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Abstract 
 

Clouds have a critical role in many studies such as 
weather- and climate- related investigations. However, they 
represent a source of errors in many applications, and the 
presence of cloud contamination can hinder the use of satellite 
data. In addition, sending cloudy data to ground stations can 
result in an inefficient utilization of the communication 
bandwidth. This requires satellite on-board cloud detection 
capability to mask out cloudy pixels from further processing. 

Remote sensing satellite missions have always required 
smaller size, lower cost, more flexibility, and higher 
computational power. Reconfigurable Computers (RCs) 
combine the flexibility of traditional microprocessors with the 
power of Field Programmable Gate Arrays (FPGAs). 
Therefore, RCs are a promising candidate for on-board 
preprocessing.  

This paper presents the design and implementation of an 
RC-based real-time cloud detection system. We investigate the 
potential of using RCs for on-board preprocessing by 
prototyping the Landsat 7 ETM+ ACCA algorithm on one of 
the state-of-the-art reconfigurable platforms, SRC-6. It will be 
shown that our work provides higher detection accuracy and 
over one order of magnitude improvement in performance 
when compared to previously reported investigations. 
 
1. Introduction 
 

The trend for remote sensing satellite missions has always 
been towards smaller size, lower cost, and more flexibility. 
On-board processing, as a solution, permits a good utilization 
of expensive resources. Instead of storing and forwarding all 
captured images, data processing can be performed on-orbit 
prior to downlink resulting in the reduction of communication 
bandwidth as well as in simpler and faster subsequent 
computations to be performed in the ground stations. 
Consequently, on-board processing can reduce the cost and the 
complexity of the On-The-Ground/Earth processing systems. 
Furthermore, it enables autonomous decisions to be taken on-
board which can potentially reduce the delay between image 
capture, analysis and action. This leads to faster critical 
decisions which are crucial for future reconfigurable web 
sensors missions as well as planetary exploration missions. In 
particular, many of the Earth Science missions that have been 
defined in the recent Decadal Survey [1] will require advanced 
on-board processing capabilities in order to be successful in 
producing all the desired Science products without driving the 
cost out of proportions.  One of the recommendations of the 
report is to “reduce cost risk on recommended missions by 

investing early in the technological challenges of the 
missions”. We believe that on-board computing is one of the 
technologies that will enable these future missions. Some 
examples are the DESDynI (Deformation, Ecosystem 
Structure, and Dynamic of Ice) and the HYSPIRI 
(HYperSPectral InfraRed Imager) missions for which on-
board computing will enable to concentrate on returning large 
amount of meaningful information instead of large amount of 
unprocessed data.  This will reduce the space-to-ground 
communication bottleneck. Such an increased ability of 
performing on-board pre-processing and “data reduction” 
operations would also decrease the complexity and the cost of 
ground systems and increase the availability of processed data 
products to the users of direct broadcast spacecraft, for 
example for national emergencies or for educational 
institutions. The advance of processors such as the one 
discussed in this paper will make a greater number of 
algorithm computations feasible on-board, that will not be 
limited to fixed-point or local operations. 

The presence of cloud contamination can hinder the use of 
satellite data, and this requires a cloud detection process to 
mask out cloudy pixels from further processing. The Landsat 7 
ETM+ (Enhanced Thematic Mapper) ACCA (Automatic 
Cloud Cover Assessment) algorithm [2-4] is a compromise 
between the simplicity of earlier Landsat algorithms, e.g. 
ACCA for Landsat 4 and 5, and the complexity of later 
approaches such as the MODIS (Moderate Resolution Imaging 
Spectroradiometer) cloud mask. 

Most space systems have a need for reconfigurability for 
different reasons such as the need of physical upgrade or 
repair of unmanned spacecraft devices. However, during 
operation, the systems are physically remote from their 
operators. Furthermore, space based systems must operate in 
an environment in which radiation effects have an adverse 
impact on integrated circuit operation. Ionizing radiation can 
cause soft-errors in the static cells used to hold the 
configuration data. This will affect the circuit functionality 
and can cause system failure.  

Reconfigurable Computers (RCs) combine the flexibility 
of traditional microprocessors with the power of Field 
Programmable Gate Arrays (FPGAs). The above mentioned 
requirements of space based systems problems can be fulfilled 
by using RCs. RC technology allows new hardware circuits 
(FPGA configurations) to be transmitted over a wireless radio 
link. This also allows changing the system functionality 
according to changing mission requirements. Most 
reconfigurable devices and systems contain SRAM-
programmable memory to allow logic and interconnect 
reconfiguration in the field. For example, the Mars rover 
mission used a Xilinx FPGA that had not been completely 



designed at the time of launch. The FPGA configuration was 
uploaded to the space craft two months after the launch [5]. In 
addition, radiation hardened FPGAs are in great demand for 
military and space applications to reduce cost and cycle time. 
Actel Corp. has been producing radiation-tolerant antifuse 
FPGAs for several years for high-reliability space-flight 
systems. Actel FPGAs have been on board more than 100 
launches. Xilinx FPGAs have been used in more than 50 
missions [5]. Furthermore, RCs have always been reported to 
outperform the conventional platforms in terms of throughput 
and processing power for many different applications such as 
cryptography, and image processing [6-15]. They are also 
characterized by lower form/wrap factors compared to parallel 
platforms, and higher flexibility than ASIC solutions. 
Therefore, RCs are a promising candidate for on-board 
preprocessing. The SRC Signal Data Processor (SDP) and 
SRC Portable MAPstation [16] are examples of this category 
of hybrid computers. SDP and SRC Portable MAPstation are 
based on the SRC-6 line of reconfigurable MAP® processors 
[17, 18]. Such RC systems can be easily integrated with the 
Space Cube architecture which has already been space 
qualified [19, 20]. 

This paper presents the design and implementation of an 
RC-based real-time cloud detection system. We investigate the 
potential and feasibility of using RCs for on-board 
preprocessing by prototyping the Landsat 7 ETM+ ACCA 
algorithm on one of the state-of-the-art reconfigurable 
platforms, SRC-6. SRC-6 Scalable Systems & Servers [17, 
18], which are larger variants of the miniature versions of SDP 
and Portable MAPstation, are used here as a testbed for this 
purpose. 

Although a reasonable amount of investigations of the 
ACCA cloud detection algorithm using FPGAs has been 
reported in the literature [21, 22], very few details/results were 
provided and/or limited contributions were accomplished. Our 
work is unique in providing higher performance and higher 
detection accuracy.  

This paper is organized such that section 1 introduces 
satellite on-board reconfigurable processing, and section 2 
provides a detailed description of the ACCA algorithm along 
with definitions of some of the terminologies used. Section 3 
shows the hardware architecture and the programming model 
of the verification testbed used, SRC-6. Section 3 also 
includes mathematical derivation of the formulae used in the 
design of the ACCA architecture. Furthermore, section 4 
shows the hierarchical details of the hardware architecture 
which was designed/implemented for ACCA. In addition, 
section 5 presents the experimental approaches and results. 
Section 6 summarizes the paper and provides some 
observations, while section 7 concludes the paper and suggests 
work for future considerations.  
 
 
2. Description of the Automatic Cloud Cover 

Assessment (ACCA) Algorithm 

 
Providing cloud-free global imaging over the earth’s 

landmasses is the primary goal of the Landsat 7 mission. 
Success of the mission is determined by the cloud-free nature 
of each scene acquired. Every image captured by the Landsat 
7, is first processed by the ACCA algorithm. This algorithm 
determines and rates the overall cloud cover. Then these ratios 
of cloud to non-cloud coverage are reviewed to determine if 
the data will go on and be processed or discarded. The ACCA 
is very important to the success of the Landsat 7 mission. It 
also provides NASA with the ability to determine what signals 
should be archived and which portions of the Earth’s surface 
must be viewed again. Mission planners use the cloud content 
of each image to reschedule failed acquisitions.  
 
2.1. Theory 

 
To distinguish between clouds and the terrain below is 

fairly elementary. Theory of Landsat 7 ETM+ ACCA 
algorithm is based on the observation that clouds are mainly 
white, i.e. highly reflective, and colder than the earth’s 
surface. This matches up well with the multispectral response 
characteristics of the ETM+. The high reflectivity can be 
detected in the visible, near- and mid- IR bands. The thermal 
properties of clouds can be detected in thermal IR band. Table 
1 presents the bands wavelengths and their detection features. 
However, due to surface and cloud variability, this distinction 
is not as straightforward as it seems. For this reason a scene 
dependent approach for identifying clouds was developed. The 
algorithm handles the cloud population in each scene uniquely 
by examining the image data twice after a normalization step 
being performed on the raw data to compensate for temporal 
data characteristics. The first pass is meant to capture only 
clouds using eight different filters. The goal of Pass-One is to 
develop a reliable cloud signature for Pass-Two, where the 
remaining clouds are identified. 
 
2.2. Normalization Step (Radiometric Formulation) 
 

The images from the Landsat 7 spacecraft are converted 
from raw data to units that are more useful. Bands 2 through 5 
are converted to top-of-atmosphere (TOA) reflectance, and 
Band 6 is converted to at-sensor temperature. The unit 
conversions provide a basis for more normalized comparisons 
of data within a scene and between scenes acquired on 
different dates. Detector normalization removes within scene 
responsivity differences, while conversion to reflectance 
removes the cosine effect of different sun angles across time 
and space. In the following discussion of this section we 
include the radiometric formulation and the conversion 
formulae for the normalization step as well as some related 
definitions. 

The conversion from ETM+ radiometrically raw data to 
reflectance and temperature is formulated as follows [24]: 

 
 

Table 1.  Landsat 7 ETM+ Bands 
Band Wavelength (µm) Detection Features 



2 
(green) 0.525 - 0.605 - Measures green reflectance 

- Vegetation discrimination 
3 

(red) 0.630 - 0.690 - Measures Chlorophyll absorption 
- Plant Species differentiation 

4 
(near-IR) 0.775 - 0.900 - Determines soil moisture level 

- Delineating water bodies and distinguishing vegetation types 
5 

(mid-IR) 1.55 - 1.75 - Supplies information about vegetation and soil moisture 
- Differentiation of snow from clouds 

6 
(Thermal IR) 10.4 - 12.5 - Thermal mapping to Brightness Temperatures 
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The parameters for equations (1-3) are defined as follows: 
• Captured Data 

o QCAL = quantized pixel value (e.g. 0-255 
for gray-scale) 

o QCALmin = minimum quantized pixel value 
(i.e. 0 for gray-scale) 

o QCALmax = maximum quantized pixel value 
(i.e. 255 for gray-scale) 

• Calibrated Data 
o Lλ = Spectral Radiance at the sensor’s 

aperture in watts/(meter2 x steradian x µm) 
o ρ = Unitless planetary reflectance 

calculated for bands 2-5 
o T = Effective at-satellite-temperature in 

Kelvin calculated for band6 only 
• Calibration Constants 

o LMINλ = spectral radiance that is scaled to 
QCALmin  in watts/(meter2 x steradian x 
µm) , see Table 2 

o LMAXλ = spectral radiance that is scaled to 
QCALmax in watts/(meter2 x steradian x µm) , 
see Table 2 

o d = Earth-Sun distance in astronomical 
units from nautical handbook or interpolated 
from values shown in Table 3 depending on 
the Julian day on which the data was 
acquired 

o ESUNλ = Mean solar exoatmospheric 
irradiances in watts/(meter2 x µm), see Table 
4 

o θs =  Solar zenith angle in degrees 
o K1 & K2 = Thermal calibration constants, see 

Table 5 
Table 2.  Spectral Radiance Range (LMINλ , LMAXλ) 

 
 

Table 3.  Earth-Sun Distance (d) 

 
 

Table 4.  Solar Spectral Irradiance (ESUNλ) 

 
 
 

Table 5.  Solar Spectral Irradiance (ESUNλ) 



 
 
2.3. Pass-One 

 
The Landsat 7 ETM+ ACCA algorithm recognizes clouds 

by analyzing the scene twice. Pass-One processing is intended 
to isolate clouds from non-clouds. In order to achieve this, 
eight filters are utilized for this purpose, see Table 6. For more 
details and discussion of band threshold selection, refer to [2-
4].  

The goal of Pass-One is to develop a reliable cloud 
signature for use in Pass-Two where the remaining clouds are 
identified. Omission errors, however, are expected. These 
errors create algorithm failure and must be minimized. Three 
categories result from Pass-One: clouds, non-clouds, and an 
ambiguous group that are revisited in Pass-Two. 

John A. Williams et al. [22, 23] have used band mapping 
techniques to implement Landsat-based algorithms on MODIS 
data. The generalized and modified classification rules for 
Pass-One are shown in Table 7. 

 
2.4. Pass-Two 

 
Pass-Two resolves the detection ambiguity resulted from 

Pass-One. Thermal properties of clouds identified during Pass-
One are characterized and used to identify remaining cloud 
pixels. 
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(4) 

 
Band 6 statistical moments (mean, standard deviation, 

distribution skewness, kurtosis), see equation (4), are 
computed and new adaptive thresholds are determined 
accordingly. The 95th percentile, i.e. the smallest number that 
is greater than 95% of the numbers in the given set of pixels, 
becomes the new thermal threshold for Pass Two. 

Image pixels that fall below the new thermal threshold and 
survive the first three Pass-One filters are classified as cloud 
pixels. Specifically, the following three conditions must be 
satisfied: 

• Desert index (Filter 7) is greater than 0.5 
• Colder cloud population exceeds 0.4 percent of the 

scene 
• Mean temperature of the cloud class is less than 

300K 
During processing, a cloud mask is created. The final step 

is processing the cloud mask for holes. After the two ACCA 
passes, a filter is applied to the cloud mask to fill in cloud 
holes. This filtering operation works by examining each non-
cloud pixel in the mask. If 5 out of the 8 neighbors are clouds 
then the pixel is reclassified as cloud. Cloud cover results from 
both Pass-One and Pass-Two are compared. Extreme 

 
Table 6.  Pass-One Filters 

Filter Function 

1 
Brightness Threshold 

08.0
3
>B  Eliminates dark images 

2 
Normalized Difference Snow Index (NDSI) 

7.0

52

52 <
+

!
=

BB

BB
NDSI

 Eliminates many types of snow 

3 
Temperature Threshold 

KB 300
6
<  Eliminates warm image features 

4 
Band 5/6 Composite 
( ) 2251

65
<! BB  Eliminates numerous categories including ice 

5 
Band 4/3 ratio 

2

3

4 <
B

B  Eliminates bright vegetation and soil 

6 
Band 4/2 ratio 

2

2

4 <
B

B  Eliminates ambiguous features 

7 
Band 4/5 ratio 

1

5

4 >
B

B  Eliminates rocks and desert 

8 
Band 5/6 Composite 

( )

( ) cloudscoldBB

cloudswarmBB

!<"

!>"

2101

2101

65

65  Distinguishes warm clouds from cold clouds 



Table 7.  Generalized Classification Rules for Pass-One [22] 
Classification Rule 
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ColdCloud ( )( ) ( ) ( )NotCloudANDAmbiguousANDBB ~~2101
65
!"  

WarmCloud ( )( ) ( ) ( )NotCloudANDAmbiguousANDBB ~~2101
65
<!  

Notes: 
A The Band 4 brightness test, in the snow test, was added after observations that the NDSI (Normalized 

Difference Snow Index) algorithm applied to MODIS data incorrectly labeled many cloud pixels as 
snow. 

B The desert detection threshold was lowered to 0.83, from the original ACCA value of 1.0, after it was 
observed that many cloud pixels were incorrectly classified as desert. The value of 0.83 was 
determined experimentally. 

 

 
a) System Architecture 

 

 
b) MAP Reconfigurable Processor 

Figure 1.  Hardware Architecture of SRC-6 
 
differences are indicative of cloud signature corruption. When 
this occurs, Pass-Two results are ignored and all results are 
taken from Pass-One. The final cloud cover percentage for the 
image is calculated based on the filtered cloud mask. The 
cloud pixels in the mask are tabulated and a cloud cover 
percentage score for the scene is computed. 
 
3. SRC-6 Reconfigurable Computer 
 

3.1. Hardware Architecture 
 

SRC-6 platform consists of one or more general-purpose 
microprocessor subsystems and one or more MAP 
reconfigurable processor subsystems. These subsystems are 
interconnected through a Hi-Bar Switch communication layer 
and Global Common Memory (GCM) nodes of shared 
memory space; see Fig. 1(a). Each microprocessor board is 
based on a 3GHz Pentium 4 microprocessors. Microprocessors 



boards are connected to the MAP boards through the SNAP 
interconnect. The SNAP card plugs into the DIMM (Dual In-
line Memory Module) slot on the microprocessor motherboard 
[17, 18] to provide higher data transfer rates between the 
boards than the inefficient but common PCI (Peripheral 
Component Interconnect) solution. The peak transfer rate 
between a microprocessor board and the MAP board is 1600 
MB/sec. 

Hardware architecture of the SRC-6 MAP processor is 
shown in Fig. 1(b). The MAP board is composed of one 
control FPGA and two user FPGAs, all Xilinx Virtex II-6000-
4. Additionally, each MAP unit contains six interleaved banks 
of the on-board memory (OBM) with a total capacity of 24 
MB. The maximum aggregate data transfer rate among all 
FPGAs and on-board memory is 4800 MB/s. The user FPGAs 
are configured in such a way that one is in the master mode 
and the other is in the slave mode. The two FPGAs of a MAP 
are directly connected using a bridge port. Furthermore, MAP 
processors can be chained together using a chain port to create 
an array of FPGAs. 

In the typical mode of operation, input data is first 
transferred through the Control FPGA from the 
microprocessor memory to OBM. This transfer is followed by 
computations performed by the User FPGA, which fetches 
input data from OBM and transfers results back to OBM. 
Finally, the results are transmitted back from OBM to 
microprocessor memory. 
 
3.2. Programming Model 

 
The SRC-6 has a somewhat similar compilation process as 

a conventional microprocessor-based computing system, but 
also produces logic for the MAP reconfigurable processor, see 
Fig. 2.  

 

 
Figure 2.  SRC Compilation Process 

 

There are two types of application source files to be 
compiled. Source files of the first type are compiled with the 
Intel processor as the target execution platform. Source files of 
the second type are compiled with execution on the MAP 
reconfigurable processor as a target. A file that contains a 
program to be executed on the Intel processor is compiled 
using the traditional microprocessor compiler. All files 
containing functions that call hardware macros and thus 
execute on the MAP are compiled by the MAP compiler. MAP 
source files contain MAP functions are mainly composed of 
macro calls. Here, a macro is defined as a piece of hardware 
logic designed to implement a certain function. Since users 

often wish to extend the built-in set of operators, the compiler 
allows users to integrate their own VHDL/Verilog macros. 
 
4. ACCA Hardware Architecture 

 
The ACCA algorithm has been implemented targeting both 

conventional microprocessor (μP) platforms and 
reconfigurable computing (RC) platforms. The μP 
implementation has been performed using a C++ and Matlab 
programs whose results have been used as a reference against 
which the RC results are evaluated for both accuracy and 
speed/performance. The RC implementations have been 
performed using two designs, namely full-precision fixed-
point arithmetic and single-precision floating-point arithmetic. 
 
4.1 Top-Hierarchical Architecture 
 

Fig. 3 shows the main functional/architectural units of the 
ACCA algorithm. As previously described, the ACCA 
algorithm handles the cloud population in each scene uniquely 
by examining the image data twice after a normalization step 
being performed on the raw data to compensate for temporal 
data characteristics. The first pass captures clouds using eight 
different filters. The goal of Pass-One is to develop a reliable 
cloud signature for Pass-Two. Pass-Two resolves the detection 
ambiguity resulted from Pass-One where thermal properties of 
clouds identified during Pass-One are characterized and used 
to identify remaining cloud pixels. 

 

 
Figure 3.  Top-Level Architecture of the ACCA Algorithm 
 
4.2 Normalization Module 
 

ETM+ bands 2-5 are reflectance bands, while band 6 is a 
thermal band. The reflectance bands are normalized to correct 
for illumination (solar zenith) angle yielding an estimated 
reflectance value ρ. The thermal band is calibrated to an 
equivalent blackbody Brightness Temperature (BT). As can be 
seen from equations (1-3) in section 2.2, this normalization for 
the reflectance bands is a linear operation while it is non-linear 
for the thermal band. In the on-board processing system, these 
operations are performed by the calibration stage [22]. 
Therefore, equations (1-3) can be rewritten as: 
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The formulation of the normalization function as expressed in 
equations 5 and 6 can be easily used to derive the 
corresponding architecture shown in Fig. 4(a). 

Due to the high cost in terms of hardware resources 
required to implement the non-linear normalization function 
for the thermal band, we will use a piecewise-linear 
approximation. 
 Performing algebraic manipulation, equation (6) can be 
rewritten as: 
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Using Taylor’s series first order approximation, the 
logarithmic function as well as the inversion function can be 
approximated as follows: 
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The value of reflectance, ρ, is, by definition, a positive 
rational number less than unity. As shown in Table 5, the 
thermal calibration constant K1 is a positive number much 
larger than unity. Therefore, the following expression can be 
derived: 
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Applying the results of equations (8) and (9), equation (7) can 
be approximated as follows: 

 

 
a) Exact Normalization Operations 

 

 
b) Approximated Normalization Operations 

 
Figure 4.  Normalization Module Architecture 
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As previously noted about the value of reflectance, ρ, and 
the thermal calibration constant, K1, the following expression 
can be derived: 

( ) ( )

( ) !
!

"

!
!

#

$

<
+

%%
&

'
((
)

*
+

,<-

>><<

1
ln1

1
1

0

110

1

1

6

16

K

K

Kand

.

.Q

 (11) 

Applying equation (8) to equation (11), equation (10) can 
be rewritten as: 
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Substituting expression (5) for ρ6 in equation (12) the 
following linear expression approximates expression (6) for 
the thermal band: 
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Therefore, the following equations can be used to express the 
approximated normalization operations: 
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Figure 5.  Pass-One Architecture and Snow-Test Algebraic Re-Formulation 



The coefficients (α1-α6) and (β1-β6) are computed from 
equations (1) and (2), while ζ and δ are computed from 
equation (13). Fig. 4(b) shows the final implementation 
architecture derived from equation 14. 
 
4.3 Pass-One Module 
 

The first pass of the ACCA algorithm is a cascading set of 
eight threshold-based filters, see Table 6. These filters are 
designed to classify each pixel into one of four classes, 
ColdCloud, WarmCloud, NotCloud, and Ambiguous, as 
shown in Table 7. Pixels labeled ambiguous are reprocessed in 
the second pass as previously discussed. Many of the tests in 
Pass-One are threshold tests of ratio values, such as the snow 
test. We found out that it was more efficient, in terms of the 
required resources, to multiply one value by the threshold, and 
compare with the other value, instead of performing the 
division then comparing against the threshold. This algebraic 
re-formulation was applied to most of the filters involved for 
Pass-One. Fig. 5 shows the equivalent hardware architecture 
of Pass-One as well as an example of this algebraic re-
formulation applied to the snow test. 
 
5. Experimental Work 
 
5.1. Experimental Approaches 

 

The ACCA algorithm adapted for Landsat 7 ETM+ data 
has been implemented both in C++ and Matlab, and Pass-One 
has been implemented and synthesized for the Xilinx 
XC2V6000 FPGA on SRC-6. 

The goal of the implementation was to achieve a 
comparable performance/speed and detection accuracy to what 
has been reported in [21] and [22]. Therefore, the constraints 
to the design were the processing speed, as measured by 
throughput, and the hardware resources required for the 
design. The first constraint is approached through full-
pipelining and superscaling of the design. The second 
constraint was approached through approximating the non-
linear normalization step as mentioned in section 4.2. 
Moreover, because many of the tests in Pass-One are threshold 
tests of ratio values such as the snow test, see Tables 6 and 7, 
it was more efficient, in terms of the required resources, to 
multiply one value by the threshold, and compare with the 
other value, instead of performing the division then comparing 
against the threshold. 

The criterion that defines the detection accuracy is based 
on the absolute error given by equation (15), between the 

detected cloud mask and a reference mask produced by the 
software, C++/Matlab, version of the ACCA algorithm.  
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In addition, the goal of achieving high detection accuracy 
has been approached by minimizing the quantization errors 
through full-precision fixed-point as well as single-precision 
floating-point arithmetic hardware implementations. 
Furthermore, saturated arithmetic has also been utilized in 
order to avoid overflow errors. 

 
5.2 Experimental Results   

 The fixed-point version of the design was developed in 
VHDL, synthesized, placed and routed, and was found to 
occupy approximately a maximum of 14% of the available 
logic resources (slices) on the chip, see Table 8. Because the 
utilization of the block RAM, i.e. 7% RAMB16, and the 
embedded hardware multipliers, i.e. 2% MULT 18X18, 
typically changes linearly with the number of unit 
instantiations inside of the chip, these types of resources are 
factors in deciding how many concurrent processing engines 
to instantiate in the same chip. The bandwidth of the FPGA 
local on-board memory (OBM) is another important factor. 
This enabled the instantiation of eight concurrent processing 
engines, see equation (16), of the design in the same chip, 
which increased the performance to eight folds. The total 
resources utilization for the eight engine version was 
approximately 64%, which leaves plenty of room for more 
processing functions to be implemented on the same chip. 

 

( )

( )
engines

bits

bits

Max
MinN

bitswidthPixelW

bitslengthwordOBMW

enginesofnumberwithlinearlychanges

nutilizatiowhoseresourcesofNumbern

resourceitypeofnUtilizatiou

enginesofnumberMaximumN

where
W

W

uuuMax
MinN

engines

pixel

OBM

i

engines

pixel

OBM

n

engines

8
8

64
,

%7%,2

%100

)(

)(

(%)

,

,,
,...,,

100

max

max

21

max

=!!
"

#
$$
%

&
='

(

(

(

)(

(

!
!

"

#

$
$

%

&
=

 

(16) 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8.  Hardware Resources Usage 
ACCA on SRC-6 

(Virtex-II XC2v6000ff1517-4, 100MHz) 
23-bit Fixed-Point 

(25 Clock Cycle Latency) 
Single-Precision Floating-Point 

(78 Clock Cycle Latency) 
Resource Type 

1 Engine 8 Engines 1 Engine 2 Engines 
 Slices 4,820  (14%)  21,694  (64%) 17,565  (51%) 29,660  (87%) 
 LUTs 3,260    (4%) 13,726  (20%) 20,885  (30%) 39,791  (58%) 
 Slice Flip Flops 8,384  (12%) 37,826  (55%) 23,005  (34%) 42,526  (62%) 
 MULT 18X18 4    (2%) 32  (22%) 36  (25%) 72  (50%) 
 RAMB16 11   (7%) 88  (61%) 0    (0%) 0   (0%) 



 
a) Image Bands and Cloud Masks for the Dataset of Boston City View (Software/Reference Mask, Hardware Masks) 

 
 

 
b) Image Bands and Cloud Masks for the Dataset of USA East Coast View (Software/Reference Mask, Hardware Masks) 

 
 



 
c) Approximate Normalization and Quantization Errors for the Dataset of Boston City View 

 
Figure 6.  Detection Accuracy (Based on the Absolute Error) 

 
 

Table 9.  Approximation and Quantization Errors Based on the Absolute Error, see equation (15) 

 
 

 The floating-point version of the design including a partial 
implementation of Pass Two was developed in SRC MAP-C, 
and was found to occupy approximately 51% of the available 
logic resources (slices) on the chip, see Table 8. Only two 
concurrent processing engines of the design were instantiated 
in the same chip. This increased the performance to two folds. 
The total resources utilization for the two engine version was 
approximately 87%. 
 The maximum operational clock speed of the design is 
100MHz which resulted in 4000 Megapixels/sec (5 inputs x 8 
engines x 100MHz) as data input/consumption rate. 
Furthermore, the data output/production rate was 800 
Megapixels/sec (1 output x 8 engines x 100MHz). 

 Figs. 6(a) and 6(b) show the image bands for views of the 
city of Boston and for the east coast of the USA. These views 
were captured by Landsat 7 ETM+. Figs. 6(a) and 6(b) also 
show the reference mask produced by the software, 
C++/Matlab, version of the ACCA algorithm as well as both 
hardware masks, i.e. fixed-point and floating-point. The 
results were obtained from a 2.8GHz Intel Xeon processor and 
from SRC-6. 

 As shown in Fig. 6(c), the linearization of the 
normalization step of the algorithm has introduced an error 
equal to 0.1028% for the dataset of Boston City view. The 
hardware floating-point implementation has shown identical 
behavior to the software version of the algorithm. Fig. 6(c)  



 
Figure 7.  Hardware-to-Hardware Performance 

 

 
Figure 8.  Hardware-to-Software Performance 

 
also shows that the hardware full-precision (23-bit) fixed-point 
version has improved the error due to quantization effects 
from 0.2676% to 0.1028% which made it identical to the 
software/reference version. The latest reported error by 
Williams et al. [22] is approximately 1.02% which makes the 
achieved results of this work 9.9x, at best, more accurate for 
the best case of Boston City view, see Table 9. The results 
shown in Table 9 were obtained based on the date on which 
the datasets were acquired as well as on the calibration 
parameters shown in Table 2. It is worth to mention that the 
error 0.1028% is due to the approximated normalization step 
which has not been implemented by Williams [22]. This adds 
another privilege to this work against previous similar reports. 
Had we not considered the normalization step, the results of 
this investigation in terms of the detection accuracy as 
compared to previous similar works could be considered ideal. 

 In terms of performance/throughput, the results have also 
been compared to previous work by Williams et al. [22]. Fig. 
7 shows those comparisons. Three hardware implementations 
have been compared: 1X (one engine is instantiated), 2X (2 

engines are instantiated), and 8X (8 engines are instantiated). 
The results show a speedup of up to 16 times compared to 
those reported in [22], see Fig. 7. 

The hardware implementations provided a higher 
performance (28 times faster) compared to the 2.8GHz Xeon 
implementation, see Fig. 8. The superiority of RCs over 
traditional platforms for cloud detection is demonstrated 
through the performance plots shown in Fig. 8. 
 
6. Summary and Observations 
 

This paper presented the design and implementation of an 
RC-based real-time cloud detection system. The potential of 
using RCs for on-board preprocessing by prototyping the 
Landsat 7 ETM+ ACCA algorithm on one of the state-of-the-
art reconfigurable platforms, SRC-6, has been investigated. 

This work was shown to provide higher performance and 
higher detection accuracy than previously reported results. 
The higher performance is achieved through full-pipelining 



and superscaling (up to 8 concurrent engines), and thus 
achieving 4000 Megapixels/sec as a data consumption rate and 
800 Megapixel/sec as a data production rate. In addition, the 
performance has been compared to similar hardware 
implementation and proved to achieve as high as 16 folds 
speedup. The speedup compared to a 2.8GHz Xeon 
implementation has been 28 folds higher. On the other hand, 
the detection accuracy has been verified against software 
floating-point reference implementation, and the results 
revealed identical results. 
 
7. Conclusions and Future Work 

 
The contributions of this work, as compared to previous 

work, can be concluded to achieve an implementation 
completeness of the ACCA algorithm by prototyping both the 
normalization step and Pass-One targeting hardware platforms 
as well as Pass-Two targeting software (Pass-Two has not 
been fully implemented for hardware due to time constraints). 
In addition, this implementation is generic and has been 
parameterized to support both Landsat and MODIS datasets. 
This work is characterized by higher performance/throughput 
as well as higher detection accuracy as compared to previous 
reported works, [22]. Using the SRC-6 reconfigurable 
architecture, a 16x speedup over previous hardware 
implementations, and a 28x speedup over microprocessor, 
Xeon 2.8GHz, implementations is achieved. Furthermore, a 
9.9x higher detection accuracy compared to previous hardware 
implementations has been verified. This high accuracy has 
been achieved by minimizing the quantization errors as well as 
the overflow errors. The quantization errors have been 
minimized through the floating-point and full-precision fixed-
point implementations. The overflow errors have been reduced 
through the adoption of saturated arithmetic. 

Although the ACCA algorithm has been fully verified in 
the software version, this work can be further extended by 
considering full hardware implementations of Pass-Two. In 
addition, power consumption issues can also be considered for 
power-efficient prototypes which can be critical for on-board 
processing. In parallel to these directions, other on-board pre-
processing functionalities, e.g. image registration, should be 
tackled in order to accomplish a complete set of efficient 
hardware and/or software solutions covering all the needs for 
on-board remote sensing. 
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