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Thermal barrier coatings will be more aggressively designed to protect gas turbine 

engine hot-section components in order to meet future engine higher fuel efficiency and 
lower emission goals. In this presentation, thermal barrier coating development 
considerations and performance will be emphasized. Advanced thermal barrier coatings 
have been developed using a multi-component defect clustering approach, and shown to 
have improved thermal stability and lower conductivity. The coating systems have been 
demonstrated for high temperature combustor applications. For thermal barrier coatings 
designed for turbine airfoil applications, further improved erosion and impact resistance 
are crucial for engine performance and durability. Erosion resistant thermal barrier 
coatings are being developed, with a current emphasis on the toughness improvements 
using a combined rare earth- and transition metal-oxide doping approach. The 
performance of the toughened thermal barrier coatings has been evaluated in burner rig 
and laser heat-flux rig simulated engine erosion and thermal gradient environments. The 
results have shown that the coating composition optimizations can effectively improve 
the erosion and impact resistance of the coating systems, while maintaining low thermal 
conductivity and cyclic durability. The erosion, impact and high heat-flux damage 
mechanisms of the thermal barrier coatings will also be described. 



National Aeronautics and Space Administration

www.nasa.gov

Advanced Low Conductivity Thermal Barrier 
Coatings: Performance and Future Directions 
Advanced Low Conductivity Thermal Barrier 
Coatings: Performance and Future Directions 

Dongming Zhu  and  Robert A. Miller

Durability and Protective Coatings Branch, Structures and Materials Division
NASA John H. Glenn Research Center

Cleveland, Ohio 44135, USA

35th International Conference On Metallurgical Coatings And Thin Films (ICMCTF 2008)
San Diego, California, April 27-May 2, 2008

Contact: Dr. Dongming Zhu
(216) 433-5422

Dongming.Zhu@nasa.gov



National Aeronautics and Space Administration

www.nasa.gov

Acknowledgments

This work was supported by NASA Fundamental Aeronautics 
(FA) Program Supersonics and Subsonic Rotary Wing Projects.

Howmet Coatings
Honeywell Engines
UCSB
Direct Vapor Technol.

GE Aviation
Pratt and Whitney
Rolls Royce-Liberty Works
SUNY/Mesoscibe Tech. 

Collaborators



National Aeronautics and Space Administration

www.nasa.gov

Motivation
— Thermal barrier coatings (TBCs) can significantly increase gas 

temperatures, reduce cooling requirements, and improve engine fuel 
efficiency and reliability

(a) Current TBCs (b) Advanced TBCs
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NASA Ceramic Coating Development Goals
— Meet engine temperature and performance requirements

- improved engine efficiency 
- reduced emission
- increase long-term durability

— Improve technology readiness
— The programs require a step-increase in coating capability
— Reliability critical
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Outline
─ Simulated high-heat-flux testing approaches

• Laser high heat flux
• Burner and laser high temperature erosion
• High pressure burner and high heat-flux capability

─ Low conductivity thermal barrier coating developments
• Low conductivity TBC design requirements 
• Performance of low k four-component TBC systems

Conductivity, and cyclic durability
• High toughness Low k four- and six-component turbine airfoil 

TBC development – erosion resistance
• CMAS interaction testing

─ Future directions

─ Summary
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High Heat-Flux Test Approaches
– High-heat-flux tests crucial for turbine TBC developments

• CO2 laser simulated turbine engine high-heat-flux rig
• Atmospheric burner rig simulated heat flux testing
• High pressure burner rig simulated engine heat flux and pressure environments 

High pressure burner 
rig combustion flow 
seen from viewport

TC

Atmospheric  burner 
rig

High power CO2 Laser high heat flux rig

Tsurface
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- ∆T ~450°F (250°C) across 5mil coating
- Heat flux up to 400 W/cm2
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High Velocity Burner Erosion Rig and Laser high Heat 
Flux Erosion Test Rig for Turbine TBC Testing

Erosion jet

High precision particle 
feeder system

Specimens under testing

Mach 0.3-1.0 burner erosion rig Laser heat flux erosion rig
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ZrO2-(7-8) wt%Y2O3
Thermal Barrier Coating Systems

 Relatively low intrinsic thermal conductivity ~2.5 W/m-K
 High thermal expansion to better match superalloy substrates
 Good high temperature stability and mechanical properties
 Additional conductivity reduction by micro-porosity

100 µm

Ceramic coating

Bond coat

(a) Plasma-sprayed coating

25 µm

Ceramic coating

Bond coat

(b) EB-PVD coating
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Conductivity reduction by microcracks and microporosity

— Significant conductivity increase at high temperature due to sintering
— Accelerated failure due to phase stability and reduced strain tolerance

Intrinsic ZrO2-Y2O3

conductivity

As received 
conductivity
(EB-PVD)
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conductivity
(Plasma Coating )

20-hr rise 
at 1316°C
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at 1400°C
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at 1371°C

Sintering and Conductivity Increase of ZrO2-(7-8) 
wt%Y2O3
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Sintering Kinetics of Plasma-Sprayed ZrO2-8wt%Y2O3
Coatings
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Sintering Cracks and Delaminations

— High heat flux surface sintering cracking and resulting coating 
delaminations

Tsurface=1280°C
Tinterface=1095°C
Thickness=130 µm

Zhu et al, Surf. Coat. Tech., 138 (2001), 1-8

surface vertical cracks

Delamination cracks

50 µm
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Sintering Cracks and Delaminations
- continued

— Sintering strain corresponding to the thermal gradient across the 
coating (Tsurface=1280°C, Tinterface=1095°F)
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Low Conductivity and Sintering Resistant Thermal 
Barrier Coating Design Requirements 

— Low conductivity (“1/2” of the baseline) retained at 2400°F
— Improved sintering resistance and phase stability (up to 3000°F)
— Excellent durability and mechanical properties

• Cyclic life
• Toughness
• Erosion/impact resistance
• CMAS and corrosion resistance
• Compatibility with the substrate/TGO

— Processing capability using existing infrastructure and alternative 
coating systems

— Other design considerations
• Favorable optical properties
• Potentially suitable for various metal and ceramic components 
• Affordable and safe
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Low Conductivity Thermal Barrier Coating Design 
Approaches 

 Efforts on modifying coating microstructures and porosity, 
composite TBCs, or alternative oxide compounds

 Emphasize ZrO2- or HfO2-based alloy systems – defect cluster 
approach for toughness consideration

 Advantages of defect cluster approach

• Advanced design approach: design of the clustering

• Better thermal stability: point defects are thermodynamically 
stable

• Improved sintering resistance: effective defect concentration 
reduced and activation energies increased by clustering

• Easy to fabricate: plasma-sprayed or EB-PVD processes
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Development of Advanced Defect Cluster Low 
Conductivity Thermal Barrier Coatings

— Multi-component oxide defect clustering approach (Zhu and Miller, US 
Patents No. 6,812,176,  No.7,001,859, and No. 7,186,466)

— Defect clusters associated with dopant segregation
— The nanometer sized clusters for reduced thermal conductivity, improved 

stability, and mechanical properties

EELS elemental maps of EB-PVD ZrO2-
(Y, Gd,Yb)2O3

Plasma-sprayed ZrO2-(Y, 
Nd,Yb)2O3

EB-PVD ZrO2-(Y, 
Nd,Yb)2O3

e.g.: ZrO2-Y2O3-Nd2O3(Gd2O3,Sm2O3)-Yb2O3(Sc2O3) systems
Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes

Zhu et al, Ceram. Eng. Sci. Proc., 2003
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Defect Clusters in a Plasma-Sprayed Y2O3, Nd2O3 and 
Yb2O3 Co-Doped ZrO2-Thermal Barrier Coating

— Yb, Nd rich regions consisting of small clusters with size of 5 to 
20 nm
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Low Conductivity Defect Cluster Coatings 
Demonstrated Improved Thermal Stability

(a) Plasma-sprayed coatings
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— Thermal conductivity significantly reduced at high temperatures for the 
low conductivity TBCs
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Thermal Conductivity of Defect Cluster Thermal 
Barrier Coatings

(k0, k5 and k20 are the initial thermal conductivity, and the conductivity at 5 and20 hours, respectively)
EB-PVD coatings
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Thermal Conductivity of Defect Cluster Thermal 
Barrier Coatings

— Thermal conductivity benefit of oxide defect cluster thermal barrier 
coatings demonstrated

Plasma-sprayed coatings
(k0, and k20 are the initial thermal conductivity, and the conductivity at 5 and20 hours, respectively)
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Furnace Cyclic Behavior of ZrO2-(Y,Gd,Yb)2O3
Thermal Barrier Coatings 

― t’ low k TBCs had good cyclic durability
― The cubic-phase low conductivity TBC durability needed improvements

Zhu and Miller, Ceram. Sci. Eng. Proc., 2002 
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Furnace Cyclic Behavior of ZrO2-(Y,Gd,Yb)2O3
Thermal Barrier Coatings - Continued

― t’ low k TBCs had good cyclic durability
― The cubic-phase low conductivity TBC durability initially improved by an 

7YSZ or low k t’-phase interlayer
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Advanced Low Conductivity TBC Showed Excellent 
Cyclic Durability

― Coating validated for down-selected low conductivity coating systems
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Advanced Low Conductivity Combustor Thermal 
Barrier Coating Developments

― Low k TBC coated components demonstrated in simulated engine 
environments 

― Low k TBC being incorporated in advanced engine development programs

Low conductivity TBC combustor 
liner demonstration in Combustor rig

Low conductivity TBC Propulsion 
21 flame tube and deflector 

demonstrations

Low conductivity TBC flame tube and combustor deflector 
demos in Advanced Subsonic Combustion Rig (ASCR)

Flame tube

Low conductivity TBC: 
combustor liner 
demonstration

Outer liner

Inner liner
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Erosion and Impact Resistant Turbine TBC Development

— Multi-component ZrO2 low k coatings showed promise in improving 
erosion and impact resistance
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Advanced Multi-Component Erosion Resistant  
Turbine Blade Thermal Barrier Coating Development

─ Rare earth (RE) and transition metal oxide defect clustering approach (US 
Patents No. 6,812,176,  No.7,001,859, and 7,186,466; US patent application 
11/510,574 ) specifically by additions of RE2O3 , TiO2 and Ta2O5

─ Significantly improved toughness, cyclic durability and erosion 
resistance while maintaining low thermal conductivity

─ Improved thermal stability due to reduced diffusion at high temperature

ZrO2-Y2O3- RE1 {e.g.,Gd2O3,Sm2O3}-RE2 {e.g.,Yb2O3,Sc2O3} – TT{TiO2+Ta2O5} systems
Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes
Toughening dopants
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Furnace Cyclic Test Lifetime and Thermal 
Conductivity of TiO2 Doped Thermal Barrier Coatings

─ Unpublished work 2003
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Furnace Cyclic Lifetime of Advanced Turbine Thermal 
Barrier Coatings

─ Furnace cyclic life can be optimized with RE2O3 and TT additions
─ Stability and volatility with too high TT concentrations
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Cyclic Life of Four-Component Thermal Barrier Coatings
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Thermal Conductivity of Selected Low k Thermal Barrier 
Coatings
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Impact Resistance of Advanced Multi-component 
Low Conductivity Thermal Barrier Coatings

― Improved impact/erosion resistance observed for advanced low 
conductivity six-component coatings
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Erosion Resistance of Advanced Multi-component 
Low Conductivity Thermal Barrier Coatings

50 µm Al2O3

100% increase
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─ The original cubic low k coating showed significant increase in erosion 
resistance due to the incorporation of TiO2 and Ta2O5
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Tetragonality of Multi-Component ZrO2 being 
Evaluated and Correlated to Coating Performance

Area detector x-ray diffractometer 
used for EB-PVD coatings
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─ Multi-component TiO2/Ta2O5 and rare earth dopants increase the 
tetragonality (c/a ratio) 

─ Current efforts in optimizing the dopant composition ranges
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Impact Failure of Advanced Multi-Component Low 
Conductivity Thermal Barrier Coatings

30 um30 um

Surface sintering and 
impact densification zone

SEM micrographs of advanced thermal barrier coating after impact/erosion damage

Backscattered electron imageSecondary electron image

― Surface sintering and impact densification zones observed, with 
subsequent spallation under the erodent further impacts

― Toughened structures observed
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Impact Failure of Advanced Multi-Component Low 
Conductivity Thermal Barrier Coatings
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─ Effect of erosion parameters will be modeled and validated
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High Heat Flux Testing of Turbine EB-PVD Thermal 
Barrier Coatings to Study CMAS Effect

─ Specimens typically tested at Tsurface ~2400ºF, Tinterface 2000°F
─ Heat flux up to 250-300 W/cm2, cooling heat transfer coefficient up to hc

0.32 W/cm2-K
─ Accelerated failure observed with CMAS interactions 
─ Advanced multi-component coatings completed 50 hr testing

Specimen under the rig test

(a) Upon initial 
heating

(b) After testing

Combustor TBC

Baseline coating

Turbine TBCs

Advanced coatings
50 hrs
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Future Directions for Low Conductivity TBC 
Development

— Emphasize high heat flux durability and erosion resistance

- Optimize high toughness erosion resistant turbine coatings

- Improve turbine airfoil TBCs with up to 3x erosion resistance

- Emphasize creep, fatigue, erosion, and CMAS interactions

- Develop multilayered damping and erosion coatings

- Develop turbine blade TBC life prediction model
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High temperature capability thermal and 
radiation barrier

Energy dissipation and chemical barrier 
interlayer

Environmental barrier

Advanced bond coat

Ceramic matrix composite (CMC)

Tsurface >1482°C (2700°F)

Tcoating/CMC interface <1316°C (2400°F)

High temperature capability thermal and 
radiation barrier

Energy dissipation and chemical barrier 
interlayer

Environmental barrier

Advanced bond coat

Ceramic matrix composite (CMC)

High temperature capability thermal and 
radiation barrier

Energy dissipation and chemical barrier 
interlayer

Environmental barrier

Advanced bond coat

Ceramic matrix composite (CMC)

Tsurface >1482°C (2700°F)

Tcoating/CMC interface <1316°C (2400°F)

Tsurface >1482°C (2700°F)

Tcoating/CMC interface <1316°C (2400°F)

127 µm
(0.005”)

CMC Turbine Blade coatings

Future Directions for Low Conductivity TBC 
Development

CMC combustor liner and vane

— Emphasize thin ceramic matrix composite turbine coating processing
- Advanced processing for integrated TEBCs

- Ceramic nanocomposite and nanotube-based TEBCs for improved 
durability and optical properties

- Embedded sensors

- Life prediction methodology and design tool development
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Summary

• Four-component low k TBC systems developed for low k 
combustor applications

• Advanced turbine airfoil TBCs being developed with combined 
low conductivity and high toughness

• Improved erosion/impact resistance observed for the multi-
component coating t’ and t’/cubic nano-composite systems

• Coatings being optimized for cyclic life, thermal conductivity and 
erosion/impact and CMAS resistance

• High heat flux durability, multifunctional coatings and lifing
models being emphasized in the current research programs


