

 Full Life-Cycle Defect
Management Assessment

Initial Inspection Data Collection Results and
Research Questions for Further Study

Work Performed under SARP 2007 Research Initiative

Prepared by
Dr. Forrest Shull, Mr. Raimund L. Feldman, Mr. Ralf Haingaertner, Ms. Myrna Regardie,

Dr. Carolyn Seaman

Contact:

{fshull, rfeldmann, rhaingaertner, mregardie, cseaman}@fc-md.umd.edu

Keywords:

NASA / SARP 2007 / Inspections / Results and Questions

July 2007

Fraunhofer USA, Inc

Center for Experimental
Software Engineering,
Maryland

REVISION HISTORY

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Date Version Status Reason for Change
07/31/2007 1.0 Initial version New document

TABLE OF CONTENTS

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 1

1. Background and Motivation ..3

2. Process ..5

2.1. Approach..5

2.2. Data Protection..5

2.3. Source Data..6

2.4. Analysis of Source Data..6

3. Analysis Results of Inspection Defect Type Data ...7

3.1. Proposed FC-MD Inspection Defect Types by Product..7

3.2. Inspection Defect Type Definitions ..8

3.3. Defect Type Translation Tables and Mapping Rationale ..9

3.4. Inspection Defect Type Models by Work Product Type.. 14

3.4.1. Requirements.. 14

3.4.2. Source Code... 15

3.4.3. Design.. 20

3.4.4. Test Plans... 23

4. Inspection Effort, Size, and Defect Summary Models ... 25

4.1. Types of data collected ... 25

4.2. Modeling Approach .. 25

4.3. Sample Effort, Size, and Defect Summary Baseline Models 26

4.4. Some Next Steps for Refining Effort, Size, and Defect Baseline Models................. 28

5. Prototype Inspection Tool Highlights... 29

5.1. Data Analysis Functionality.. 30

5.2. Experience Base Functionality... 32

6. Research Questions for Further Study... 34

7. References... 36

Appendix A: Original Source Data By Product and Defect Type .. 37

Appendix B: Acronyms, Common Terms, and Definitions... 43

2  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

B.1. Acronyms ... 43

B.2. Definition of Common Terms ... 44

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 3

1. Background and Motivation

It is often the case in software projects that when schedule and budget resources are
limited, the Verification and Validation (V&V) activities suffer. Fewer V&V activities can be
afforded and moreover, short-term challenges can result in V&V activities being scaled
back or dropped altogether. As a result, too often the default solution is to save activities
for improving software quality until too late in the life-cycle, relying on late-term code
inspections followed by thorough testing activities to reduce defect counts to acceptable
levels. As many project managers realize, however, this is a resource-intensive way of
achieving the required quality for software.

The “Full Life-cycle Defect Management Assessment” Initiative, funded by NASA’s Office
of Safety and Mission Assurance under the Software Assurance Research Program, aims
to address these problems by:

• Improving the effectiveness of early life-cycle V&V activities to make their benefits
more attractive to team leads. Specifically, we focus on software inspection, a proven
method that can be applied to any software work product, long before executable
code has been developed;

• Better communicating this effectiveness to software development teams, along with
suggestions for parameters to improve in the future to increase effectiveness;

• Analyzing the impact of early life-cycle V&V on the effectiveness and cost required for
late life-cycle V&V activities, such as testing, in order to make the tradeoffs more
apparent.

This white paper reports on an initial milestone in this work, the development of a
preliminary model of inspection effectiveness across multiple NASA Centers. This model
contributes toward reaching our project goals by:

• Allowing an examination of inspection parameters, across different types of projects
and different work products, for an analysis of factors that impact defect detection
effectiveness.

• Allowing a comparison of this NASA-specific model to existing recommendations in
the literature regarding how to plan effective inspections.

• Forming a baseline model which can be extended to incorporate factors describing:
the numbers and types of defects that are missed by inspections; how such defects
flow downstream through software development phases; how effectively they can be
caught by testing activities in the late stages of development.

The model has been implemented in a prototype web-enabled decision-support tool which
allows developers to enter their inspection data and receive feedback based on a
comparison against the model. The tool also allows users to access reusable materials
(such as checklists) from projects included in the baseline. Both the tool itself and the
model underlying it will continue to be extended throughout the remainder of this initiative.

As results of analyzing inspection effectiveness for defect containment are determined,
they can be shared via the tool and also via updates to existing training courses on metrics
and software inspections. Moreover, the tool will help satisfy key CMMI requirements for

4  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

the NASA Centers, as it will enable NASA to take a global view across peer review results
for various types of projects to identify systemic problems. This analysis can result in
continuous improvements to the approach to verification.

The remainder of the document is organized as follows: Section 2 details our process
while our current results are provided in Sections 3 and 4. Based on our findings, some of
the capabilities have already been incorporated into a dashboard-type tool developed as
part of this project (see Section 5). Finally, an overview of research questions to guide
further work is in Section 6. Section 7 lists the references cited. Appendix A provides
detailed information about the original source data. Appendix B includes a reference list of
acronyms, terms, and definitions used throughout this preliminary results report.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 5

2. Process

2.1. Approach

The main approach used was to work with several Centers, discuss the purpose of the
SARP research initiative, and obtain access to existing inspection data collected by
projects (which in various contexts can be stored on paper, using the InSpec tool, in the
eRoom collaborative environment, within an MS Access database, or using
spreadsheets). We were interested in data from recent projects as well as historical data,
such as that collected by the Software Engineering Laboratory (SEL) at NASA GSFC. The
Fraunhofer Center Maryland (FC-MD) team looked at the product types inspected in the
data received (e.g., requirements documents, design documents, source code, test plans),
defect types (logic, external/internal interface, initialization,…), defect severity (major,
minor), inspection effort related data (meeting length, team size, preparation time, total
inspection effort, size of product inspected), and characteristics about the project (e.g.,
flight SW, development language, safety critical, NPR class of project, in-house/contracted
out, etc.).

Data models were built for each source as the data became available, and then mappings
were created so that data from different contexts, but related to inspections of the same
work product, could be compared across organizations . These mappings were used in our
attempts to build models for individual projects which can be combined to provide insight
within each NASA Center and across the entire agency. Initial attempts have been made
to combine Center data and provide a NASA agency view, but it may be too early to do so
for some types of data, in particular data on defect types, which seems to vary widely.
Other areas are more promising, for instance, at an agency level, it may be possible to
combine all inspection meeting length data collected to date and provide some general
guidance on “typical” or “recommended” inspection meeting length to help ensure
inspection effectiveness.

2.2. Data Protection

A key concern expressed by most Centers we approached for data access is the
sensitivity of the data and how it could be used or inadvertently misused to make a Center
or project look bad. On the other hand, Centers were interested in having the FC-MD
analyze their data and build decision support models for them, which is time-consuming
for projects and Centers to do. In many cases the appropriate data for such analyses has
been collected at the Center, but not been previously analyzed in depth. The FC-MD team
negotiated and signed Memorandums of Understanding (MOUs) that describe fair use of
and necessary protections for the data, in order to gain access.

Data protection and privacy has been a major consideration in the design of our prototype
support tool (See Section 5). For example, we have made a design decision to incorporate
roles and security levels for users of the tool so that, for example, detailed project data will
only be accessible to members of that project team. Organizational-level persons such as
SEPG members would be able to look at all the data for the organization and Center,
unless otherwise restricted. The decision support tool would control this through
permissions. The data in the underlying models will be rolled together, but not attributed to
any individual projects, organizations, or Centers. FC-MD will use translation tables to hide
the identity and protect the source data.

6  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

2.3. Source Data

To date, we have gained such access to data from three separate groups (referred to as
data sources A, B, and C), with several more in progress. The data includes data on 1334
inspections with 6110 defects reported. This data has been used to build some preliminary
models by project and by Center. Analysis has been performed in an attempt to build a
generic set of models that can later be used across Centers or at least for an individual
project to compare the effectiveness of their inspections with how other projects, Centers,
or the Agency are doing. In the long term the purpose would be for the decision support
tool to be able to look for systemic problems and provide guidance on potential means to
mitigate the specific problem.

2.4. Analysis of Source Data

The source data was first analyzed by product type. Some projects inspect project plans,
requirements documents, test plans, design documents, source code and some only
inspect a subset of these. With respect to defect data, some projects categorize defects
into a very large number of defect types by product and some only indicate whether the
defect was major or minor. After looking at a wide variation of defect types for each
product type and their corresponding definitions, the FC-MD recommended an initial set of
defect types to be collected by teams going forward. The set of defect types and
definitions are provided in Section 3.1.

Although these particular defect types have been chosen for cross-Center analysis, the
tool will still allow projects to collect their original defect types and input that data directly
into the tool. The tool will translate the data into the recommended set of defect types and
compare with the baseline set of models. It is expected that the baseline set of models will
be reviewed periodically and revised, if relevant. For projects not already collecting
inspection data the intention would be to introduce the recommended set of defect types.
Also, in time, as more data is collected, it is envisioned that the recommended set could
be refined. The tool is designed so as to make this type of change relatively easy.

Other types of inspection-related data (e.g., effort, number of inspectors, etc.) have also
been analyzed, again in an effort to build baselines and recommendations for use across
the Agency. The preliminary results of this analysis are presented in Section 4.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 7

3. Analysis Results of Inspection Defect Type Data

We examined inspection defect data for several purposes. First, we wanted to understand
how defects were classified at different Centers. Second, one of our goals was to develop
a defect classification scheme that accommodated the defect classification practices used
in our different data sources and that could be used to guide inspection data collection
going forward. Finally, we wanted to determine what types of defects tended to be found in
inspections in general, and if the distribution of defect types varied among our data
sources.

In examining the data from the different sources, we found that different names were used
for similar artifacts that were inspected. One of our data sources reported data on unit
design and another data source reported data on both architectural design and detailed
design. For our analysis, we have combined all of these into the design category.
Similarly, in another case, a data source distinguished between software requirements
and subsystem level requirements. For our analysis, we have combined both
requirements types into one requirements category. Using this type of analysis we
currently have four inspection product categories: requirements, design, code, and test. It
is anticipated that others will be added in the future, if warranted.

In the sections that follow, we first present our proposed defect classification, grouped into
the four inspection product categories mentioned above, as well as how our defect
categories map to the defect categories used in the Centers . Then we present the various
analyses conducted to investigate the distribution of defect types .

3.1. Proposed FC-MD Inspection Defect Types by Product

Below is a simple listing of the defect categories that resulted from our analysis, for the
different work products that are inspected.

other

testability

correctness

consistency

compliance

completeness

clarity

Requirements

other

testability

correctness

consistency

compliance

completeness

clarity

Requirements

other

timing/optimization

non-functional defects

logic

internal interface

external interface

data

checking (i.e. error
handling)

assignment/initialization

algorithm/method

Design/Code

other

timing/optimization

non-functional defects

logic

internal interface

external interface

data

checking (i.e. error
handling)

assignment/initialization

algorithm/method

Design/Code

other

testability

redundancy

correctness

compliance

completeness

clarity

Test Plans

other

testability

redundancy

correctness

compliance

completeness

clarity

Test Plans

We found that the categories that make sense and that are useful for analysis of design
and code inspections are not helpful for requirements and test plans, therefore these work
products each have different defect categories. The defect classifications for requirements
and test plans are almost identical, with most of the defect types relating to common
characteristics of natural language documents. The only difference between the two
classifications is that the requirements defect type “consistency” is replaced by the test

8  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

plan defect type “redundancy”. Consistency, we believe, is not normally a crucial aspect of
test plans that would raise defects. However, redundant test cases or test schemes would
be a possible source of defects raised in an inspection of test plans. In forming these
categories, we began with an industry standard, Orthogonal Defect Classification (ODC)
[1], and then added categories from data currently collected from Centers that could not
be mapped to the existing ODC categories. We attempted to achieve a compromise
between facilitating the mapping of existing data and preserving the standard categories
from ODC. This is an initial categorization that is expected to evolve over time as
additional data sources are incorporated.

3.2. Inspection Defect Type Definitions

The tables below present definitions of the defect types presented in the previous section.

Table 1. Requirements inspection defect types

Defect Type Definition

clarity A problem in the wording or organization of the document that makes it
difficult to understand.

completeness A missing requirement or other piece of information.

compliance A problem with compliance to any relevant standard.

consistency Two or more statements in the document that are not consistent with each
other, e.g., requirements that are mutually exclusive.

correctness Any statement in the document that is incorrect.

testability A requirement that is not stated in a way that makes it clear how it can be
tested.

other Anything that does not fit any of the above categories that is logged during a
requirements inspection.

Table 2. Design and Source Code inspection defect types

Defect Type Definition

algorithm / method An error in the sequence or set of steps used to solve a particular problem or
computation, including mistakes in computations, incorrect implementation of
algorithms, or calls to an inappropriate function for the algorithm being
implemented.

assignment/initialization A variable or data item that is assigned a value incorrectly or is not initialized
properly or where the initialization scenario is mishandled (e.g., incorrect
publish or subscribe, incorrect opening of file, etc.)

checking Inadequate checking for potential error conditions or an inappropriate
response is specified for error conditions .

data Error in specifying or manipulating data items, incorrectly defined data
structure, pointer or memory allocation errors, or incorrect type conversions.

external interface Errors in the user interface (including usability problems) or the interfaces
with other systems.

internal interface Errors in the interfaces between system components, including mismatched
calling sequences and incorrect opening, reading, writing or closing of files
and databases.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 9

Defect Type Definition

logic Incorrect logical conditions on if, case or loop blocks, including incorrect
boundary conditions ("off by one" errors are an example) being applied, or
incorrect expression (e.g., incorrect use of parentheses in a mathematical
expression).

non-functional defects Includes non-compliance with standards, failure to meet non-functional
requirements such as portability and performance constraints, and lack of
clarity of the design or code to the reader -- both in the comments and the
code itself.

timing/optimization Errors that will cause timing (e.g., potential race conditions) or performance
problems (e.g., unnecessarily slow implementation of an algorithm).

other Anything that does not fit any of the above categories that is logged during
an inspection of a design artifact or source code.

Table 3. Test Plan inspection defect types

Defect Type Definition

clarity A problem in the wording or organization of the document that makes it
difficult to understand.

completeness A missing test case or other piece of information.

compliance A problem with compliance to any relevant standard.

correctness Any statement in the document that is incorrect, including incorrect
expected output for a test case.

testability Test case may not be testable because it is infeasible (e.g., too costly, to
test).

redundancy Test cases or other information that is not necessary because it appears
more than once.

other Anything that does not fit any of the above categories that is logged during
a test plan inspection.

3.3. Defect Type Translation Tables and Mapping Rationale

Tables 4, 5, and 6 below depict how the original source data inspection defect types were
mapped to the proposed FC-MD defect types by product type inspected. The tables also
provide some rationale for the mapping, where it is not straightforward. In some cases, the
original source did not include any defects that mapped to one of the proposed defect
types. In those cases, the FC-MD defect type is excluded from the table for that data
source.

Table 4. Mapping for Requirements inspection defect types

Defect Types from Data
Sources

Mapped to FC-MD Proposed
Defect Types

Rationale

Data Source A
None

Data Source B
completeness completeness straightforward

10  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Defect Types from Data
Sources

Mapped to FC-MD Proposed
Defect Types

Rationale

reliability completeness The assumption is that problems with
reliability usually have to do with
something missing, e.g. , a check for
an error condition.

data usage completeness The assumption is that problems with
data usually have to do with something
missing, e.g., a missing data definition.

interface completeness The assumption is that problems with
interfaces usually have to do with
something missing, e.g. , a missing
specification of input or output data.

maintainability completeness The assumption is that problems with
maintainability usually have to do with
something missing, e.g. , sufficient
documentation or separation of
concerns.

performance completeness The assumption is that problems with
performance usually have to do with
something missing, e.g. , a
performance requirement.

clarity clarity straightforward
level of detail clarity An inadequate level of detail implies a

problem of clarity.
correctness correctness straightforward
compliance to standards compliance straightforward
traceability compliance It is assumed that there are standards

about what needs to be traceable to
what, so a lack of traceability could be
seen as a standards compliance
problem.

consistency consistency straightforward
testability testability straightforward
functionality other ”Functionality” defects cannot be

cleanly assigned to a single existing
category .

feasibility other There is no other category that would
cover feasibility problems in
requirements.

Data Source C
None

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 11

Table 5. Mapping of Design and Code inspection defect types

Defect Types from Data
Sources

Mapped to FC-MD Proposed
Defect Types

Rationale

Data Source A
Initialization assignment/initialization straightforward
Data value or structure data straightforward
Logic/control structures logic straightforward
Computational algorithm/method Definition of “algorithm/method”

category includes computational
issues.

Internal interface internal interface straightforward
External interface external interface straightforward

Data Source B
anomaly management checking These terms are believed to be

synonyms.
performance timing/optimization Performance is seen as a sub-concept

of optimization.
data; data usage data straightforward
control logic These terms are believed to be

synonyms.
computation; accuracy algorithm/method Definition of “algorithm/method”

category includes computational
issues; it is assumed that most
accuracy problems are problems with
the algorithm being employed.

interface (half); linkage internal interface Data Source B does not distinguish
between internal and external interface
defects, so we have elected to split the
interface category evenly between the
two. “Linkage” is assumed to mean
linkages between different parts of the
system, which is akin to internal
interface problems.

interface (half) external interface Same as above
compliance to standards;
portability; maintainability;
clarity; functionality

non-functional defects All these Data Source B categories are
assumed to not affect external
behavior of the system, thus can be
considered non-functional.

other; qualify; modularity other We are not sure what “qualify” defects
are. Modularity does not fit into any
other category.

completeness; consistency;
correctness

assignment/initialization; logic;
algorithm/method; data;
internal interface; external
interface

We believe that design or code defects
labeled as completeness, consistency,
or correctness could be defects of any
of these six types. We first distributed
the “three c’s” defects evenly among
the six types, but that resulted in these
defects dominating the dataset, and a
nearly equal distribution of defects
over these types as a whole. So our

12  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Defect Types from Data
Sources

Mapped to FC-MD Proposed
Defect Types

Rationale

final decision was to distribute the
“three c’s” defects over the six types
according to the distribution of defects
in these six types in the rest of the
Data Source B dataset.

Data Source C
optimization timing/optimization These terms are believed to be

synonyms.
unset assignment/initialization We believe that “unset” refers to unset

variables or other data items, i.e.,
things that have not been initialized
properly.

program logic logic These terms are believed to be
synonyms.

usability external interface Usability is one type of external
interface problem.

Coding Standard; Clarify;
Suggestion

non-functional defects All these categories are assumed to
not affect external behavior of the
system, thus can be considered non-
functional.

other other straightforward

Table 6. Mapping of Test Plan inspection defect types

Defect Types from Data
Sources

Mapped to FC-MD Proposed
Defect Types

Rationale

Data Source A
Half of all “data value or
structure”, “initialization”,
“internal interface” and
“logic/control structures”
defects

completeness These four categories were the only 4
used for test plan inspections in the
Data Source A database. We do not
have enough information to make a
complete mapping, but we believe that
all defects in these 4 categories
correspond to actual functional
defects, and so are not appropriate for
categories such as clarity, compliance,
etc.; they are more concerned with
non-functional issues. So we decided
to split the defects in these 4
categories between the
“completeness” and “consistency”
categories .

Half of all “data value or
structure”, “initialization”,
“internal interface” and
“logic/control structures”
defects

correctness Same explanation as above.

Data Source B
completeness completeness straightforward
reliability completeness The assumption is that problems with

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 13

Defect Types from Data
Sources

Mapped to FC-MD Proposed
Defect Types

Rationale

reliability usually have to do with
something missing, e.g. , a check for
an error condition.

data usage completeness The assumption is that problems with
data usually have to do with something
missing, e.g., a missing data definition.

interface completeness The assumption is that problems with
interfaces usually have to do with
something missing, e.g. , a missing
specification of input or output data.

maintainability completeness The assumption is that problems with
maintainability usually have to do with
something missing.

performance completeness The assumption is that problems with
performance usually have to do with
something missing, e.g. , testing a
performance requirement.

clarity clarity straightforward
level of detail clarity An inadequate level of detail implies a

problem of clarity.
correctness correctness straightforward
consistency correctness If two statements in the test plan are

inconsistent, then one can assume
that one of them is incorrect.

compliance to standards compliance straightforward
traceability compliance It is assumed that there are standards

about what needs to be traceable to
what, so a lack of traceability could be
seen as a standards compliance
problem.

consistency consistency straightforward
testability testability straightforward
functionality other ”Functionality” defects cannot be

cleanly assigned to a single existing
category.

feasibility other There is no other category that would
cover feasibility problems in the test
plan.

other other straightforward
Data Source C

None

14  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

3.4. Inspection Defect Type Models by Work Product Type

This subsection contains the models formulated by analyzing the historical inspection data
obtained and analyzed to date. It is expected as more data is received from Centers
currently collecting data on inspections the newer data will be used to validate the baseline
models. The detailed defect type data by product inspected from each data source along
with the rationale for building the models is presented in the subsequent subsections
below. The data presented in these sections has already been mapped to the FC-MD
defect types. The original data along with the mapping can be found in Appendix A.

3.4.1. Requirements

Only data source B provided data on requirements inspections. The distribution of data on
requirements defects is presented in Figure 1. Clarity and completeness constitute most of
the defects found.

Figure 1. Data Source B - Requirements inspection defects

Requirements
Inspection Defects By Type

Data Source B - Mapped to FC-MD DefectTypes

clarity , 286, 38%completeness , 143, 19%

compliance , 53, 7%

consistency , 102, 14%

correctness , 81, 11%

other , 60, 8%

testability , 20, 3%

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 15

3.4.2. Source Code
All data sources contributed data on defects found during inspections of code artifacts.
The distribution of the data for two of the data sources is dominated by non-functional
defects (71%, 41%) (e.g., conformance to standards, performance, maintainability, etc.)
and was omitted from the 3rd data source. Therefore, this category of defects is omitted in
Figure 2 for the sake of comparing the defects across data sources .

Figure 2. Combined Data Sources - Source Code inspection defects

Source Code
Inspection Defects By Type

(Combined Data Sources - Mapped to FC-MD DefectTypes)

algorithm/method , 110,
6%

assignment/initialization
, 187, 11%

checking (i.e. error
handling) , 70, 4%

data , 303, 17%

external interface , 234,
13%

internal interface , 142,
8%

logic , 584, 33%

other , 143, 8%

Note: excludes non-functional
requirements

Data on source code inspections from data source A was divided into two categories:
newly written source code and modified source code. The data from these two categories
are shown in Figures 3 and 4. Note that the data from data source A did not include a
“non-functional defect” category. While this data represents only one of our data sources,
it is interesting to note the differences between Figures 3 and 4. A much larger proportion
of the defects in modified source code are data-related and internal interface defects, as
compared to the newly written source code. This makes some intuitive sense: One might
suppose that categories such as algorithm and logic would be less likely to change during
modification of a source code unit, than would issues related to data and component
interfaces that are likely to be misunderstood by developers reusing code that was written
elsewhere.

16  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Figure 3. Data Source A - Source Code inspection defects

Source Code
Inspection Defects By Type

(Data Source A - mapped to FC-MD Defect Types)

algorithm/
method, 94, 10%

data, 170, 17%

external interface ,
133, 14%

assignment/
initialization, 136, 14%

internal interface , 87,
9%

logic, 354, 36%

 Figure 4. Data source A - Modified Source Code inspection defects

Modified Source Code
Inspection Defects By Type

(Data Source A - mapped to FC-MD Defect Types)

algorithm/
method, 16, 5.1%

data, 104, 33.1%

external interface , 41,
13.1%

assignment/
initialization, 43, 13.7%

internal interface , 47,
15.0%

logic, 63, 20.1%

Data Source B did include a non-functional defects category, which constituted 71% of the
defects reported. For this reason, the non-functional defect type has been excluded from
Figure 5, which shows the distribution of the remaining 29% of the defects reported.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 17

Figure 5. Data Source B - Source Code inspection defects

Source Code
Inspection Defects By Type

(Data Source B - Mapped to FC-MD DefectTypes)

algorithm/method , 0, 0%

assignment/initialization
, 0, 0%

checking (i.e. error
handling) , 70, 39%

data , 29, 16%

external interface , 8, 5%

internal interface , 8, 5%

logic , 4, 2%

other , 58, 33%

Note: (excludes non-functional
requirements)

Data source C, like Data source A, also separated its data on source code inspections into
two categories, one for modified source code and one for new source code. The defect
data from these two categories are shown in Figures 6 and 7. As for data source B, a
large percentage (41%) of source code defects from data source C were non-functional
defects, so they have been excluded from the charts in Figures 6 and 7 so that the
distribution of the remaining defects can be seen more clearly. Comparison of these two
charts shows that most defects in modified source code were not classified into any defect
category (i.e., they were “other” defects) while the new source code defects are dominated
by the “logic” category.

Figure 6. Data Source C - Modified Source Code inspection defects

Modified Source Code
Inspection Defects by Type

 (Data Source C - mapped to FC_MD Defect Types)

logic, 18, 16%

external interface, 26,
24%

assignment/
initialization , 2, 2%

other, 64, 58%

Note: excluding
non-functional
defects

18  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Figure 7. Data Source C - Source Code inspection defects

Source Code
Inspection Defects By Type

 (Data Source C - mapped to FC_MD Defect Types)

logic, 145, 73%

external interface, 26,
13%

assignment/
initialization , 6, 3%

other, 21, 11%

Note: excluding
non-functional
defects

Table 7, below, compares the types of defects found in source code inspections from all
data sources. The table shows that there are many more source code defects (1288)
reported by data source A, compared with (177,308) the other data sources. There were
also many more products inspected and reported by data source A (1643) compared with
the other data sources (199 and 690). When combining all of the source code-related
data, data source A’s source code defect profile will tend to overshadow the contributions
from the other data sources as previously shown in Figure 2, above. Scaling by size (e.g.,
number of products inspected) is one way to deal with this issue. Another item to note
when looking at the varied profiles of source code inspection defect types is that for data
source C there are no defects of type “data” reported. The “data” type defects may have
been incorporated in the “other” category.

 Table 7. Comparison of source code inspection defects by Data Source

Inspection
Type Defect Type

Data
Source A

(# defects)

Data
Source B

(# defects)

Data
Source C

(# defects)
Total

(# defects)

Source
Code

algorithm/
method 110 0 110

assignment/
initialization 179 0 8 187

checking (i.e.,
error handling) 0 70 0 17

 data 274 29 281

 external interface 174 8 52 228

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 19

 internal interface 134 8 136

 logic 417 4 163 581

 other 0 58 85 99

 Total 1288 177 308 1639

Inspection
Type Defect Type

Data
Source A

(%
defects)

Data
Source B

(% defects)

Data
Source C

(%
defects)

Total
(%

defects)

Source
Code

algorithm/
method 8.5% 0.0% 0.0% 6.2%

assignment/
initialization 13.9% 0.0% 2.6% 10.5%

checking (i.e.,
error handling) 0.0% 39.5% 0.0% 3.9%

 data 21.3% 16.3% 0.0% 17.1%

 external interface 13.5% 4.7% 16.9% 13.2%

 internal interface 10.4% 4.7% 0.0% 8.0%

 logic 32.4% 2.3% 52.9% 32.9%

 other 0.0% 32.6% 27.6% 8.0%

 Total 100.0% 100.0% 100.0% 100.0%

Figure 8 shows the charts based on the data in Table 7 depicting the comparison of the
types of defects by data source. As can be seen, there are large discrepancies in the data
across Centers. Our next task is to explore whether some of these discrepancies can be
explained by different attributes, such as size or type, of the projects represented in these
data sets (as described in our research questions for future work in Section 6).

Figure 8. Comparison of Source Code inspection defects by Data Source

Source Code
Inspection Defects By Type

(Center A - mapped to FC-MD Defect Types)

algorithm/
method, 94, 10%

data, 170, 17%

external interface ,
133, 14%

assignment/
initialization, 136, 14%

internal interface , 87,
9%

logic, 354, 36%

Modified Source Code
Inspection Defects By Type

(Center A - mapped to FC-MD Defect Types)

algorithm/
method, 16, 5.1%

data, 104, 33.1%

external interface , 41,
13.1%

assignment/
initialization, 43, 13.7%

internal interface , 47,
15.0%

logic, 63, 20.1%

Source Code
Inspection Defects By Type

(Center B - Mapped to FC-MD DefectTypes)

algorithm/method , 0, 0%

assignment/initialization
, 1, 2%

checking (i.e. error
handling) , 17, 38%

data , 7, 16%

external interface , 2, 5%

internal interface , 2, 5%

logic , 1, 2%

other , 14, 32%

Note: (excludes non-functional
requirements and set of evenly
distributed defects)

Modified Source Code
Inspection Defects by Type

 (Center C - mapped to FC_MD Defect Types)

logic, 18, 16%

external interface, 26,
24%

assignment/
initialization , 2, 2%

other, 64, 58%

Note: excluding
non-functional
defects

20  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

3.4.3. Design

As with source code defects, a significant number of design defects (44% of the total) fell
into a single category, “non-functional defects,” and so have been excluded from the chart
in Figure 9 to better see the distribution of the remaining defects. A large number of the
remaining defects are in the “other” category.

Figure 9. Combined Data Sources - Design inspection defects

Design
Inspection Defects By Type

(Combined Data Sources - Mapped to FC-MD DefectTypes)

algorithm/method , 22,
2%

assignment/initialization
, 35, 3%

checking (i.e. error
handling) , 330, 25%

data , 161, 12%

external interface , 138,
11%

internal interface , 126,
10%

logic , 84, 6%

other , 412, 31%

Note: excludes non-functional
requirements

The distribution of design defects from Data source A are shown in Figure 10. Data source
A did not use a “non-functional defects” category, or an “other” category.

Figure 10. Data Source A - Design inspection defects

Design
Inspection Defects By Type

(Data Source A - mapped to FC-MD Defect Types)

algorithm/
method, 7, 2.0%

data, 74, 21.6%

external interface , 80,
23.3%

assignment/
initialization, 35, 10.2%

internal interface , 63,
18.4%

logic, 84, 24.5%

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 21

Data Source B did include a non-functional defects category, which constituted 45% of the
defects reported. For this reason, the non-functional defect type has been excluded from
Figure 11, which shows the distribution of the remaining 55% of the defects reported, of
which 42% are in the “other” category.

Figure 11. Data Source B - Design inspection defects

Design
Inspection Defects By Type

(Data Source B - Mapped to FC-MD DefectTypes)

algorithm/method , 15,
2%

assignment/initialization
, 0, 0%

checking (i.e. error
handling) , 330, 34%

data , 87, 9%

external interface , 58,
6%

internal interface , 63,
7%

logic , 0, 0%

other , 412, 42%

Note: excludes non-functional
requirements

Data Source C supplied no data from design inspections.

Table 8, below, compares the types of defects found in design inspections from all data
sources , and Figure 12 shows the same information graphically. For the most part there
are large discrepancies in the data across data sources. Once again, our next task is to
explore whether some of these discrepancies can be explained by different attributes,
such as size or type, of the projects represented in these data sets (as described in our
research questions for future work in Section 6).

Table 8. Comparison of design inspection defects by data source

Inspection
Type Defect Type

Data
Source A
(# defects)

Data
Source B
(# defects)

Data
Source C
(# defects)

Total

(# defects)

Design
algorithm/
method 7 15 0 22

assignment/
initialization 35 0 0 35

checking (i.e.,
error handling) 0 330 0 330

 data 74 87 0 161

 external interface 80 58 0 138

 internal interface 63 63 0 126

 logic 84 0 0 84

22  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

 other 0 412 0 412

 Total 343 965 0 1308

Inspection
Type Defect Type

Data
Source A

(%
defects)

Data
Source B

(% defects)

Data
Source C

(%
defects)

Total

(%
defects)

Design
algorithm/
method 2.0% 1.5% 0.0% 1.6%

assignment/
initialization 10.2% 0.0% 0.0% 2.7%

checking (i.e.,
error handling) 0.0% 34.2% 0.0% 25.2%

 data 21.6% 9.0% 0.0% 12.3%

 external interface 23.3% 6.0% 0.0% 10.6%

 internal interface 18.4% 6.5% 0.0% 9.6%

 logic 24.5% 0.0% 0.0% 6.4%

 other 0.0% 42.7% 0.0% 31.5%

 Total 100.0% 100.0% 0.0% 100.0%

Figure 12. Comparison of Design inspection defects by Data Source

Design
Inspection Defects By Type

(Data Source A - mapped to FC-MD Defect Types)

algorithm/
method, 7, 2.0%

data, 74, 21.6%

external interface , 80,
23.3%

assignment/
initialization, 35, 10.2%

internal interface , 63,
18.4%

logic, 84, 24.5%

Design
Inspection Defects By Type

(Data Source B - Mapped to FC-MD DefectTypes)

algorithm/method , 15,
2%

assignment/initialization
, 0, 0%

checking (i.e. error
handling) , 330, 34%

data , 87, 9%

external interface , 58,
6 %

internal interface , 63,
7%

logic , 0, 0%

other , 412, 42%

Note: excludes non-functional
requirements

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 23

3.4.4. Test Plans

Correctness, completeness, and clarity dominated the distribution of defects found in
inspections of test plans in the combined data set, which can be seen in Figure 13.

Figure 13. Combined Data Sources - Test Plan inspection defects

Test Plan
Inspection Defects By Type

(Combined Data Sources - Mapped to FC-MD DefectTypes)

clarity , 192, 26%

completeness , 229, 31%

compliance , 58, 8%

correctness , 240, 33%

other , 6, 1%

testability , 5, 1%

The test plan defect data from data source A fell into just two categories, as shown in
Figure 14.

Figure 14. Data Source A - Test Plan inspection defects

Test Plan
Inspection Defects By Type

(Data Source A - mapped to FC-MD Defect Types)

correctness, 5, 50.0%completeness, 5,
50.0%

24  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Data Source B’s test plan defect data, shown in Figure 15, is much more diverse.

Figure 15. Data Source B - Test Plan inspection defects

Test Plan
Inspection Defects By Type

(Data Source B - Mapped to FC-MD Defect Types)

clarity , 192, 27%

completeness , 224, 31%

compliance , 58, 8%

correctness , 235, 32%

other , 6, 1%

testability , 5, 1%

Data Source C supplied no data on test plan inspections. For Data Source A and B the
results are widely different making it difficult to combine the data. Our future work will be
to explore the reasons more fully by different attributes, such as size or type, of the
projects represented in these data sets (as described in our research questions for future
work in Section 6).

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 25

4. Inspection Effort, Size, and Defect Summary Models

A number of parameters are relevant for analyzing inspections and modeling the impact on a
project’s defects. Independent parameters (those under the control of the inspection planner)
include the effort invested towards an inspection, the number of participants, the phase of
development in which the inspection was conducted, the checklist used for the inspection, and
document size. Other influencing factors are quality of the inspected artifact and the type of the
project, which can be characterized by several criteria like safety, criticality, etc. Dependent
variables include number of defects, type of defects, efficiency of finding those defects during
an inspection and savings achieved by conducting an inspection. This section contains a
description of the approach used to analyze existing effort and size type data as well as the
status of analyzing the data collected from Data Source A, B, and C and some next steps for
continuing this research initiative refining the summary effort, size, and defect models.

4.1. Types of data collected

The following types of data have been collected so far:

• Team size per inspection

• Size per inspection (pages for documents, SLOC for source code)

• Time to find defects (total hours per inspection/number of defects per inspection)

• Time to fix defects

• Major defects per page (or SLOC)

• Minor defects per page (or SLOC)

• Total defects per page (or SLOC)

4.2. Modeling Approach

The basic approach used so far has been to analyze the types of data (see immediately
above) from each data source (A, B, C). The source data has not yet been combined and
analyzed in depth because the data sources are from different environments and initially
appear to be widely different. The initial analysis examined the mean and variability of the
dataset for each product type inspected. As more data is provided in the future it is
expected that these baselines will be refined. Also more analysis will be done that will
allow for comparisons across projects, Centers and Agency. To provide some insight to
our analysis approach and status so far, the next sub-section includes the initial baseline
models from one of the data sources.

26  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

4.3. Sample Effort, Size, and Defect Summary Baseline Models

The Table below is a sample of the types of modeling that have been done under this
research initiative. This table depicts the initial baseline models derived from Data Source
B. In addition, the corresponding Figures follow the table. These Figures can also be
viewed using the prototype tool, which is described in more detail in Section 5.

Table 9. Summary Baseline Models

Some issues to note in the following figures include:

• There are significant differences in the data ranges and means from one work product
to another, for all parameters examined. For this reason, we treat the data for different
product types separately in all of our analyses, as was reflected in this document.

• One interesting distinction was that for the team size parameter, the mean value for
requirements documents was higher than for other document types and the range
was fairly small. This corresponds to the intuition that more persons have a stake in
the description of the system to be built, as defined by the requirements, and hence
more people need to be represented in inspections of these documents.

• The data seem to show the difficulty of V&V in the early life-cycle phases, where it is
more difficult to produce clear models of the system. Smaller documents were
reviewed in the early life-cycle phases (requirements and design, as opposed to code)
but more time was required by find and fix defects and a higher defect density was
found.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 27

Figure 16. Size data per Inspection by Product type

Figure 17. Effort data per defect by Product type

28  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Figure 18. Defects found per size unit by Product type

4.4. Some Next Steps for Refining Effort, Size, and Defect Baseline Models

Future related work in this area will include:

• building similar models with the other data we have received so far;

• continuing to compare new models with the recommendations, to determine
whether the best practices reported in the literature hold in this environment and
for contemporary programs;

• combining data across Centers and analyzing those models in more depth;

• collecting additional data from the same Center and validate/ refine the initial
baseline models;

• obtaining feedback on the models and prototype tool and refine accordingly.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 29

5. Prototype Inspection Tool Highlights

A number of analyses need to be performed on the different inspection datasets. To
support these activities we developed a prototype tool called Inspection Dashboard. Our
tool now automates many of the analyses described in the prior sections. The tool
therefore supports the dissemination of the inspection results and offers a basis for
detailed analysis and future improvements.

In the following sections, we will describe some highlights of the Dashboard tool. The tool
is currently developed at the Fraunhofer Center, Maryland. For detailed documentation of
the tool and its full functionality we refer the interested reader to [2].

Figure 19. The start-up screen of the Dashboard prototype

As illustrated in Figure 19, the Dashboard tool offers two groups of functions:

1) A number of Data analysis and handling capabilities (see functions in the left tree
structure of the start -up screen in Figure 19), and

2) Experience Base (EB) capabilities (see functions in the right tree structure in the
start -up screen in Figure 19).

30  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

5.1. Data Analysis Functionality

This set of functions form the main part of the Dashboard tool. With the offered
functionality, users can store, analyze, and display inspection data. Dashboard offers
several ways to input the collected data of conducted inspections. Whether users enter the
collected data manually, or import them from an already existing file (in MS Excel™
format), the inspection data is systematically stored in the tool’s own database.

The database of the Dashboard prototype initially has been seeded with several sets of
historic inspection data from NASA. This data is not only used to test and demonstrate the
tool’s functionality, it further can serve as an initial baseline against which data of newly
conducted inspections can be compared.

Note that in all following example screenshots of the dashboard tool only historic datasets
together with other test datasets are illustrated. By design, these datasets are different
from the project specific inspection data discussed in previous sections of this report.

Note that an additional feature of the tool is the ability to display recommended ranges for
many of the key parameters, which are drawn from the existing literature and training
courses. An important part of our future work is to examine whether there is sufficient
evidence in our database to support these recommendations for NASA projects, and if
not, whether we can produce more relevant, tailored recommendations.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 31

Figure 20. Example: Project Reporting of the Dashboard prototype

Figure 20 illustrates some of the reporting and display capabilities of the Dashboard
prototype. Project specific inspection data can be displayed and compared to other
projects. By using the different checkboxes and sliders in the upper part of the screen,
users can choose against which existing inspection datasets in the Dashboard database
the current project is compared. The current data point is displayed in contrast to the
range of the selected inspection data as well as the average value of the selected
datasets. Recommended ranges are also shown (in green) for comparison to incoming
data. The complete screen can be captured and exported as a separate JPG file to be
saved for future reference, or for inclusion in external reports.

32  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Figure 21. Example: Control Metrics of the Dashboard prototype

Figure 21 provides an example of the control metrics capability of the Dashboard
prototype. The different traffic lights indicate whether the three major parameters that the
inspection planner can control on a given inspection - “Team Size”, “Page Rate”, and the
“Time Spent” - are within the predefined range of recommended values. In Figure 21, the
current “Team Size” of 5 matches exactly with the recommended value of 5 team
members. Hence, the traffic light is displayed in green. At the same time, the current
values for the “Page Rate” and “Time Spent” are well above the recommended limits.
Therefore, a red traffic light is displayed. Currently, the Dashboard prototype uses a set of
control metrics based on historic inspection data, which we will evaluate against
contemporary NASA inspection data during.

5.2. Experience Base Functionality

Besides the specific data storage, analysis, and display functionalities, which we
highlighted in the last section, the Dashboard prototype also provides access to an
Inspection Experience Base (EB).

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 33

The Experience Base will allow inspection planners to benefit from the past experiences of
other projects that have applied inspections. Specifically, the EB will:

• Provide access to inspection materials, such as checklists and forms that can be used
by teams planning new inspections. These materials are organized according to the
type of work product for which they can be applied and the types of projects that have
applied them in the past. Teams planning new inspections will be able to see what
resources might be appropriate for their context and whether they have been applied
at NASA or come from elsewhere. Figure 22 shows one view of a user browsing for a
checklist to use in a new inspection.

• Provide other related content that is updated periodically, such as definitions, defect
taxonomies, related literature, etc.

Figure 22. Example: FC-MD Inspection Experience Base

34  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

6. Research Questions for Further Study

As emphasized earlier, this model is a preliminary one that will continue to be refined and
updated as we gain access to additional data sources. So far it has allowed us to
characterize key parameters in the inspection process (such as inspection preparation
effort, inspection meeting length, inspection rate, type of document, inspection team size,
and type and number of defects found).

In future work on this initiative we need to refine this model via the following analyses:

Research Goal 1: Characterize the effects of inspection process used, inspection
preparation effort, inspection meeting length, inspection rate, type of document, and
inspection team size on defects found (number, severity, defect types) and rework effort
over a set of projects.

Questions:
A. What is the effect of parameters that can be controlled in an inspection (metrics i

through vi, below) on inspection outcomes (metrics vii through x)?
B. Are there any interaction effects of metrics i through vi on any of the metrics vii

through x? (E.g.: Does inspection rate have an effect that varies for different types
of documents?)

C. Are there any combinations of project characteristics (e.g. project size, project
criticality, etc.) for which some of these effects hold or do not hold?

D. For inspections for which metrics i through vii are within the recommended range,
are significantly better values of metrics vii through x observed? If not, can ranges
be defined for which this is true?

Metrics:

i. inspection process used
ii. inspection preparation effort
iii. inspection meeting length
iv. inspection rate
v. type of document
vi. inspection team size
vii. number of defects found
viii. severity of defects found
ix. defect types of defects found
x. rework effort

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 35

Research Goal 2: Characterize the relationship between the inspection process and the
test process with respect to effort expended and defects found over a set of projects.

Questions (NOTE: These questions are basically a cross produc t of [characteristics of
defects found in inspections, size of inspection effort, inspection rework effort] X
[characteristics of defects found during test, test effort, test-related rework effort]):

A. Do differences in the defects found (number, severity, defect types) during
inspections have an effect on the defects later found (number, severity, defect
types) during test on the same project?

B. Do differences in the defects found (number, severity, defect type) during
inspections have an effect on the amount of test effort expended later on the
same project?

C. Do differences in the amount of the inspection effort (preparation effort, meeting
length, inspection rate, size of inspection team) have an effect on the defects later
found (number, severity, defect types) during test on the same project?

D. Do the answers to any of the above questions depend on the phase in which the
inspection takes place (i.e. the document inspected)?

Metrics:

i. Number of defects found per inspection
ii. Severity (major/minor) of defects found per inspection
iii. Defect type of each defect found per inspection
iv. Inspection preparation effort
v. Inspection meeting length
vi. Inspection rate
vii. Size of inspection team
viii. Test effort

36  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

7. References

[1] R. Chillarege et al.: “Orthogonal Defect Classification—A Concept for In-Process
Measurements,” IEEE Trans. Software Eng., vol. 18, no. 11, 1992, pp. 943–956.

[2] R. Haingaertner: Master Thesis. Mannheim University of Applied Science, Mannheim,
Germany & Fraunhofer USA Inc., Center for Experimental Software Engineering,
Maryland, scheduled October 2007.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 37

Appendix A: Original Source Data By Product and Defect Type

Table A1. Data Source A detailed defect data

Modified Source Code

Data Source A Number of Defects
Mapped to FC-MD Defect

Types

Computational 16
algorithm/
method

Data value or structure 104 data

External interface 41 external interface

Initialization 43
assignment/
initialization

Internal interface 47 internal interface

Logic/control structures 63 logic

Total 314

New Source Code

Data Source A Number of Defects
Mapped to FC-MD Defect

Types

Computational 94
algorithm/
method

Data value or structure 170 data

External interface 133 external interface

Initialization 136
assignment/
initialization

Internal interface 87 internal interface

Logic/control structures 354 logic

Total 974

Design

Data Source A Number of Defects
Mapped to FC-MD Defect
Types

Computational 7
algorithm/
method

Data value or structure 74 data

External interface 80 external interface

Initialization 35
assignment/
initialization

Internal interface 63 internal interface

Logic/control structures 84 logic

Total 343

38  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Test Plan

Data Source A Number of Defects
Mapped to FC-MD Defect

Types

Computational 0

Data value or structure 3

External interface 0

Initialization 1

Internal interface 2

Logic/control structures 5

half to correctness and half
to completeness

Total 11

Table A2. Data Source B detailed defect data

Requirements

Data Source B Defects FC-MD mapping

Clarity 250 clarity

Completeness 69 completeness

Compliance to Stds 17 compliance

Consistency 102 consistency

Correctness 49 correctness

Maintainability 44 completeness

Modularity 0

Performance 6 completeness

Portability 0

QUALIFI 0

Reliability 8 completeness

Traceability 36 compliance

Level of Detail 36 clarity

Accuracy 12 correctness

Anomaly Management 0

Computation 0

Data 20 correctness

Feasibility 5 other

Functionality 54 other

Interface 16 completeness

Testability 20 testability

Other 1 other

Grand Total 745

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 39

Design

Data Source B Defects FC-MD mapping

Defect Number of defects

Clarity - 479 non-functional defects

Completeness -
276 dist by % profile to all
categories

Compliance to Stds - 84 non-functional defects

Consistency -
169 dist by % profile to all
categories

Correctness -
321 dist by % profile to all
categories

Maintainability - 23 non-functional defects

Modularity - 1 other

Performance - 25 non-functional defects

Portability - 9 non-functional defects

QUALIFI 7 other

Reliability - 65
checking (i.e., error
handling)

Traceability - 20 non-functional defects

Level of Detail - 32 non-functional defects

Accuracy - 0 dist to algorithm

Anomaly Management - 1
checking (i.e., error
handling)

Computation - 2 algorithm/method

Data - 18 data

Feasibility - 1 algorithm/method

Functionality - 92 non-functional defects

Interface -
23 dist evenly internal and
external interface

Testability - 2
checking (i.e., error
handling)

Other - 77 other

 12 internal interface

 11 external interface

 766
all categories dist by
designated % profile

Grand 1727

40  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Source Code

Data Source B Number of Defects FC-MD Mapping

Clarity 310 non-functional defects

Completeness
40 dist by % profile to all
categories

Compliance to Stds 26 non-functional defects

Consistency
19 dist by % profile to all
categories

Correctness
75 dist by % profile to all
categories

Maintainability 40 non-functional defects

Modularity 0 other

Performance 26 non-functional defects

Portability 0 non-functional defects

QUALIFI 0 other

Reliability 7
checking (i.e., error
handling)

Traceability 3 non-functional defects

Level of Detail 4 non-functional defects

Accuracy 0 dist to assign, data, logic

Anomaly Management 8
checking (i.e., error
handling)

Computation 0 algorithm/method

Data 6 data

Feasibility 0 algorithm/method

Functionality 31 non-functional defects

Interface
Put 2 in internal interface
and 2 in external interface

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 41

Testability 2
checking (i.e., error
handling)

Other 14 Other

Completeness, correctness,
consistency 1 assignment/initialization

Completeness, correctness,
consistency 1 data

Completeness, correctness,
consistency 1 logic

Completeness, correctness,
consistency algorithm/method

Completeness, correctness,
consistency 2 internal interface

Completeness, correctness,
consistency 2 external interface

 134

distributed by specific %
profile to all categories from
above

Total 618

Test Plan

Data Source B Number of Defects FC-MD Mapping

Modularity 1 other

Maintainability 2 completeness

Other 2 other

QUALIFI 3 other

Reliability 4 completeness

Testability 5 testability

Compliance to Stds 7 compliance

Performance 7 completeness

Accuracy 7 correctness

Level of Detail 27 clarity

Consistency 44 correctness

Traceability 51 compliance

Clarity 165 clarity

Correctness 184 correctness

Completeness 211 completeness

Total 720

Table A3. Data Source C detailed defect data

Source Code (mainly new code)

Data Source C Number of Defects FC-MD Mapping

Logic 145 logic

Usability 26 external interface

Unset 6 assignment/initialization

42  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

Coding Standard 79 non-functional

Clarify 52 non-functional

Suggestions 80 non-functional

Other 21 other

Total 409

Source Code (mainly reused code)

Data Source C Number of Defects FC-MD Mapping

Logic 18 logic

Usability 26 external interface

Unset 2 assignment/initialization

Coding Standard 48 non-functional defects

Clarify 52 non-functional defects

Suggestions 43 non-functional defects

Other 64 other

Total 253

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 43

Appendix B: Acronyms, Common Terms, and Definitions

B.1. Acronyms

The following list of acronyms is alphabetically sorted.

Ø CMMI Capability Maturity Model Integrated

Ø DB Database

Ø EB Experience Base

Ø EF Experience Factory

Ø FAQ Frequently Asked Question

Ø FC-MD Fraunhofer Center for Experimental Software Engineering, Maryland

Ø GSFC Goddard Space Flight Center

Ø GQM Goal-Question-Metric (paradigm / approach)

Ø IT Information Technology

Ø JPL Jet Propulsion Laboratory

Ø KM Knowledge Management

Ø LL Lesson(s) Learned

Ø LOC Lines Of Code

Ø MOU Memo of Understanding

Ø NASA National Aeronautic and Space Administration l

Ø NPR NASA Procedural Requirements

Ø ODC Orthogonal Defect Classification

Ø SARP Software Assurance Research Program

Ø SE Software Engineering

Ø SEL Software Engineering Laboratory

Ø SEPG Software Engineering Process Group

Ø SLOC Source Lines Of Code

Ø SW Software

Ø V&V Verification and Validation

44  2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland

B.2. Definition of Common Terms

The following list of terms is alphabetically sorted. An (à) inside the text of a definition
indicates that a separate definition is available for the term following the symbol.

Ø Algorithm/method (à) defect type:
An error in the sequence or set of steps used to solve a particular problem or
computation, including mistakes in computations, incorrect implementation of
algorithms, or calls to an inappropriate function for the algorithm being
implemented.

Ø Assignment/initialization (à) defect type:
A variable or data item that is assigned a value incorrectly or is not initialized
properly or where the initialization scenario is mishandled.

Ø Checking (à)defect type:
Inadequate checking for potential error conditions

Ø Clarity (à)defect type:
A problem in the wording or organization of the document that makes it difficult
to understand.

Ø Completeness (à) defect type:
A missing requirement or test case or other piece of information.

Ø Compliance (à) defect type:
A problem with compliance to any relevant standard.

Ø Consistency (à) defect type:
Two or more statements in the document that are not consistent with each
other, e.g., two test cases that should produce equivalent output have different
expected outputs or requirements that are mutually exclusive.

Ø Context:
The term context describes an environmental setting in which an object (e.g., a
document, a process model, or a program) or real-world entity is applicable.

Note: To describe a certain context in a formal way attribute-value pairs are
often employed. A set of such attribute-value pairs relevant for a certain context
is often referred to as a context vector.

Examples: For describing the application context of a program one could use,
for instance, the following context vector:
<(operating system, Windows 2000), (required memory, 256 MB)>

Ø Correctness (à) defect type:
Any statement in the document that is incorrect, including incorrect expected
output for a test case.

Ø Data (à) defect type:
Error in specifying or manipulating data items, incorrectly defined data structure,
pointer or memory allocation errors, or incorrect type conversions.

Ø Defect Type:
The categories of defects uncovered during inspections of artifacts such as
requirements documents, source code, test plans, etc.

 2007 Fraunhofer USA Inc., Center for Experimental Software Engineering, Maryland 45

Ø Experience:
Experience is gained by humans through utilization of information or knowledge.

Note: The differences between knowledge and experience are:
 … that only humans can gain experience (not an intelligent system), and
 … the fact that experience is utilized.

The second point stresses that one explicitly makes use of the given information
or knowledge and experiences the results (i.e., one does not only have to
believe what others learned or interpreted). As a consequence, when
experience is documented, it becomes knowledge for all others (e.g.,
researchers or other companies) who/that have not experienced it on their own.

Example: The best example for experience is a lesson learned (LL) which I (as
a person or a company) learned (i.e., experienced) myself.

Ø External Interface (à) defect type:
Errors in the user interface (including usability problems) or the interfaces with
other systems.

Ø Internal Interface (à) defect type:
Errors in the interfaces between system components, including mismatched
calling sequences and incorrect opening, reading, writing or closing of files and
databases.

Ø Logic(à) defect type:
Incorrect logical conditions on if, case or loop blocks, including incorrect
boundary conditions ("off by one" errors are an example) being applied, or
incorrect expression (e.g., incorrect use of parentheses in a mathematical
expression).

Ø Non-functional (à) defect type:
Includes non-compliance with standards, failure to meet non-functional
requirements such as portability and performance constraints, and lack of clarity
of the design or code to the reader -- both in the comments and the code itself.

Ø Redundancy (à) defect type:
Test cases or other information that is not necessary because it appears more
than once.

Ø Testability(à) defect type:
A test case that is not feasible.

Ø Timing/optimization (à) defect type:
Errors that will cause timing (e.g., potential race conditions) or performance
problems (e.g., unnecessarily slow implementation of an algorithm).

