior of ZrO₂-(Y,Gd,Yb)₂O₃ Thermal Barrier Coatings - Continued

- t' low k TBCs had good cyclic durability
- The cubic-phase low conductivity TBC durability initially improved by an 7YSZ or low k t'-phase interlayer

Advanced Low Conductivity TBC Showed Excellent Cyclic Durability

Coating validated for down-selected low conductivity coating systems

Burner rig tests

Advanced Low Conductivity Combustor Thermal Barrier Coating Developments

- Low k TBC coated components demonstrated in simulated engine environments
- Low k TBC being incorporated in advanced engine development programs

Low conductivity TBC combustor liner demonstration in Combustor rig

Low conductivity TBC: combustor liner demonstration

Low conductivity TBC Propulsion 21 flame tube and deflector demonstrations

Erosion and Impact Resistant Turbine TBC Development

Multi-component ZrO₂ low k coatings showed promise in improving erosion and impact resistance

Erosion and impact resistance, measured as the erodent AI_2O_3 weight required to penetrate unit thickness coating

2200°F burner rig erosion

Advanced Multi-Component Erosion Resistant Turbine Blade Thermal Barrier Coating Development

- Rare earth (RE) and transition metal oxide defect clustering approach (US Patents No. 6,812,176, No.7,001,859, and 7,186,466; US patent application 11/510,574) specifically by additions of RE₂O₃ , TiO₂ and Ta₂O₅
- Significantly improved toughness, cyclic durability and erosion resistance while maintaining low thermal conductivity
- Improved thermal stability due to reduced diffusion at high temperature

ZrO₂-Y₂O₃- RE1 {e.g.,Gd₂O₃,Sm₂O₃}-RE2 {e.g.,Yb₂O₃,Sc₂O₃} – TT{TiO₂+Ta₂O₅} systems Primary stabilizer Oxide cluster dopants with distinctive ionic sizes

Furnace Cyclic Test Lifetime and Thermal Conductivity of TiO₂ Doped Thermal Barrier Coatings

Furnace Cyclic Lifetime of Advanced Turbine Thermal Barrier Coatings

Furnace cyclic life can be optimized with RE₂O₃ and TT additions
 Stability and volatility with too high TT concentrations

Cyclic Life of Four-Component Thermal Barrier Coatings

Furnace and high heat flux cyclic life being optimized for longterm durability

Thermal Conductivity of Selected Low k Thermal Barrier Coatings

Impact Resistance of Advanced Multi-component Low Conductivity Thermal Barrier Coatings

 Improved impact/erosion resistance observed for advanced low conductivity six-component coatings

Erosion Resistance of Advanced Multi-component Low Conductivity Thermal Barrier Coatings

The original cubic low k coating showed significant increase in erosion resistance due to the incorporation of TiO₂ and Ta₂O₅

NASA

Tetragonality of Multi-Component ZrO₂ being Evaluated and Correlated to Coating Performance

- Multi-component TiO_2/Ta_2O_5 and rare earth dopants increase the tetragonality (c/a ratio)
- Current efforts in optimizing the dopant composition ranges

Impact Failure of Advanced Multi-Component Low Conductivity Thermal Barrier Coatings

- Surface sintering and impact densification zones observed, with subsequent spallation under the erodent further impacts
- Toughened structures observed

SEM micrographs of advanced thermal barrier coating after impact/erosion damage

Secondary electron image

Backscattered electron image

NASA

Impact Failure of Advanced Multi-Component Low Conductivity Thermal Barrier Coatings

- Effect of erosion parameters will be modeled and validated

NASA

High Heat Flux Testing of Turbine EB-PVD Thermal Barrier Coatings to Study CMAS Effect

- Specimens typically tested at Tsurface ~2400°F, Tinterface 2000°F
- Heat flux up to 250-300 W/cm², cooling heat transfer coefficient up to h_c
 0.32 W/cm²⁻K
- Accelerated failure observed with CMAS interactions
- Advanced multi-component coatings completed 50 hr testing

Specimen under the rig test

Combustor TBC

Turbine TBCs

Future Directions for Low Conductivity TBC Development

- Emphasize high heat flux durability and erosion resistance
 - Optimize high toughness erosion resistant turbine coatings
 - Improve turbine airfoil TBCs with up to 3x erosion resistance
 - Emphasize creep, fatigue, erosion, and CMAS interactions
 - Develop multilayered damping and erosion coatings
 - Develop turbine blade TBC life prediction model

Future Directions for Low Conductivity TBC Development

- Emphasize thin ceramic matrix composite turbine coating processing
 - Advanced processing for integrated TEBCs
 - Ceramic nanocomposite and nanotube-based TEBCs for improved durability and optical properties
 - Embedded sensors
 - Life prediction methodology and design tool development

CMC combustor liner and vane

Summary

- Four-component low k TBC systems developed for low k combustor applications
- Advanced turbine airfoil TBCs being developed with combined low conductivity and high toughness
- Improved erosion/impact resistance observed for the multicomponent coating t' and t'/cubic nano-composite systems
- Coatings being optimized for cyclic life, thermal conductivity and erosion/impact and CMAS resistance
- High heat flux durability, multifunctional coatings and lifing models being emphasized in the current research programs