
32 NASA Tech Briefs, October 2008

Ensemble: an Architecture for Mission-Operations Software
Several issues are addressed by capitalizing on the Eclipse open-source software framework.
NASA’s Jet Propulsion Laboratory, Pasadena, California

“Ensemble” is the name of an open ar-
chitecture for, and a methodology for
the development of, spacecraft mission-
operations software. Ensemble is also
potentially applicable to the develop-
ment of non-spacecraft mission-opera-
tions-type software.

Ensemble capitalizes on the strengths
of the open-source Eclipse software and
its architecture to address several issues
that have arisen repeatedly in the devel-
opment of mission-operations software:
Heretofore, mission-operations applica-
tion programs have been developed in
disparate programming environments
and integrated during the final stages
of development of missions. The pro-
grams have been poorly integrated, and
it has been costly to develop, test, and
deploy them. Users of each program
have been forced to interact with sev-
eral different graphical user interfaces
(GUIs). Also, the strategy typically used
in integrating the programs has yielded
serial chains of operational software
tools of such a nature that during use of
a given tool, it has not been possible to
gain access to the capabilities afforded
by other tools. In contrast, the Ensem-
ble approach offers a low-risk path to-
wards tighter integration of mission-op-
erations software tools.

Ensemble is based on an adaptation of
the Eclipse Rich Client Platform (RCP),
which is a widely used, readily available,
stable, supported software framework
for component-based development of
application programs. The Eclipse RCP
is a set of Java classes that define an ar-
chitecture for general component-based
application programs. New application
programs are built on top of the RCP as

a set of components, called plug-ins, that
augment and extend its functionality.
For example, a mission-activity-planning
application program would consist of
the RCP plus a set of plug-ins responsi-
ble for displaying, editing, and modeling
activity plans. Application programs
built on top of the RCP also gain access
to a variety of such generally applicable
capabilities as a help system, an update
manager, and an extensible GUI.

In Ensemble, the difficulties of estab-
lishing interfaces between different soft-
ware tools are minimized by developing
most of the tools as Eclipse plug-ins. In
addition, Ensemble draws upon capabil-
ities provided by the Eclipse RCP to doc-
ument and enforce interfaces between
different components. In some cases, it
may not be possible or prudent to de-
velop a tool as an Eclipse Java plug-in.
Such a tool can still be integrated with
the Ensemble architecture. Develop-
ment of a general, robust method of in-
tegrating non-Eclipse tools with other
Ensemble tools is proceeding.

In Ensemble, the Eclipse framework
provides a common GUI that can ac-
commodate GUI components from
multiple software tools developed by dif-
ferent teams. To the user, the resulting
GUI looks as though it belongs to a sin-
gle such tool while drawing on the re-
sources of many of them. Ensemble pro-
vides for a task-oriented GUI that is
based heavily upon an Eclipse perspec-
tive, which defines which GUI compo-
nents are visible to a user at a particular
time. As a user moves through tasks re-
quired for planning mission operations,
the user clicks through a set of icons de-
voted to each task.

The combination of component-
based development and a perspective-
based GUI facilitates reuse of any soft-
ware component at multiple stages of
the operations process. In the past, a
spacecraft-mission plan would be
handed from one software tool to the
next in a serial fashion. At each step, a
single tool would exert exclusive con-
trol over the plan. In contrast, Ensem-
ble plug-ins interact as a group with a
common model of an evolving space-
craft plan. Each plug-in can contribute
to the plan whenever it is necessary, and
each plug-in must respond appropri-
ately to modifications made by other
plug-ins.

Most mission-operations-software devel-
opment teams strive to make their soft-
ware products applicable to multiple
missions, but a typical mission does not
need all the capabilities provided by a
typical such product. To relieve a mis-
sion of the burden of maintaining,
learning to use, and testing the software
functions that it does not need, Eclipse
provides for the distribution, to each
mission, of only the core RCP plus only
those plug-ins that afford the specific ca-
pabilities required by that mission.

This work was done by Jeffrey Norris, Mark
Powell, Jason Fox, Kenneth Rabe, and I-
Hsiang Shu of Caltech and Michael Mc-
Curdy and Alonso Vera of Ames Research
Center for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41814.

Object Recognition Using Feature-and Color-Based Methods
The combination of methods works better than does either method alone.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An improved adaptive method of pro-
cessing image data in an artificial neural
network has been developed to enable
automated, real-time recognition of pos-
sibly moving objects under changing (in-
cluding suddenly changing) conditions
of illumination and perspective. The

method involves a combination of two
prior object-recognition methods — one
based on adaptive detection of shape fea-
tures and one based on adaptive color
segmentation — to enable recognition in
situations in which either prior method
by itself may be inadequate.

The chosen prior feature-based
method is known as adaptive principal-
component analysis (APCA); the chosen
prior color-based method is known as
adaptive color segmentation (ACOSE).
These methods are made to interact
with each other in a closed-loop system

cdancy
Highlight



NASA Tech Briefs, October 2008 33

(see figure) to obtain an optimal solu-
tion of the object-recognition problem
in a dynamic environment.

One of the results of the interaction is
to increase, beyond what would other-
wise be possible, the accuracy of the de-
termination of a region of interest (con-
taining an object that one seeks to
recognize) within an image. Another re-

sult is to provide a minimized adaptive
step that can be used to update the re-
sults obtained by the two component
methods when changes of color and ap-
parent shape occur. The net effect is to
enable the neural network to update its
recognition output and improve its
recognition capability via an adaptive
learning sequence.

In principle, the improved method
could readily be implemented in inte-
grated circuitry to make a compact,
low-power, real-time object-recogni-
tion system. It has been proposed to
demonstrate the feasibility of such a
system by integrating a 256-by-256 ac-
tive-pixel sensor with APCA, ACOSE,
and neural processing circuitry on a
single chip. It has been estimated that
such a system on a chip would have a
volume no larger than a few cubic cen-
timeters, could operate at a rate as
high as 1,000 frames per second, and
would consume in the order of milli-
watts of power.

This work was done by Tuan Duong, Vu
Duong, and Allen Stubberud of Caltech for
NASA’s Jet Propulsion Laboratory. Further
information is contained in a TSP (see
page 1).

In accordance with Public Law 96-517, the
contractor has elected to retain title to this in-
vention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets
Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
(818) 354-2240
E-mail: iaoffice@jpl.nasa.gov

Refer to NPO-41370, volume and number
of this NASA Tech Briefs issue, and the page
number. 

This Optimal Adaptive Architecture involves interaction between a shape-feature-based and a color-seg-
mentation-based method in a cyclic computation. Using shape adaptive features and color adaptive fea-
tures from the previous cycle, an object and region of interest containing the object are identified in the
present image by means of feature detection and color segmentation. The region of interest is then
used for sampling data to adapt a new shape and color features for the image during the next cycle.

Color
Segmentation

Adaptive
Color

Feature
Detection

Adaptive
Feature

Identification of
Object and

Region of Interest

Image at Next
Increment of

Time

Image at
Present Time


