DRAFT
General Mission Analysis Tool (GMAT)
Architectural Specification

The GMAT Development Team

Goddard Space Flight Center Thinking Systems, Inc.
Codes 583 and 595 6441 N Camino Libby
Greenbelt, Maryland 20771 Tucson, Arizona 85718

July 12, 2007

Contents

I Imntroduction

1 Introduction

11 TheTool e e
1.2 Design Criteria L e e e e e e
1.2.1 MATLAB Accessibility
1.2.2 User Extensibility e e e
1.2.3 Formation Modeling L e
1.2.4 Parallel Processing Capabilities oo o oo L.
1.2.5 Open Source Availability
1.3 Design Approach L e e e e e e
1.3.1 Modularity o o e e e e e e e e e e e
1.3.2 Loose Coupling it e e
133 LateBinding e
1.3.4 Gemeric ACCESS L L e e e e e e e
1.4 Document Structure and Notations e

2 GMAT System Framework

II System Architecture

3 System Architecture Overview

3.1 GMAT as a Collection of Packages i
3.1.1 Package and Subpackage Descriptionso
3.1.2 Package Component Interactionso e

3.2 GMAT from a User’s Perspective I
3.21 The GMAT Startup Process. 0 . . i i it e
3.2.2 Configuring Resources e e
323 MissionDesign Lo
3.2.4 Model and Mission Persistence: Script Files
3.25 Runninga Mission L L e e e e

33 What’s Next e e e e

4 Components of the GMAT Engine

4.1 The Moderator o i i i e e e e e e

4.2 The Sandbox L e e e
4.2.1 Mission Control Sequence Execution

4.3 The Configuration Manager e e e e

5 Factories
5.1 User Configurable Objects o . i e e

9

13

15
15
16
16
16
17
17
17
17
17
17
18
18
18

19

21

23
23
23
28
31
31
32
37
42
44
45

47
47
47
48
48

51
52

CONTENTS i 3

5.1.1 The Object Configurationo e 52

5.1.2 Factories and the GmatBase Class 52

5.2 The Factory Subsystem e e e e e e e 52

521 TFactory Classes o e 52

5.2.2 The Factory Manager 52

5.2.3 Extending GMAT e e 52

6 GMAT Work Flow 53

6.1 Configuring Objects e e e e 33

6.2 Running a Mission 0 i i i e e e e e e e e e e e e 53

6.3 Imitialization e e e e e e e e e e e e e 53

6.4 Execution e e e e e e e e e e e e e e e e 53

6.5 Interface Components i e e e e e e e e 53

6.5.1 UserInterfaces i i e e e e e e 53

6.5.2 External Imterfaces o L e 54

IIT Subsystem Designs 55

7 GMAT Base Classes and Defined Constants 57

71 GmatBase e e e e e e e e e 57

7.2 GmatCommand o . . e e e e e e e e e e e e e e e e e 57

7.3 Namespaces and Enumerations0 e e e e e e e e 57

731 Enumerationsttt e 57

7.3.2 Defined Data Types o i i i e e 60

8 Utility Classes and Helper Functions 61

8.1 The MessageInterface e e e 61

8.2 The GmatStringUtil Namespace« ottt it et 61

9 The Space Environment 63

9.1 Components of the Model e 63

9.2 The SpacePoint Class o o o it e e e e e e e e 64

9.3 The Solar System Elements e e 66

9.3.1 TheSolarSystem Class i i it i e e e 66

9.3.2 The CelestialBody Class Hierarchy 66

9.4 The PlanetaryEphem Class o e 66

10 Coordinate Systems 67

10.1 Introduction L e e e e e e e e e e e 67

10.2 Coordinate Systemn Classes 0 i i i e e e e e 67

10.2.1 The CoordinateSystemn Classo i i it i i e e e 68

10.2.2 The AxisSystem Class Hierarchy 69

10.2.3 CoordinateSystem and AxisSystem Collaboration 71

10.2.4 The SpacePoint Class v v i i i it e e e e e e e e e 73

10.3 Configuring Coordinate Systems oo ot i it i e e e e 73
10.3.1 Scripting a Coordinate System L. e 7

10.3.2 Default Coordinate Systems« . . L e e e 76

10.4 Coordinate System Integration e 76

10.4.1 General Considerations o i ittt e e e e e e e e 77

10.4.2 Creation and Configuration 7

10.4.3 Sandbox Initialization e e 7

CONTENTS

10.4.4 Inmitial States L. L e e e e e 78
10.4.5 Forces and Propagators e e e e e 79
10.4.6 Maneuverso L e e e e e e e e e 81
10.4.7 Parameters o e e e e e e e e e 81
10.4.8 Coordinate Systems and the GUL 81

10.5 Validation L L e e e e e 82
10.5.1 Testsfor a LEO o . e e e e e 82
10.5.2 Tests for a Libration Point State 84
10.5.3 Tests for an Earth-Trailing State 84

10.6 Some Mathematical Details e 84
10.6.1 Defining the Coordinate Axes Lo e 84
10.6.2 Setting Directions in GMAT e 84

11 SpaceObjects: Spacecraft and Formation Classes 87
11.1 Component Overview o o i e e e e e e e e e e e e 87
11.2 Classes Used for Spacecraft and Formations 0. 89
11.2.1 Design Considerations e 90
11.2.2 The SpaceObject Class 0 e e e 92
11.2.3 The PropState Class 0 et e e e e 95

11.3 The Spacecraft Class« . . o i i e e e e e 935
11.3.1 Internal Spacecraft Members 96
11.3.2 Spacecraft Members L e e e e 96

11.4 Formations . . .« o . . 0 i e i e e e e e e e e e e e e e e e 98
11.5 Conversion Classes« . . o o i it i i e e e e e e e e 98
11.5.1 The Converter Base Class it i 99
11.5.2 Time Conversions . . . « v o v v v ittt e e e e e e e 101
11.5.3 Coordinate System Conversions v v i vt i 102
11.5.4 State Representation Conversions o i e 104

11.6 Conversions in SpaceObjects« . L e e e 106
11.6.1 SpaceObject Conversion Flow for Epoch Data. 106
11.6.2 SpaceObject Conversion Flow for State Data 107

12 Spacecraft Hardware 111
12.1 The Hardware Class Structure o 0 i i i i i e e e s e e e e e e e 111
12.2 Finite Maneuver Elements e e e e e e e e e 111
1221 Fuel tanks o o e e e e e e 111
1222 Thrusters o o o e e e e e e e e 111

12.3 Sensor Modeling in GMAT e e 111
12.4 Six Degree of Freedom Model Considerations 111
13 Attitude 113
13.1 Introduction« . . . e e e e e e e e e e e e e e 113
13.2 Design OVEIVIew o o o i i e e e e e e e e 113
13.3 Class Hierarchy Summary o e 114
134 Program Flow o o i e e e e e e e e 117
13.4.1 Inmitialization o i e e e e e 117
13.4.2 Computation i e e e e e e e e e e e e e 118

14 Script Reading and Writing 119
14.1 Loading a Script into GMAT e e e e 119
14.1.1 Comment Lines o o o oo i e e e e e e e 121

CONTENTS 5

14.1.3 Command Lines o o e e e 123

14.1.4 Assignment Lines L L e e 124

14.2 Saving a GMAT MiSSIon v o v i e e e e e e e e e e 125
14.3 Classes Used in Scripting o o o o e 126
14.3.1 The Script Interpreter« . . . o 0 i e e e e e e 127

14.3.2 The ScriptReadWriter e e 131

14.3.3 The TextParser Class oo i i ittt et e e 134

14.4 Call Sequencing for Script Reading and Writing 136
14.4.1 Script Reading Call Sequence L o o o 136

14.4.2 Script Writing Call Sequence L 142

15 The Graphical User Interface 147
15.1 wxWidgets o . L e e e e e e e 147
15.2 GmatDialogs e 147
16 External Interfaces 149
16.1 The MATLAB Interface 0 o v i i i e e e e e e e s e 149
16.2 GMAT Ephemeris Files o e e 149
17 Calculated Parameters and Stopping Conditions 151
17.1 Parameters o i i e e e e e e e e e e e e e e 151
17.2 Stopping Conditions and Interpolators L o e 151
17.2.1 Stopping Conditions L e e e e 151

17.2.2 Interpolators L e e e e e e e e 153

18 Propagators — Integrators + Forces 155
18.1 Propagator Overview L e e e e 155
18.1.1 The Equations of Motion i i i e e 155

18.1.2 Division of Labor: Integrators and Forces 155

18.2 Integrators o o v v i e e e e e e e e e e e e e e e e e e 155
18.3 The GMAT Force Model« . i e 155
18.3.1 The PhysicalModel Class e 155

18.3.2 The ForceModel Class i e it e 155

18.3.3 Applying Forces to Spacecraft L e 155

18.4 The State Vector o o i i e e e e e e e 155

19 Force Modeling in GMAT 157
19.1 Component FOrces o v e e e e e e e e e 157
19.1.1 Gravity from Point Masses o e 157

19.1.2 Asplherical Gravity e e 157

19.1.3 Solar Radiation Pressure. L e e 157

19.1.4 Atmospheric Drag 157

19.1.5 Engine Thrust e 157

20 Maneuver Models 159
21 Mission Control Sequence Commands 161
21.1 Command OVEIrVIEwW ¢ ot e e e e e e 161
21.2 Structure of the Sequence e e 161
21.2.1 Command Categories vt vt i e e e e e e 161

21.2.2 Command Sequence Structure v ittt e e e e e e 162

21.2.3 Command-Sandbox Interactions i e 163

6 CONTENTS
21.3 The Command Base Classes i i it i e e e e e 163
21.3.1 List Interfaces. o . . . e e e e e e e e 163
21.3.2 Object Interfaces o v i i e e e e e e e e e e e 165
21.3.3 Other Interfaces e e 165

214 Script Interfaces L e e e e e e e e e e e e 165
21.4.1 Data Elements in Commands e 165
21.4.2 Command Support for Parsing and Wrappers 168
21.4.3 Data Type Wrapper Classes i ittt 168
21.4.4 Command Scripting Support Methods 169

21.5 Executing the Sequence L L e 169
21.5.1 Imitialization L e e e e e e e e e e e e 169
21.5.2 Execution L e e e e e e e e e 169
21.5.3 Finalization« L e e e e e e 170
21.5.4 Other Details e e e e 170

22 Specific Commmand Details 171
22.1 Command Classes i i e e e e e e e e e e e e e e 171
22.1.1 The GmatCommand Class it et ee e 171
22.1.2 Branch Commands i e e e e e 172
22.1.3 Functions c . . e e e e e e e e e e e e e e e e e 173

22.2 Command Details e e e e e e e e e 173
22.2.1 The Assignment Command e 173
22.2.2 The Propagate Command e e 173
22.2.3 The Create Command i i 0t e e e e e e e 181
22.24 The Target Command i i i e e e e 181
22.2.5 The Optimize Command it et et 181

23 Solvers 183
23.1 OVEIVIEW .« . o v v et e 183
23.2 Solver Class Hierarchy 0 i i i i it i e e e e e e 183
23.3 The Solver Base Class v i i i i i i i e e e e e e e e e e e e 184
23.3.1 Solver Enumerations o v i .t e e e e e e e e e e 185
23.3.2 Solver Members o . . e e e e e e e e e e e e 186

234 SCAIMEIS . . . o v o e e e e e e e e e e e e e e e e e e 188
23.5 Targeters e e e e 188
23.5.1 Differential Correction i e e e e e 189
23.5.2 Broyden’s Method e 191

23.6 OptmIzZers e e e e e e e e e e e e e v.. 191
23.6.1 The Optimizer Base Class 0 . o it i it i et e e 192
23.6.2 Internal GMAT optimizers i e 194
23.6.3 External Optimizers 0 i i e e e 194

23.7 Command Interfaces e e e e 209
23.7.1 Commands Used by All Solvers 209
23.7.2 Commands Used by Scanners e 214
23.7.3 Commands Used by Targeters 0. 214
23.7.4 Commands Used by Optimizers i, 215

24 Inline Mathematics in GMAT 219
24.1 Scripting GMAT Mathematics e 219
24.2 Design OVEIVIEW v 0 ot e e e e e e e e e e e e e e 221
24.3 Core Classes . . . v o v v v v e e e e e e e e e e e e e e 224

CONTENTS

24.3.1 MathTree and MathNode Class Hierarchy Summary
24.3.2 Helper Classes i i i i e e e
24.4 Building the MathTree o o e e e e
24.5 Program Flow and Class Interactions
24.5.1 Initialization e
24.5.2 Execution L e e e e e

25 GMAT and MATLAB Functions
25.1 GMAT Functions o o e e e e e e e e e e e e e
25.1.1 Scripting Conventions L e
25.1.2 The GmatFunction File e
25.2 MATLAB Functions e e e e e e e e e e e

26 Adding New Objects to GMAT
26.1 Shared Libraries e e e
26.2 Adding Classes to GMAT i e e e
26.2.1 Designing Your Class o o o i i i e e e e e e e
26.2.2 Creating the Factory e
26.2.3 Bundlingthe Code, e e e
26.2.4 Registering with GMAT e
26.3 An Extensive Exampleo e e

IV Appendices

A Unified Modeling Language (UML) Diagram Notation
A.1l Package Diagrams L e e e e e e
A2 ClassDiagrams o i e e e e e e e
A3 Sequence Diagrams e e e e e e e e
A4 Activity Diagrams L e e e e e
A5 State Diagrams L e e e e e e e e

B Design Patterms Used in GMAT
B.1 The Singleton Pattern e
B.1.1 Motivation o . e e e e e e e e e e e e
B.1.2 Implementation L e e e e e e e
B.1.3 Notes . . . o i e e e e e e e e e
B.2 The Factory Pattern o 0 e e e e
B.3 The Observer Pattern e e
B.4 The Adapter Pattern 0 e e e e e e
B.5 The Model-View-Controller (MVC) Pattern,

C Command Implementation: Sample Code
C.1 Sample Usage: The Maneuver Command,
C.2 Sample Usage: The Vary Command ittt

D GMAT Software Development Tools
D.1 Windows Build Environment e e e e e
D.2 Macintosh Build Environment e e e
D.3 Linux Build Environment e e e e e

E Definitions and Acronyms

-1

225
227
229
229
231
232

235
235
235
236
238

239
239
239
239
239
240
240
240

241

243
243
244
246
246
248

249
249
249
250
250
250
250
250
250

8 CONTENTS

E.l Definitions o o o e e e e e e 257
E.2 Acronyms 258

List of Figures

11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2

9.1
9.2

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

11.1
11.2
11.3
11.4

ASample GMAT Run o . . i i e e e e e e e e e e 16
Top Level GMAT Packages: Logical Grouping v ittt o e .. 24
Packages, Subpackages, and Some Details L. 26
Subsystem Interactions in GMAT e 29
User Interactions o o . L L e e e e e e e e e e e e 30
The Startup Process . . « . . o v v i i i e e e e e e e e e e e e e e e 31
Configuration Example: Spacecraft oo 32
The Spacecraft Configuration Panel 33
Configuration Example: Creating the Spacecraft 34
Configuration Example: Setting Spacecraft Properties 35
Configuration Example: Saving the Spacecraft 36
The Mission Tree in GMAT’s GUL i it e 37
Configuration Example: A Mission Control Sequence Command 38
Command Creation Example: Creating a Maneuver Command 39
The Maneuver Command Configuration Panel 40
Command Configuration Example: Configuring the Maneuver Command 41
The Sequence followed to Run a Mission, 44
Results of the Script Example, Runon Linux 46
Interactions when a Missionis Run o 48
Overview of Sandbox Initialization 49
Objects in the GMAT Model« . . e 64
The SpacePoint Class« . o i i i e e e e e e e e 65
Coordinate System Classes in GMAT i 68
Top level AxisSystem Derived Classes e 69
Inertial Axis Classes o . i e e e e e e 70
Dynamic Axis Classes it i e e e e e e e e e 70
GMAT Procedure for a Generic Coordinate Transformation 72
The SpacePoint Class Hierarchy e 74
Coordinate System Creation and Configuration Sequence 78
Control Flow for Transformations During Propagation 80
Calculating the Direction Used for Maneuvers 81
The Updated Parameter Subpanel 0., 82
Addition of the Propagation Origin 83
Class Structure for Spacecraft and Formations 91
Classes Used to Provide Views of the SpaceObject State Data 100
Classes Used to Convert Epoch Data, 101
Classes Used to Convert Between Coordinate Systems 103

9

10

115
11.6
11.7
11.8

13.1

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11

17.1

21.1
21.2
21.3
21.4

22.1
22.2
22.3
224

23.1
23.2
23.3
234
23.5
23.6
23.7
23.8
23.9a,
23.9b
23.9¢
23.10
23.11
23.12
23.13
23.14

24.1
24.2
24.3
24.4

LIST OF FIGURES

Classes Used to Convert State Representations 105
Procedure for Retrieving or Setting a Formatted Epoch 107
Procedure for Retrieving or Setting a Formatted State 108
Procedure for Setting a Single Element in the State 109
Attitude Classes L L e e e e e e 115
Sequence Followed when Loading a Script into GMAT 120
Scripting Interfaces in the User Classes 122
Sequence Followed when Writing a Seript 126
Sequence Followed by GmatBase: :GetGeneratingString() when Writing a Script 127
Classes in the ScriptInterpreter Subsystem L ... 128
Overview of Interpreter Class Interactions when Reading a Seript 137
Interpreter Class Interactions when Reading a Comment Block 138
Interpreter Class Interactions when Reading an Object Definition Block 139
Interpreter Class Interactions when Reading a Command Block 141
Interpreter Class Interactions when Reading an Assignment Block 143
Calls Made when Writing a Script e 144
Stopping Condition Classes e 152
GMAT Command Sequence inthe GUL 163
Base Classes in the Command Subsystem 164
Calls Made to Build and Validate Commands 166
Parameter Wrappers Used by Commands 170
GMAT Command Classes« . v v v i it it e e e e e e e e 172
Executing the Propagate Command 176
Algorithm Used to Stop Propagation 178
Propagate Command Details 180
The Solver Subsystem e e e e 184
The Solver Base Class« . . . e e e 185
State Trausitions for the Differential Corrector 189
State Transitions for Optimization i i ittt e 192
The Optimizer Base Class 0 i e e e e 193
GMAT state transitions when running the FminconOptimizer Optimizer 194
GMAT Classes Used with External Optimizers 196
Interface Classes used by the FminconOptimizer 198
Initialization Call Sequence for MATLAB’s fmincon Optimizer 200
Execution Call Sequence for MATLAB’s fmmincon Optimizer 201
FminconOptimizer Nested State Transition Details 202
Command Classes used by the Solvers 210
Command Classes Required by All Solvers 211
Command Classes Used by Scanners 0 0o i it i s i 214
Command Classes Used by Targeters o o o v vttt it e et et e e 214
Command Classes Used by Optimizers 216
Tree View of the Longitude of Periapsis Calculation 221
Tree View of the Satellite Separation Calculation 222
Tree View of the Matrix Calculation in Example 3 223

Classes Used to Implement GMAT Mathematics 224

LIST OF FIGURES 11
24.5 Control Flow for Parsing an Equation 229
24.6 Parser Recursion Sequence oL e e e e e e 230
24.7 MathTree Initialization inthe Sandbox o oo oL, 231
24.8 Evaluation of a MathTree Assignment 232
A.1 GMAT Packaging, Showing Some Subpackaging 244
A2 Solver Classes . v . v v v v e e e e e e e e e e e e e e e 245
A3 ASequenceDiagraml e e 246
A4 AnActivity Diagramo e e 247
A5 AState Diagram e 248
B.1 Structureof aSingleton Lo e 249

List of Tables

10.1 Coordinate System Parameters 0 o it e e e e e e 75
10.2 Default Coordinate Systems defined in GMAT, 7
10.3 Coordinate Systems Used by Individual Forces 80
10.4 Coordinate Conversions for an orbit pearthe Barth 83
10.5 Coordinate Conversions for an orbit near the Earth/Moon-Sun L2 Point 84
10.6 Coordinate Conversions for an Earth-Trailing state 85
21.1 Script Examples of Parameters Used in Commands 169
22.1 Assignment Command e e e e 173
22.2 Propagate Command e e e 173
23.1 Options for the FminconOptimizer Solver 199
24.1 Operators and Operator Precedence in GMAT 220

12

Part 1

Introduction

Chapter 1

Introduction

Darrel J. Conway
Thinking Systems, Inc.

Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dy-
namics software needed to fly upcoming missions that use formations of spacecraft to collect data. These
requirements ranged from low level modeling features to large scale interoperability requirements. In 2003
we began work on a system designed to meet these requirements; this system is GMAT.

The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on
open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively.
GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command
line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux,
and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of
components that streamlines the development and extension of the user interface.

Flight dynamics modeling is performed in GMAT by building components that represent the players in
the analysis problem that is being modeled. These components interact through the sequential execution
of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the
trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation,
and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission
analyst.

All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a
custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can
be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements
are constructed in the GMAT GUL

The GMAT system was developed from the ground up to run in a platform agnostic environment. The
source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux,
and Macintosh computers by the development and analysis teams working on the project. The system can
be run using either a graphical user interface, written using the open source wxWidgets framework, or from
a text console.

The GMAT source code was written using open source tools. GSFC has released the code using the
NASA open source license.

1.1 The Tool
Figure 1.1 shows a sample run using GMAT on Windows XP. GMAT can be run using either a custom

scripting language or components configured directly from the user interface. GMAT scripting is designed
to run either from within GMAT, or from inside of the MATLAB product from MathWorks.

15

16 CHAPTER 1. INTRODUCTION

R R fr‘ % ." ot :
-
-

L gl b sitMount

.
21

R R R A,

o
2%

A%

R

N

Z

g
g

.S

S

RDBEERION

e
3
3
N

N

A R R R AR AR AR A AR AN AR

20000000000

Figure 1.1: A Sample GMAT Run

1.2 Design Criteria

There are several high level requirements for GMAT that drove the design of the system. These requirements
can be summarized in five broad categories: MATLAB Accessibility, Extensibility, Formation Modeling,
Parallel Processing, and Open Source Availability. The system is designed to run on Macintosh, Windows,
and variants of Unix (including Linux) ~ through a recompilation of the source.

1.2.1 MATLAB Accessibility

MATLAB is a tool used at many facilities in the aerospace community to develop new algorithms and to
prototype approaches unique to new missions under consideration. MATLAB as a system is quite flexible,
but is rather slow for precision orbit modeling work. GMAT, by design, performs detailed orbit and attitude
modeling, providing an engine that can be called from MATLAB for tasks that present performance issues
when built in the MATLAB language.

1.2.2 User Extensibility

One prime driver for the development of GMAT was to provide a tool that allows users to try new components
and models in the system without rebuilding it from scratch. This capability is partially satisfied by the
MATLAB interface described above. Components of GMAT can also be added to the system by writing new
code that can be compiled into shared libraries and incorporated into the system at run time. All of the
operating systems GMAT supports provide native methods for this capability, and the system is designed
to make the addition of new components simple using these capabilities.

1.3. DESIGN APPROACH 17

1.2.3 Formation Modeling

The current tool set used to model formations treats a formation of spacecraft as individual spacecraft,
modeled independently and then compared by matching states at specific epochs, either on a small scale
(taking single steps for each and then comparing the states) or on a large scale (propagating ephemerides
for each spacecraft and then going back afterwards to compare states at specific epochs. GMAT provides
the ability to treat a collection of spacecraft as a single entity, making the modeling more streamlined and
providing the ability to handle formations and constellations as simple entities.

1.2.4 Parallel Processing Capabilities

Some satellite analysis tasks require the execution of many separate orbit propagations, including mission
tuning (aka targeting or optimizing) and other mission refinements, in order to adequately model the mission
scenarios under analysis. These tasks can take as many as several hundred separate runs, each consisting of
several minutes or more of run time on current hardware, in order to determine the results of the analysis
problem. GMAT is designed to enable the parallelization of these tasks across multiple processors, either
within the same computer or, eventually, across a network of computers. While the current implementation
does not leverage this capability, it is designed to make the transition to multiple processors and distributed
computing as simple as possible.

1.2.5 Open Source Availability

GMAT is available for external users in both executable and source code form, subject to the NASA Open
Source licensing agreement. This redistribution requirement drove design issues related to the selection of
external libraries and packages used by GMAT.

1.3 Design Approach

The categories described above drove the architecture of GMAT. The following paragraphs describe the
architectural elements used to address these requirements.

1.3.1 Modularity

GMAT is a complicated system. It is designed to be implemented using a “divide and conquer” approach
that uses simple components that combine to satisfy the needs of the system. This system modularity makes
the individual components simple, and also simplifies the addition of new components into the system. In
addition, each type of resource has a well defined set of interfaces, implemented through C+-+ base classes.
New components in each category are created by implementation of classes derived from these base classes,
building core methods to implement the new functionality - for example, forces used in the force model for
a spacecraft all support an interface, GetDerivatives(), that provides the acceleration data needed to model
the force. Users can add new components by implementing the desired behavior in these interfaces and then
registering these components in the GMAT factory subsystem.

1.3.2 Loose Coupling

The modularity of the components in GMAT are implemented to facilitate “plug and play” capability for the
components that allows them to be combined easily using a set of common interfaces. Components built in the
system have simple interfaces to be able to communicate with MATLAB and with one another. Dependencies
between the components are minimized. Circular dependencies between components minimized.

18 CHAPTER 1. INTRODUCTION

1.3.3 Late Binding

GMAT is designed to support running of multiple instances of a mission simultaneously in order to satisfy
parallel processing requirements. This capability is built into the system by separating the configuration
of the components used in the mission from the objects used during execution. Configured objects are
copied into the running area (the “Sandbox”) and then connected together to execute the mission. The
connections between the components cannot be made until the objects are placed in the Sandbox because
the objects in the Sandbox are clones of the configured objects. This late binding makes parallelization
simple to implement when the system is ready for it - parallelization can be accomplished by running
multiple Sandboxes simultaneously.

1.3.4 Generic Access

GMAT components share a common base class that enforces a set of access methods that are used to
serialize the components, facilitating both file level read and write access to the components and simplifying
communications with MATLAB and other external tools. This capability is implemented using parameter
access methods that are themselves serialized, providing descriptors for each parameter. Connections between
components are specified at this level by establishing parameters that identify the connected pieces by name.
Data generated by the system is passed out of the Sandbox through a message interface, using “publish and
subscribe” design.

1.4 Document Structure and Notations

GMAT is written in ANSI C++. The system is object-oriented, makes extensive use of the standard template
library (STL), and is coded based on a style guide|shoan| so that the code conforms to a consistent set of
conventions. The source is configuration managed in a CVS repository hosted at GSFC.

This document provides a fairly in-depth introduction to the design of the software. Throughout this
document, the architecture of the system is described using C++ nomenclature. The design of the system
is illustrated using Unified Modeling Language (UML) diagrams to sketch the relationships and program
flow elements. While this document is extensive, it does not completely document all of the intricacies of
each GMAT class. These details can be found most accurately in the source code, which is available on
request under the NASA Open Source licensing agreement. The code includes comments written in a style
compatible with the Doxygen documentation system. When the source code is processed by Doxygen, the
output is a complete reference to the GMAT Application Programmer’s Interface (API).

Chapter 2

GMAT System Framework

Darrel J. Conway
Thinking Systems, Inc.

The GMAT system consists of a high level framework, the GMAT Application, that manages system
level messages processed by GMAT. This framework contains a single instance of the core GMAT executive,
the Moderator, which manages the functionality of the system. The Moderator interacts with five high level
elements, shown in Figure 1, that function together to run the system.

The Interpreter subsystem consists of two separate components. The interpreter contains the current
mission script, used to generate the mission event sequence, and the interface to the GMAT user interface.
This latter interface takes the defined user actions and passes these actions to the appropriate elements in
the system - for instance, when a user presses a “Run Mission” button on the GMAT GUI, the command is
passed to the user action interpreter, which then configures the objects needed to run the current script and
then starts the execution of the script. (Okay, that sentence assumes a lot that I haven’t talked about yet...)

The Environment subsystem contains configuration information for the system data files, external pro-
grams (e.g. MATLAB), and a number of utility subsystems (Okay, I needed someplace to put these - is this
the best place?) used to perform common tasks. It acts as the repository for all of the information needed
for GMAT to talk to other elements running on a user’s workstation, along with the central location for
information about the data files used by the system.

GMAT contains numerous classes that are used to perform spacecraft modeling. These classes are all
managed by a set of components that construct instances of the classes needed by a script; these components
are shown on Figure 1 as a set of object factories defined for the system. This infrastructure provides the
flexibility needed by the system to give users the ability to add custom components to the system, and will
be described in more detail later in this document. (This piece is pretty core to the design I'm thinking
about right now, so it needs to be examined closely to be sure we get what we want in GMAT. Of course,
that means it’s also the hardest part to explain - especially when I try to muddle through the way the system
puts it together with the script interpreter and the configurations!)

The GMAT Moderator includes a container used to manage lists of configured components used by the
system to perform mission analysis. GMAT maintains these lists as the core object structures manipulated
by the system to perform mission analysis. The Moderator has the following core lists used in a mission
timeline:

1. Solar System Configurations: A list of the celestial objects (star(s), planets, moons, asteroids and
comets that represent the playing field for mission analysis scenarios

o

Propagation Configurations: A list of configured propagation elements used to evolve the modeled
elements during analysis

3. Asset Configurations: A container for spacecraft, formationsl of spacecraft, and ground assets

19

20 : CHAPTER 2. GMAT SYSTEM FRAMEWORK

4. Force Model Configurations: Collections of forces used to model perturbations acting on the assets

5. Script Configurations: Either complete timelines or “subscripts”, consisting of a sequence of actions
taken by the system to model all or a piece of an orbit problem

6. Mathematical Configurations: Elements used to perform custom calculations and for communication
with external programs like MATLAB

GMAT runs are performed in the GMAT Sandbox. This portion of the system is the container for the
components of a run, linked together to perform the sequence of events in the mission timeline. When a
user tells GMAT to run the script, the system moderator uses the script interpreter to interpret the contents
of a script, and to place the corresponding script elements into the sandbox for use during the run. The
Moderator links each element placed into the sandbox to its neighboring elements. Once the full script has
been translated into the components in the sandbox, the Moderator starts the run by calling the Run method
on the sandbox.

The following sections describe each of these components more completely. These descriptions are followed
by several sample system configurations. The last section of this document provides details of the classes
used in this design.

Part 11

System Architecture

21

Chapter 3

System Architecture Overview

Darrel J. Conway
Thinking Systems, Inc.

The purpose of this chapter i3 to describe the key architectural elements of GMAT. We will begin by
examining a static view of key components of GMAT, grouped functionally. After presenting this functional
grouping of GMAT’s components, some common user interactions are described and broken out into a
description of the flow between the components of these packages. These descriptions provide an overview of
how messages and data flow in the system. The chapter concludes with a more complete functional summmary
of the core elements of GMAT. After reading these materials, you should have a high level understanding of
how the classes and objects in GMAT interact to perform mission analysis.

3.1 GMAT as a Collection of Packages

The GMAT architecture can be described as a set of components grouped into functional packages' that
interact to model spacecraft missions. The system is built around four packages that cooperatively interact
to model spacecraft in orbit. Figure 3.1 shows an overview of this package grouping. GMAT functionality can
be broken into Program Interfaces, the core system Engine, the Model used to simulate spacecraft and their
environment, and Utilities providing core programmatic functionality. The constituents of these packages
are described throughout this document; this chapter provides a framework for the more detailed discussions
that follow.

Each of these functional categories can be broken into smaller units. The next level of decomposition
is also shown in Figure 3.1. This next level of packaging - referred to as “subpackaging” in this document
- provides a finer grained view of the functions provided in each package. The next level of decomposition
below the subpackages provides a view into the class structure of GMAT, as will be seen in the next few
paragraphs.

3.1.1 Package and Subpackage Descriptions

Figure 3.2 presents the packages and subpackages in a slightly different format from that shown in the
last figure. The top level packages are represented by specific colors matching those in Figure 3.1%2. The
package names are listed at the top of each column, with the subpackages shown indented one level from these
packages. One additional level is shown in this diagram, showing representative members of the subpackages.
The deepest level items in this figure are classes contained in the subpackages; for example, the Executive

'Note that these divisions are functional, and not enforced by any physical packaging constraints like a namespace or shared
library boundaries.
#This cotor scheme will be used lor the remainder of this chapter as well,

23

24

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

GMAT Logical Packages J

Userlrterfaces[

xternal Interfaces| ! iConfiguration

Figure 3.1: Top Level GMAT Packages: Logical Grouping

v

3.1. GMAT AS A COLLECTION OF PACKAGE

bo
(31}

subpackage in the Engine package contains the Moderator, Sandbox, and Publisher classes. These elements
will be used in the discussion of how the packages interact in the next few pages of this document.

As is shown in these figures, three of these packages can be further broken into subpackages. The following
paragraphs present an overview of the packages and their subdivisions.

Program Interfaces All two-way communications between users and external programs and GMAT are
contained in the Program Interface package. This package can be broken into four subpackages:

o User Interfaces Users view GMAT through a user interface - usually through the GMAT Graphical
User Interface (GUI), but also potentially through a command line interface into GMAT called
the GMAT console application, or Console. These interfaces are contained in the UserInterface
subpackage.

GMAT’s GUI is coded using the wxWidgets cross-platform library|wx]. The GUI provides a rich
environment that provides access to all of the features of GMAT through either panels customized
for each component or through a text based script. Missions saved from the GUT are saved in the
script format, and scripts loaded into the GUI populate the GUI elements so that they can be
viewed on the customized interface panels.

The console version of GMAT can be used to run script files and generate text data with little
user interaction. The console application can run multiple scripts at once, or individual scripts
one at a time. This version of the system is currently used for testing purposes, in situations
where the overhead of the full graphical user interface is not needed.

o Interpreters The user interface components communicate with the core GMAT system through
an interface layer known as the Interpreter subpackage. This layer acts as the connection point
for both the scripting interface and the GUI into GMAT.

The Interpreter subpackage contains two specific interpreters: a Guilnterpreter, designed to pack-
age messages between the GUI and the GMAT engine, and the ScriptInterpreter, designed to
parse script files into messages for the engine, and to serialize components in the engine into
script form for the purposes of saving these objects to file.

The Interpreter subpackage is designed so that it can be extended to provide other means of
controlling the GMAT engine. All that is required for this extension is the development of a
new interpreter, and interfaces for this new component into the Moderator, a component of the
Executive subpackage in GMAT’s Engine package.

¢ External Interfaces GMAT provides an interface that can be used to communicate with external
programs®. These interfaces are packaged in the Externallnterfaces subpackage.

s Subscribers Users view the results of a mission run in GMAT through elements of the Subscriber
subpackage. Subscribers are used to generate views of spacecraft trajectories, plots of mission
parameters, and reports of mission data in file form.

The Engine The interfaces described above exist on top of a core simulation engine used to control the
model of flight dynamics problems in GMAT. This engine consists of the control and management
structures for the program. The elements of the model used to simulate the spacecraft mission are
introduced in the next package description. The Engine package consists of three subpackages:

o Ezecutive The Executive subpackage contains the central processing component for GMAT (called
the Moderator), a connection point used to capture and distribute the results of a mission run
(the Publisher), and the workspace used to run a mission (the Sandbox).

The Moderator acts as the central communications hub for the GMAT engine. It receives messages
from the program interfaces through the interpreters, and determines the actions that need to be

3At this writing, the only exiernal inserface incorporated into the core GMAT code base is an interface to the MathWorks’
product MATLAB[matlab).

26

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.2: Packages, Subpackages, and Some Details
Subpackages are indicated by a cluster of diamonds
Objects and Classes are marked by a circle
Other constructs are marked by a single diamond

3.1. GMAT AS A COLLECTION OF PACKAGES

jau
-

taken based on these messages. The Moderator sends messages to the other components of the
Engine to accomplish the requested tasks.

GMAT is designed to run missions inside of a component called the Sandbox. When a user
requests a mission run, the Moderator sets up the Sandbox with the elements configured for the
run, and then turn control over to the Sandbox to execute the mission.

The Publisher acts as the connection between data generated in the Sandbox and the views of
these data presented to the User. It receives messages from the components in the Sandbox, and
passes those messages to the corresponding Subscribers.

Configuration When GMAT builds a model, it starts by building components that will be con-
nected together based on a sequence of instructions. Each component is an instance of a GMAT
class; as they are built, these components are stored in a local repository of objects. The repos-
itory holding model components is known as the configuration. The Configuration subpackage
consists of this repository and an interface used to access it, called the ConfigurationManager.
The components stored in the configuration are all derived from a base class named GmatBase,
described in Chapter 7. In GMAT, every object that a user creates and uses to simulate a
spacecraft mission is derived from this base class. The configuration is maintained as a collection of
pointers to GmatBase objects. The ConfigurationManager works with this collection to maintain
the configuration repository.

Factory The model elements stored in the configuration are created on request from the users. The
subpackage responsible for processing requests for new model elements is the Factory subpackage.
It consists of an interface into the subpackage — the FactorvManager - and a collection of factory
classes used to create specific types of model elements.

Each factory in GMAT creates objects based on the type requested. For example, Spacecraft
or Formation objects are created through a call is the corresponding type of object into the
SpaceObjectFactory. Similarly, is a user needs a Prince-Dormand 7(8) integrator, a call is made
to the PropagatorFactory for that type of integrator. The factory creates the object through a
call to the class’s constructor, and returns the resulting object pointer.

The Factory subpackage is constructed this way to facilitate extensibility. Users can add user
generated classes by creating these classes and a Factory to instantiate them. That factory can
then be registered with GMAT’s FactoryManager, and users will be able to access their specialized
classes in GMAT without modifying the configured GMAT code base. Eventually, users will be
able to load their objects through shared libraries (aka dlls in the Windows world) at run time.
The FactoryManager registration process takes the factory pointer and asks it what type of objects
it can create, and sends the corresponding requests to the correct factory. Details of the factories
themselves can be found in Chapter 5. Extensibility is discussed in Chapter 26.

The Model The Engine package, described above, provides the programmatic framework necessary for
building and running a simulation in GMAT. The objects that are used to model the elements of the
simulation are contained in the Model package. All of the elements of the Model package are derived
from a common base class, GmatBase, described in Chapter 7.

When a user configures GMAT to simulate a spacecraft mission, the user is configuring objects in the
Model package. In other words, the Model package contains all of the components that are available for
a user when setting up a mission in GMAT. The model elements can be broken into four subpackages:

e Environment The environment subpackage provides all of the background environmental data used
in GMAT to model the solar system, along with the components needed to perform conversions
that require these elements.

e Resources All of the model elements that do not require some form of sequential ordering in
GMAT are called Resources. These are the model elements that appear in the Resource tree in

28 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

the GUI - excluding the Solar System elements — and they are the elements that are stored in
the configuration subpackage, described above.

e Commands Commands are the elements of the model that describe how the model should evolve
over time. Since commands are sequential, they are stored separately, and in sequential order,
in the Command subpackage. The sequential set of commands in GMAT is called the Mission
Control Sequence.

The Mission Control Sequence is a linked list of commands. Commands that allow branching
manage their branches through “child” linked lists. These branch commands can be nested as
deep as is required to meet the needs of the model.

e Parameters Parameters are values or data containers (e.g. variables or arrays) that exist external
to other objects in the GMAT model. These objects are used to perform calculations of data
useful for analysis purposes.

Utilities The Utility package contains classes that are useful for implementing higher level GMAT functions.
These core classes are provide basic array computations, core solar system independent calculations,
and other useful low level computations that facilitate programming in the GMAT system.

3.1.2 Package Component Interactions

The preceding section provides a static view into the components of the GMAT. In this section, a high level
view of the interactions between the elements of these packages will be described. Figure 3.1 shows the static
package view of GMAT. Each top level package is color coded so that the system components shown in the
interaction diagram, Figure 3.3, can be identified with their containing package. The legend on this figure
identifies the package color scheme.

Users interact with GMAT through either a Graphical User Interface (GUI) written using the cross-
platform GUI library wxWidgets, or through a lightweight console-based application designed to run scripts
without displaying graphical output. These interfaces communicate with the GMAT engine through in-
terpreter singletons?. The GUI application interacts with the engine through both the Script and GUI
Interpreters, while the console application interacts through the script interpreter exclusively. These inter-
preters are designed to mediate two-way communications between the GMAT engine and users. The GUI
and console applications drive the GMAT engine through these interpreters.

The Interpreters in turn communicate with GMAT’s Moderator singleton. The Moderator is the central
control object in the GMAT engine. It manages all program level communications and information flow
while the program is running. It receives messages from the interpreters, processes those messages, and
instructs other components of the engine to take actions in response to the messages. The messages sent by
the interpreters fall into several distinct groups:

® Object Creation messages are used to request the creation of resources stored in the configuration
database or the creation of commands stored in the Mission Control Sequence.

¢ Object Retrieval messages are used to access created objects, so they can be modified by users or
stored to file.

¢ Run messages prepare the Sandbox for a run of the Mission Control Sequence, and then launch
execution of the Mission Control Sequence.

Yihe GMAY engine is run through a set of singleton class instances. I'he singleton design pattern used for these instances is
iutroduced in Appendix B. The importani thing to konow about singletons for this discussion is that there is only oue instance
of any singleton class; hence a running GMAT executable has one aud only one Scriptlnterpreter, and Moderator, and at most

are discussed,

3.1. GMAT AS A COLLECTION OF PACKAGES 29

intetface Package

Engine Package
71 73 Modsl Package

it Uity Package

External Processes
N,

Figure 3.3; Subsystem Interactions in GMAT
Green arrows show information flow between the core Engine components, while blue arrows show information
flow that occurs when a mission is executed.

30 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

Figure 3.4: User Interactions

e Polling messages are used to control an executing Mission Control Sequence, and are used to coordinate
external communications (for example, the startup process for MATLAB) and user actions taken during
the run. Sequence so that a new model can be built in the engine.

The message and information flow in the Engine are shown in IFigure 3.3 with double headed arrows. The
green arrows show the central message and information flow in the engine, while the blue arrows show
information flow that occurs while a mission control sequence is executing. These messages are described
briefly here, and more completely through examples later in this chapter.

The Moderator responds to requests for new resources or commands by requesting a new object from the
FactoryManager. The FactoryManager determines which Factory class can supply the requested object, and
sends a “create” request to that factory. The Factory builds the requested object, and sends the pointer to
the new object to the FactoryManager, which in turn sends the pointer to the Moderator. The Moderator
sends the new object’s pointer to one of two locations, depending on the type of object created. If the object
is a Resource, the object pointer is passed to the ConfigurationManager. The ConfigurationManager adds
the resource to the database of configured objects. If the requested object is a command, it is added to the
Mission Control Sequence. The Moderator then returns the pointer to the interpreter that requested the
new object.

Object retrieval is used to retrieve the pointer to an object that was previously created. The Moderator
receives the message asking for the object. If the object is a configured resource, it calls the Configuration-
Manager and asks for the resource by name. Otherwise, it traverses the Mission Control Sequence until it
finds the requested command, and returns the pointer to that command.

Run messages are used to transfer the resources and Mission Control Sequence into the Sandbox and
start a run of the mission. When the Moderator is instructed to run a Mission Control Sequence, it starts by
loading the configured components into the Sandbox. The Moderator requests objects from the Configura-
tionManager, by type, and passes those objects to the Sandbox. The Sandbox receives the object pointers,
and clones each object into a local resource database. These local clones are the objects that interact with
the commands in the Mission Control Sequence to run a mission. The Moderator then passes the Mission
Control Sequence to the Sandbox so that the Sandbox has the list of commands that need to be executed
to run the mission. Next Moderator tells the Sandbox to initialize its components. The Sandbox initializes
each of the local components, and establishes any necessary connections between components in response to
this message. Finally, the Moderator instructs the Sandbox to execute the Mission Control Sequence. The
Sandbox starts with the first command in the sequence, and runs the commands, in order, until the last
command has executed or the run is terminated by either a user generated interrupt or an error encountered
during the run.

Polling messages are used to process messages between the Moderator and the Sandbox during a run.
Typical messages processed during poling are user requests to pause or terminate the run, or to open a
connection to an external process (including the startup of that process).

3.2. GMAT FROM A USER’S PERSPECTIVE 31

The descriptions provided here for these message types may be a bit confusing at first. The following
section provides representative cases of the message passing and object interactions in GMAT when a user
preforms several common interactions.

3.2 GMAT from a User’s Perspective

When users run GMAT, they follow a work flow like that shown in Figure 3.4. Users start the program,
configure resources, plan their mission, save the configuration, build the mission if working from a script
file, and run the mission. The following sections describe the top level actions taken by GMAT when a user
initiates each of these actions.

3.2.1 The GMAT Startup Process

Tradip) Ooandeds

Figure 3.5: The Startup Process

The startup process for GMAT, shown in Figure 3.5, launches the executable program and prepares
the engine for use. Most of the work performed during startup is performed by the Moderator. When the
application launches, the first action taken is the creation of the Moderator singleton, made by calling the
static Instance() method on the Moderator class. This freshly created Moderator is then initialized by the
application through a call to the Initialize method.

The procedure followed in Initialize() is shown in the large green structured flow box in the figure. The
Moderator reads the GMAT startup file, setting linkages to the default files needed to model and display
running missions. The startup file resides in the same folder as the GMAT application, and contains path
and file information for planetary ephemerides, potential models, graphical images used to provide texture

32 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

maps for bodies displayed in the GUI, atmospheric model files, and default output paths for log files and
other GMAT generated outputs.

Upon successful read of the output file, the Moderator starts creating and connecting the main compo-
nents of the engine. It begins by creating the components used for building model elements. The Facto-
ryManager and ConfigurationManager are created first. Next the Moderator creates each of the internally
configured factories, one at a time, and passes these instances into the FactoryManager. This process is
called “registering” the Factories in other parts of this document. Upon completion of Factory registration,
the Moderator creates instances of the ScriptInterpreter and Guilnterpreter singletons and the Publisher sin-
gleton. This completes the configuration of the core engine elements, but does not complete the Moderator
initialization process, because GMAT starts with several default model elements.

The Moderator creates a default Solar System model, populated with a standard set of solar system
members. Next it creates three default coordinate systems that always exist in GMAT configurations: the
Earth-Centered Mean of J2000 Earth Equator system, the Earth-Centered Mean of J2000 Ecliptic system,
and the the Earth-Centered Earth body-fixed system. Next the Moderator sets the pointers needed to
interconnect these default resources. Finally, the Moderator creates a default mission, and upon success,
returns control to the GMAT application.

The Application retrieves the pointer for the Guilnterpreter, and sets this pointer for later use in the GUL
It then displays the GMAT splash screen, and then finally created and displays the main GMAT Window.
At this point, the GMAT GUI is configured and ready for use building models and running missions.

3.2.2 Configuring Resources

ad: Spaceemt Sorgurion Frr

®

GMAT Usey Firdset

Figure 3.6: Configuration Example: Spacecraft

Figure 3.6 shows the top level set of actions taken by a user when configuring a typical resource - in
this case, a Spacecraft object ~ from the GUIL The user starts by right clicking on the Spacecraft folder
(or control-clicked on the Macintosh) in the resource tree on the left side of the main GMAT window. This

3.2. GMAT FROM A USER’S PERSPECTIVE ‘ 33

action opens a context menu; the user selects “Add Spacecraft” from this menu, and a new spacecraft resource
appears in the resource tree. This action is represented by the box labeled “Create the Spacecraft” in the
figure. The user may also elect to change the name of the new Spacecraft. This action is taken by right
clicking (control-click on the Macintosh) on the new resource in the resource tree, and selecting “Rename”
from the resulting context menu.

Once a resource has been created, the user can edit the properties of the resource. From the GUI, this
action is performed by double clicking on the resource. Double clicking opens a new panel tailored to the
type of resource that is selected; for a Spacecraft, the panel shown in Figure 3.7 opens. The second block
in Figure 3.6, labeled “Set Spacecraft Properties”, represents the actions taken in GMAT when the user
performs this selection, and when the user makes changes on the resulting panel.

Figure 3.7: The Spacecraft Configuration Panel

Changes made in a GUI panel like the one shown here are not automatically made on the underlying
objects in GMAT. Changes made on the panel are fed back to the internal objects when the user selects
either the “Ok” or “Apply” button on the bottom of the panel. This updating of the resource is represented
by the “Update Configuration” block in Figure 3.6.

Fach of these blocks can be further decomposed into the internal actions performed in GMAT when
the user makes the selections described here. The following paragraphs describe in some detail how GMAT
reacts to each of these user actions.

Creating the Spacecraft

Figure 3.8 shows an example of the process followed in GMAT when a new resource is created from the
GUI. The user selected “Add Spacecraft” from the option menu on the Spacecraft node of the resource tree
(accessed by right clicking on the node). This selection triggered the chain of events shown in the sequence
diagram in the figure®. The sequence starts with a CreateObject() call from the GUI to the interface into
the GMAT engine. The interface between the GUI and the GMAT engine is a singleton instance® of the
Guilnterpreter class, and is shown in green in the figure.

7For an introduction to the UML diagram notation used throughout this document, sce Appendix A
8Singletons, and other design patterus used iu GMAT, are introduced on Appendix B.

34 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

adk Spacecratt Conguration J—— ad: Creating a Spacecrat |

Add
Spacecraft

CresteObject 1
>
1) .CreateSpacecrag |

3) CreateSpacacra

1
Retums cr

. nf_tan\:e

Figure 3.8: Configuration Example: Creating the Spacecraft

The Guilnterpreter singleton receives the call to create an object of type Spacecraft. It makes a call,
in turn, into the singleton responsible for running the GMAT engine. This singleton is an instance of the
Moderator class”. The call into the Moderator is made in step 1 of the diagram; the call is made through
the CreateSpacecraft() method of the Moderator.

User configured objects in GMAT are always created through calls into a subsystem referred to collectively
as the Factory subsystem. Factories are responsible for creating these objects. The factory subsystem is
managed through a singleton class, the FactoryManager. The Moderator accesses the factories through
this singleton. In step 2 of the figure, the Moderator makes a call to the CreateSpacecraft() method on
the FactoryManager. The FactoryManager finds the Factory responsible for creating objects of the type
requested - in this case, a Spacecraft object - and calls that factory in turn. Spacecraft are created in GMAT’s
SpaceObjectFactory, so the FactoryManager calls the CreateSpacecraft() method on the SpaceObjectFactory,
as is shown in step 3.

The SpaceObjectFactory creates an instance of the Spacecraft class by calling the class’s constructor, as
is show in step 4. The constructed object is given a name, and then returned through the FactoryManager
to the Moderator. The Moderator receives the new object, and adds it to the database of configured objects
in GMAT.

All configured GMAT objects are managed by a singleton instance of the ConfigurationManager class.
The ConfigurationManager is used to store and retrieve objects during configuration of the model. The Mod-
erator adds created components to the configuration by calling Add methods on the ConfigurationManager.
For this example, the new Spacecraft is added to the configuration through the call shown in step 5.

Once the steps described above have been completed successfully, the Moderator returns control to the
Guilnterpreter, which in turn informs the GUI that a new object, of type Spacecraft, has been configured.
The GUI adds this object to the resource tree, and returns to an idle state, awaiting new instructions from
the user.

7For the purposes of this discussion, the singleton instances will be referred to by their class name for the remainder of this
discussion.

3.2. GMAT FROM A USER’S PERSPECTIVE 35

Setting Spacecraft Properties

The Spacecraft that was created here has default settings for all of its properties. Users will typically reset
these properties to match the needs of their model. The process followed for making these changes from the
GUI is shown in Figure 3.9.

ad: Spaceoratt Configuration }—— Canfiguing Spacecratt Properties |

Add
Spacacraft

1) .CetConfgurtd Objed

7) User configures
propertias on
panel

+Configuration finished)

oenled

Figure 3.9: Configuration Example: Setting Spacecraft Properties

As was discussed in the introduction to this section, Spacecraft properties are set on the GUI panel
shown in Figure 3.7. Users can open this panel at any point in the model setup process. Because of the free
flow in the configuration process, the Spacecraft pointer may not be accessible when the user elects to open
the configuration panel by double clicking on the Spacecraft’s name on GMAT’s resource tree. Therefore,
the first action taken when the panel is opened is a call from the panel to the Guilnterpreter to retrieve
the configured Spacecraft with the name as specified on the Resource tree. The Guilnterpreter passes this
request to the Moderator. The Moderator, in turn, asks the ConfigurationManager for the object with the
specified name. The ConfigurationManager returns that object to the Moderator, which passes it to the
Guilnterpreter. The Guilnterpreter returns the object (by pointer) to the Spacecraft Panel.

The Spacecraft Panel creates a temporary clone of the configured spacecraft so that it has an object
that can be used for intermediate property manipulations®. This clone is set on the Spacecraft Panel’s

#The Spacecraft in unique in this respect; other objects coufigured in the GMAT GUI are manipulated directly, rather than
through a clone. The Spacecrafs is in many tespects a composite object; this added complexity makes the intermediate clone a
useful constiuct.

36 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

subpanels, accessed through a tabbed interface shown in the snapshot of the panel. Each subpanel accesses
the properties corresponding to the fields on the subpanel, and sets its data accordingly. The Spacecraft
Panel is then displayed to the user. The user then makes any changes wanted for the model that is being
configured.

Saving the Spacecraft

ad: Spacecraft Configuration)—ﬂ sd: Saving Spacecrat Configuration)

E

(1

[OK selected]' Delete the clone

.Save completed

L=

Figure 3.10: Configuration Example: Saving the Spacecraft

The final step in the spacecraft configuration process is saving the updated data into the configuration.
That process is shown in Figure 3.10.

The Spacecraft Panel has several tabbed subpanels. The SpacecraftPanel begins the save process by
calling each of these subpanels in turn, setting the corresponding Spacecraft data one subpanel at a time
on the locally cloned Spacecraft. Once all of the subpanels have synchronized their data with the clone, the
copy constructor of the configured Spacecraft is called with the cloned Spacecraft as the input argument.
This action updates the configured Spacecraft, completing the save action.

There are two buttons on the Spacecraft Panel that can be used to perform the save action. The button
labeled “Apply” saves the updated data to the configured object and leaves the Spacecraft Panel open for
further user manipulation. The “OK” button saves the data and closes the panel. The latter action destroys

3.2. GMAT FROM A USER’S PERSPECTIVE 37

the instance of the panel. Since the panel is going out of scope, the cloned Spacecraft must also be deleted,
as is shown in the figure.

3.2.3 Mission Design

The previous paragraphs describe the interactions between core GMAT components and the internal message
passing that occurs when a component of a GMAT Model is configured for use. The following paragraphs
describe the analogous configuration for the commands in the Mission Control Sequence.

Figure 3.11: The Mission Tree in GMAT’s GUI

The Mission Control Sequence is shown in the GMAT GUI on the tab labeled “Mission,” shown for
a modified Hohmann transfer problem® in Figure 3.11. The sequence is shown as a hierarchical tree of
commands. Each level of the hierarchy is a separate list of commands. The top level list is the main control
sequence. Commands that branch from this list are shown indented one level from this sequence. Commands
branching off of these commands are indented an additional level’®. This process continues until all of the
commands in the sequence are incorporated into the tree structure.

The Mission Control Sequence shown in the figure consists of seventeen commands, grouped as seven
commands in the main (i.e. top level) sequence, five additional commands branched off of this sequence to
perform one set of maneuver targeting, and an additional five commands to perform targeting for a second
maneuver. The main sequence of commands shown here is the sequence Propagate — Propagate - Target
- Propagate — Propagate — Target — Propagate. The Target commands are used to tune the maneuvers at
each end of the transfer orbit by applying the command sequence Vary - Maneuver - Propagate -~ Achieve -
EndTarget. The inner workings of these commands is beyond the scope of this chapter; the important thing
to observe at this point is the sequencing of the commands, and the presentation of this sequencing to the
user by way of GMAT’s GUL

The tree shown in the GUI is populated by traversing the linked list of commands comprising the Mission
Control Sequence. Each node of the Mission Tree is an instance of the class MissionTreeltemData. This
class includes a pointer to the corresponding GmatCommand object in the Mission Control Sequence. When
GMAT needs to build or refresh the Mission Tree, it accesses the first node in the Mission Control Sequence
and creates a corresponding MissionTreeltemData instance. That instance is passed the pointer to the

9The wodilication made heve is along the transfer trajectory from the initial orbit to the final orbit. The spacecraft in this
example is propagated through one and a half orbits on the transfer trajectory, rather than the typical half orbit needed for
the problem.

107y some cases sequences of similar commands ave also indented to simplify the display of the Mission Control Sequence.

38 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

GmatCommand, and uses that command pointer to configure its properties in the tree. GMAT then asks
for the next node in the sequence, and repeats this operation until the tree is fully populated.

Some GmatCommands are derived from a subclass named BranchCommand. These commands manage
child linked lists, like the ones shown for the target commands in the figure. When the GUI encounters a
BranchCommand derivative, it indents the nodes displayed on the Mission Tree to indicate this nested level
for the child sequence of the branch command. All of the commands that allow this type of nesting are
terminated with a corresponding “End” command - for this example, the Target command terminates the
targeting child sequence when it encounters an EndTarget command.

GRAT Ueer

Figure 3.12: Configuration Example: A Mission Control Sequence Command

Users interact with the Mission Control Sequence either through GMAT’s scripting interface, or through
manipulations made in the GUIL Manipulations made while scripting are pretty straightforward; they consist
of editing a script file of commands and then instructing GMAT to parse this script. This process will be
described later. Figure 3.12 shows the steps a user takes when adding a command to the Mission Control
Sequence from the GUIL

The Mission Control Sequence is a doubly linked list of objects that describes the sequence of actions that
GMAT will run when executing a mission. Each node in the linked list is an object derived from the command
base class, GmatCommand, as is described in Chapter 21. Since GmatCommand objects are doubly linked
in the list, each command has a pointer to its predecessor and to the next command in the list. When a
user decides to add a command to the Mission Control Sequence, a node in the Mission tree is selected and
right clicked (or control-clicked on the Macintosh). This action opens a context menu with “Insert Before”
and “Insert After” submenus as options. The “Before” and “After” selections here refer to the location of the
new command. The user selects the desired command type from the submenu, and the requested command
is added to the Mission Control Sequence in the specified location. This set of actions corresponds to the
first block in the activity diagram, labeled “Create Command in Mission Control Sequence.”

Most of the commands in GMAT require additional settings to operate as the user intends - for example,
Propagate commands require the identity of the propagator and spacecraft that should be used during

K2

3.2. GMAT FROM A USER’S PERSPECTIVE A. 39

propagation. The second block in the figure, “Edit Command Properties,” is launched when the user double
clicks on a command. This action opens a command configuration panel designed to help the user configure
the selected command. The user edits the command’s properties, and then saves the updates back to the
command object by pressing either the “Apply” or “OK” button on the panel. This action is performed in
the “Save Updates” block in the figure, and is the final step a user takes when configuring a command.

Each of these high level actions can be broken into a sequence of steps performed between the core
elements of GMAT, as is described in the following paragraphs, which describe the interactions followed to
add a Maneuver command to the Mission Control Sequence.

Creating a Maneuver Command

Figure 3.13 shows the process followed when a Maneuver command is created and inserted following an
existing command from the GMAT GUI The process starts when the user selects a command on the mission
tree, right clicks it, and chooses the “Insert After” option from the resulting context menu. The resulting
submenu contains a list of available commands; the following actions occur when the user selects “Maneuver”
from this list.

ed: Cresting the Command
k

Insert T

|
Commend Jpsert =.,

‘ack Cammand Configurstion

1) Lredtebetault
Command
2) CresteDefaut
Command

'
3) CrastsCommand

) constructor
<< crests >>

toop(Frst property Lest property)]

|
1 6) .Set Dataut P roperties
<

8 JnsertCommand

Figure 3.13: Command Creation Example: Creating 2 Maneuver Command

Maneuver command creation starts when the MissionTree!! object sends a request to the Guilnterpreter
for a new Maneuver command instance. The Guilnterpreter sends the request to the Moderator, which sends

U Here, and throughout this docuinent, specific instances of singleton classes are referred to by the class namue - “MissionTree”
in this case. When the class or user experience of the instance is discussed, it will be referred to less formally - “mission tree”,
for example. So as an example of this style, we might discuss the user sclecting an object on the mission tree in the GUI, which
causes the MissionTvee Lo perforu some action,

40 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

the request to the FactoryManager. The FactoryManager finds the factory that creates Maneuver commands,
and ask that factory for an instance of the Maneuver command. The resulting instance is returned from
the factory, through the FactoryManager, to the Moderator. The Moderator sets some default data on the
command, and then returns the command pointer to the Guilnterpreter. The Guilnterpreter passes the
command pointer to the MissionTree.

Each node in the MissionTree includes a data member pointing to the corresponding command in the
Mission Control Sequence. This structure simplifies the interactions between the GUI and the engine when
a user makes changes to the Mission Control Sequence. Since the MissionTree already has a pointer to the
command preceding the new Maneuver command, it has all of the information needed to request that the new
command be added to the Mission Control Sequence. The new Maneuver command is added to the Mission
Control Sequence from the MissionTree. The MissionTree passes two pointers through the Guilnterpreter
to the Moderator: the first pointer identifies the command selected as the command preceding the new one,
and second pointer is the address of the new Maneuver command. The Moderator passes these two pointers
to the head of the Mission Control Sequence using the “Insert” method. This method searches the linked
list recursively until it finds the node identified as the previous command node, and adds the new command
immediately after that node in the list, resetting the linked list pointers as needed. This completes the
process of adding a command to the Mission Control Sequence.

Configuring and Saving the Maneuver Command

When a new command is added to the Mission Control Sequence, it is incorporated into the sequence with
default settings selected by the Moderator. Most of the time, the user will want to edit these settings to
match the requirements of the mission being modeled. Command configuration is performed using custom
panels designed to display the properties users can set for each command. Figure 3.14 shows the panel that
opens when a user double clicks a maneuver command — like the one created in the example described above
- in the mission tree.

Figure 3.14: The Maneuver Command Configuration Panel

The sequence diagram in Figure 3.15 shows the top level messages that are passed when the Maneuver
command is configured using this panel. This view into the command configuration includes a bit more
detail about the GUI messages than was shown in the Spacecraft configuration presented previously.

The configuration process starts when the double clicks on the command in the mission tree. The double
click action sends a message to the MissionTree requesting the configuration panel for the selected node in
the tree. The MissionTree finds the item data, and sends that data to the main GMAT window, called the
GmatMainFrame, asking for a new child window configured to edit the properties of the command contained
in the item data. The GmatMainFrame creates the child window and displays it for the user.

More concretely, if the user double clicks on the Maneuver command created in the preceding section,
the tree item data for that maneuver command is passed from the MissionTree to the GmatMainFrame.
The configuration window that should result from this action for display in the GUI needs to contain the
panel designed to match the underlying object that is being configured - in this case, a Maneuver command.
The GmatMainFrame uses the tree item data passed to it to determine the type of panel needed by the

3.2. GMAT FROM A USER’S PERSPECTIVE 41

adt Command Ci

Insert —
Commend Double-dick
Maneuver

a/1) CreateChild 12) Craate contguration

panel and famework

11) Useredits
commend
properties

loop(First property Last property) J

8] ' b/2) SetProparty

Figure 3.15: Command Configuration Example: Configuring the Maneuver Command

child window during its creation. For this example, the GmatMainFrame determines that the panel that is
needed should be a ManeuverPanel because the tree item data includes a pointer to a Maneuver command.
Accordingly, the GmatMainFrame creates an instance of the ManeuverPanel class, and passes that panel to
the child window. The child window received the panel and places it into the corresponding container in the
window.

Finally, the child window uses the command pointer in the tree item data to access the command and
determine the current values of its internal properties. These data are collected from the command and
passed to the corresponding GUI conponents so that the user can see the current settings. Once these data
fields hae been populated, the child window is displayed on the GUI, giving the GUI a new window like
that shown in Figure figure:ManeuverConfigPanel. This completes the top portion of the sequence shown in
Figure figure:ManeuverConfiguration.

Once the panel is shown on the GUI, the user makes changes to the settings for the command on the
new panel. When the settings match the needs of the mission, the user clicks on either the “OK” or “Apply”
button. This action makes the ManeuverPanel update the Maneuver command with the new settings. If the
user pressed the OK button, the child window also passes a message to GMAT indicating that the user is
finished with the window. When that message is processed, the child window is closed in the GUI

42 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

3.2.4 Model and Mission Persistence: Script Files

GMAT saves configuration data in files referred to as script files. The details of the script file parsing can
be found in Chapter 14. The following paragraphs provide an overview of these processes.

The GMAT script files can be thought of as a serialized text view of the configured objects and Mission
Control Sequence constructed by the user to model spacecraft. GMAT provides a subsystem, controlled by
the ScriptInterpreter, that manages reading and writing of these files. All of these script files are ASCII
based files, so they can be edited directly by users.

J

2

NN N
Q
)
3
<,
.
Q
13
3
Y
]
®
»
o
<
3
o
®
»

B A T T T T TS N s e e e e e . S S N S N S eSS s s
Create Spacecraft satl

satl.SMA = 10000.0

satl.ECC = 0.25

satl.INC = 78.5

s |satl.RAAN = 45

IS - S RN

10 |Create ForceModel fm
1 |fm.PrimaryBodies = {Earth}
12 |fm.PointMasses = {Luna, Sun}

u [Create Propagator prop
15 |prop.FM = fm

17 |Create XYPlot posvel
13 |posvel.IndVar = sati1.X
19 |[posvel.Add = satl.VX

20 |posvel.Add = satl.VY

21 |posvel.Add = satl.VZ

22

DRl I A e
a |4 The Mission Control Sequence

I I A R
36 |While satl.ElapsedDays < 7

27 Propagate prop(sati)

2s |EndWhile

Listing 3.1: A Basic GMAT Script File

Script 3.1 shows a simple script that propagates a spacecraft for approximately 7 days, plotting the
Cartesian components of the velocity against the spacecraft’s X coordinate value. Details of all of these
settings can be found in the User’s Guide|UsersGuide|. This script just serves as an example for the discussion
that follows.

All objects that are created as configured resources from the GUI are stored in the script files using
the keyword “Create”. In the script shown here, there are four resources: a Spacecraft named “satl”, a
ForceModel named “fm”, a Propagator (actually an instance of the PropSetup class) named “prop”, and an
XYPlot Subscriber named “posvel”. Each of these resources is used when running the mission.

In GMAT, each resource can have one or more data members that users can set. These resource properties
are initialized to default settings. Users can override the values of these properties. In the GUI, this action
is performed by editing data presented on the panels for the resources. Properties are changed in the script
file by assigning new values to the properties by name; for example, in the sample script, the Spacecraft’s
semimajor axis is changed to 10000.0 km on the fifth line of script:

3.2. GMAT FROM A USER’S PERSPECTIVE . 43

satl.SMA = 10000.0

The script shown here is a script as it might be entered by a user. Only the lines that override default
property values are shown, and the lines are written as simply as possible. The full set of object properties
can be examined by writing this object to a script file. When a Spacecraft - or any other resource - is saved,
all of the resource properties are written. In addition, the keyword “GMAT" is written to the file, and the
full precision data for the numerical properties are written as well. The Spacecraft configured in the script
file above is written to file as shown in Listing 3.2.

1 |Create Spacecraft satl;

2 |GMAT satl.DateFormat = TAIModJulian;

s [GMAT satl.Epoch = 21545.000000000;

1+ |GMAT satl.CoordinateSystem = EarthMJ2000Eq;
s |GMAT satl.DisplayStateType = Keplerian;
¢ |GMAT satl.SMA = 9999,999999999998;

GMAT satl.ECC = 0.2499999999999999;
GMAT satl.INC = 78.5;

GMAT satl.RAAN = 45;

10 |GMAT satl.AQOP = 7.349999999999972;

u |GMAT satl.TA = 0.9999999999999002;

12 | GMAT satl.DryMass = 850;

13 [GMAT satl1.Cd = 2.2;

1+ |GMAT satl.Cr = 1.8;

15 |GMAT satl.DragArea = 15;

16 |GMAT satl.SRPArea = 1;

© x® =

Listing 3.2: Script Listing for a Spacecraft

GMAT generates the scripting for resources and commands using a method, GetGeneratingString(), which
is provided in the GmatBase class. This class provides the infrastructure needed to read and write object
properties through a consistent set of interfaces. The GetGeneratingString method uses these interfaces when
writing most user objects and commands to script. Derived classes can override the method as needed to
write out class specific information. When GMAT saves a model to a script file, it tells the ScriptInterpreter
to write a script file with a given name. The ScriptInterpreter systematically calls GetGeneratingString on
each object in the configuration, and sending the resulting serialized form of each object to the script file.
Once all of the objects in the configuration have been saved, GMAT takes the first command in the Mission
Control Sequence and calls its GetGeneratingString method, writing the resulting text to the script file. It
traverses the linked list, writing each command in sequential order.

Script reading inverts this process. When a user tells GMAT to read a script, the name of the script file
is passed to the ScriptInterpreter. The ScriptInterpreter then reads the file, one logical block!? at a time,
and constructs and configures the scripted objects following a procedure similar to that described above for
actions taken from the GUL

Details of script processing can be found in Chapter 14.

127 “logical block™ of script is one or more lines of text sufficiently detailed to describe a single action taken in GMAT.
Examples include creation of a resource, setting of a single parameter on a resource, or adding a command te the Mission
Control Sequence,

M ARCHITECTURE OVERVIEW

)

SYSTE

CHAPTER 3.

44

st Running in the Sencbox

loop(F irtCommand LastCommand

s
Bt Y s
I 1
w boo 1 ¢l
g - HRE
14
14 g (1 g
3 & 3 5| < &
] 1 e =
2 i = | &
a v B T
[T | I -1 B
| 2l s 2 |
B T B ~
t m _
I 4]
5 |
]]
?2
s ! |
g | !
! !

13)
B - Jqpuiy, . SRRy, I U

~RunMission

Figure 3.16: The Sequence followed to Run a Mission

ission

M

ing a

5 Runni

3.2.

Once a user has configured a model in GMAT, the model is ready to be run. The configuration has been

populated with all of the resources needed for the run, and the resources have been configured to match the

needs of the analyst. The Mission Control Sequence has been entered and configured to meet the needs of

3

lement,

ese e

actual running of the model encoded in th

s is the

mission. All that remain

the

3.3. WHAT'S NEXT 45

Figure 3.16 shows the sequence followed when a mission is executed in GMAT. The figure shows the
sequence as initiated in the GUIL The user chooses to run the mission by pressing the “Run” button on
GMAT’s toolbar. This action sends a RunMission message to the Guilnterpreter, which then calls the
Moderator’s RunMission method.

The Moderator begins by clearing any stale data out of the Sandbox by calling the Sandbox’s Clear
method. This action removes any local copies of objects in the Sandbox that may still exist from a previous
run. Once the Sandbox has been cleared, the Moderator begins passing resources into the Sandbox.

The Moderator passes the current Solar System into the Sandbox, and then begins making calls to
ConfigurationManager to get the current set of resources used in the model. The Moderator passes these
resources into the Sandbox by type, starting with coordinate systems, and proceeding until all of the resources
have been passed into the Sandbox. The Sandbox receives each resource as it is passed in and makes a copy
of that resource by calling its Clone method. The Sandbox stores these local clones by name in its local
object map. The local object map contains the objects that are manipulated during a run; the configured
objects are not used when running the mission.

After the configured objects have been passed into the Sandbox, the Moderator sends the head node of
the Mission Control Sequence to the Sandbox!3. This sets the Sandbox’s internal sequence pointer to the
first command in the Mission Control Sequence, completing steps needed to begin work in the Sandbox.

The Moderator has completed the bulk of its work for the run at this point. The next action taken is
a call from the Moderator to the Sandbox, instructing it to initialize itself. When the Sandbox received
this instruction, it begins initializing the local objects. Each object is queried for a list of referenced objects
that need to be set, and the Sandbox finds these objects in the local object store and sets each one on the
requesting object. After the object initialization, the Sandbox walks through the Mission Control Sequence
node by node, passing each command a pointer to the local object map and then calling the Command’s
Initialize method, giving each command the opportunity to set up data structures needed to execute the
Mission Control Sequence. If initialization fails at any point during this process, the Sandbox halts the
initialization process and reports the error to the Moderator.

Once initialization is complete, the Sandbox reports successful initialization to the Moderator. At this
point the Moderator sends an Execute message to the Sandbox. The Sandbox responds by calling the
Execute method on the first command in the Mission Control Sequence. The command executes this method,
manipulating objects in the local object map and sending data to GMAT’s Publisher based on the design of
each command. When data is passed to the Publisher, it passes the data on to each Subscriber, producing
output that the user can view to monitor the mission as it executes, or to process after the mission has
finished running.

When the first command completes execution, the Sandbox asks for the next node to execute in the
Mission Control Sequence, and repeats this process on the second node. The process continues, calling node
after node in the Mission Control Sequence until the final command has been executed.

Once the final command has executed, the Sandbox sends a message to the Mission Control Sequence
stating that the run has completed execution, and control is returned to the Moderator from the Sandbox.
The Moderator returns control to the Guilnterpreter, which returns control, through the GUI, to the user,
completing the mission run. Figure 3.17 shows the results of this sequence when executed for the script
shown in Listing 3.1.

3.3 What’s Next

This completes the presentation of the overview of GMAT’s architecture. The next few chapters will present,
in some detail, descriptions of each of the components of the Engine package, followed by sections describing
the infrastructure used for the Resources and Commands, and then the design features of these elements.

13Commands are not cloned into the Sandbox at this writing. A future build of GMAT 1nay require cloning of commands
as well as resources, so that the system can support multiple Sandboxes simultaneously. The systetn is designed to allow this
extensibility when needed.

46 CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW

-8 Spacecraft
i Hardware

formations
#4Bums
-8 Propagators
- § prop
Solar System
Solvers
-& PlatsReports
P pasvel
-8 Interfaces
&% Matlab

% Matlab Server
.- @ Scripts
#: BasicScript
29 variables/Arrays
=@ Coordinate Systems
| beeeeee A EarthM{ 200069
-+ }= Earth#4) 2U00E¢
- 5= EarthFixed
R Efunctons

PR P 2R v &
#For bady Sun, niot using potential file, so using default mu (13271233001 7. 9200054 %31630G62500)
Mission run complisted.
#===p Total fun Time: 3 330000 seconds

Figure 3.17: Results of the Script Example, Run on Linux

Chapter 4

Components of the GMAT Engine

Darrel J. Conway
Thinking Systems, Inc.

The core executive for GMAT is the Moderator. The Moderator controls program flow, creating compo-
nents that are managed in the Configuration Manager and using these components to model missions in the
Sandbox.

4.1 The Moderator
4.2 The Sandbox

User scripts contain descriptions of the components that are used during a run and the sequence of events
that needs to be executed in order to perform the run. These pieces are assembled and executed in the
GMAT Sandbox.

The Sandbox is created by the Moderator. It contains the solar system configuration for the run (Are
there cases where this configuration changes during a run?), the spacecraft and ground system configurations
for the run, the compiled sequence of events that fire for the run, and a data storage container that contains
the final state data for the system at the end of each mission event.

Some nomenclature: The spacecraft and ground system elements are contained in a class called the
Model. Each element of the script that corresponds to an action performed on the Model is stored in a list
called a Command. The sequence of Commands is assembled into a doubly linked list called the Sequence.
The final state data for each object in the Model is stored in a table of data called the StateList.

The Sandbox is the container for all of the pieces used during the run of a script. It contains one of each
of the objects described above: a Model, a Sequence, a Solar System, and a StateList.

When a user runs a script, the Moderator passes the current script to a script interpreter and instructs
that interpreter to process it. As each line of the script is read, the script interpreter tells the Moderator
what components are required to execute that line. The Moderator obtains copies of each component and
passes these copies to the Sandbox, which stores the components in the appropriate containers. After the
script has been assembled into the corresponding object in the Sandbox, the Moderator tells the Sandbox
to execute the Commands in the Sequence. Each command executes, stores the final state of the Model
at the end of its execution, and then calls the next Command to execute. This process continues until the
system has processed all of the commands in the Sequence. Figure 2 attempts to show these steps. (The
Solar System object load is omitted from this figure.)

The Sandbox keeps all of the created objects when a run is completed. Subsequent runs of a script do
not rebuild the elements of the Sandbox unless the script or an underlying element has been changed.

47

48 CHAPTER 4. COMPONENTS OF THE GMAT ENGINE

Figure 4.1: Interactions when a Mission is Run

GMAT uses a reserved location in memory to run models of spacecraft called the Sandbox. The Sandbox
is passed copies of the configured objects and the Mission Sequence, and uses these objects to model the
evolution of the system. The Moderator instructs the Sandbox to perform these tasks in three phases; first
the Sandbox is populated with the objects used in the model, then it is initialized, and finally the model is
run by executing the commands in the Mission Sequence. These processes are described below.

The Late Binding Strategy

4.2.1 Mission Control Sequence Execution
Interrupt Polling in the Sandbox

Populating the Sandbox

Objects are placed in the GMAT Sandbox by making copies of the configured objects and storing these
copies in local storage in the Sandbox. The Sandbox uses an std::map container for this storage, called the
objectMap, which maps configured objects using their names.

More to come!

Initialization

Figure 4.2 shows the control flow through sandbox initialization.
I'll describe it when I fill in this section - for now, I just needed to have a place holder for this piece
because it is referenced later.

Execution

4.3 The Configuration Manager

4.3. THE CONFIGURATION MANAGER

Sandbox Initialization Ovemiew)

Initialize Mission

o Moderator loads objects
/tnto Sandbox

f'
Initialize internal)
objects

Set J2000 B ody
pointers

y
Initialize Other
Objects

Set currentCmd to first
command in sequence

Is currentCmd
NULL?

y
ot
2N

No

(Initialize Comm and)

—Lcet next Com mand)

2C

Initialization Complete

Figure 4.2: Overview of Sandbox Initialization

49

50 CHAPTER 4. COMPONENTS OF THE GMAT ENGINE

Chapter 5

Factories

Darrel J. Conway
Thinking Systems, Inc.

The object factory components are responsible for creating instances of the classes registered with GMAT
for use in a run. Each factory is configured as a node-in a list. The factory classes include links to owned
factories as well, allowing the creation of a tree structure for the factory system.

Each Factory maintains a list of core classes that it knows how to instantiate. All of the core classes
are derived from a base class, Atom (Here I'm stealing John’s name; we may want to use something else if
we keep a large portion of VAL intact in GMAT), which provides basic structure for the created objects.
Each of the core objects has a group ID used to identify what type of object it is (e.g. enumerated ID’s for
Propagator, Force, Spacecraft, Groundstation, Command, UI Element, Planet, and so forth), the name of
the object’s type (e.g. RungeKutta89, Drag, Spacecraft, Groundstation, etc), and the instance’s name. The
Atom class also provides a mechanism to find the parameter list for instantiated objects, so that the list of
available parameters can be built on the fly through calls to an instance of a class that is being configured.

The Moderator builds lists of the recognized objects on request. This feature allows a user interface
to make a call through the User Action Interpreter to get a list of the available objects by class. The
Moderator can be asked for all of the objects configured in the system or all objects of a specified type
(e.g. Propagators). This list can be used to populate selection lists in the TI. Once a user selects a specific
type of object for configuration, the UI can make a call through the Moderator to obtain an instance of the
corresponding Atom. That Atom is then instantiated, and the UI makes calls to the created instance to get
the list of available parameters, and to set the values for each parameter.

When GMAT is started, the Moderator creates a Factory used as the entry point for access to the Factory
system. This top level Factory is responsible for managing all of the other Factories in the system. It does
not create any objects on its own; instead, it calls the appropriate Factory that then creates the requested
instance.

The Moderator creates instances of each registered Factory during the initialization sequence. GMAT
starts with six core factories that are always instantiated when the system starts: the Propagator Factory,
the Force Factory, the Asset Factory (labeled Satellite Factory in Figure 1 - I need to fix the Figure), the
Celestial Body Factory, the GUI Factory, and the Command Factory. These Factories fill the following roles:

Propagator Factory: Creates instances of Propagators for use in propagation configurations Force Factory:
Creates individual forces used in propagation configurations, and the force model container that collects
together forces for a specific configuration Asset Factory: Creates individual spacecraft and groundstations
used in the model, and the container instances used to model formations and ground systems Celestial Body
Factory: Creates Stars, Planets, Moons, and minor bodies used in the model GUI Factory: Creates plot, 3D
graphics, text file, and other interfaces designed to communicate with corresponding GUI elements Command
Factory: Creates the control flow structures used to tie together the commands parsed from a script

51

52 CHAPTER 5. FACTQRIES

Users can create additional Factories and add them to GMAT dynamically. User created factories are
placed in shared libraries compiled for the platform running GMAT - for Windows, user created Factories
are built into DLLs; under Linux/Unix/Mac, they are built into shared libraries.

GMAT builds and registers one additional Factory, the MATLAB Object Factory, which uses GMAT’s
MEX interface to call MATLAB for serialized versions of GMAT objects built under MATLAB. GMAT
comes with MATLAB .m files designed to simplify building of GMAT objects in MATLAB.

Factories in GMAT create components that are setup by users to model specific elements of their missions.

5.1 User Configurable Objects
Section 4.3 introduced the Configuration Manager component, which manages the repository of objects that

a user has constructed during a GMAT run. This section provides a description of the actual objects stored
in that repository..

5.1.1 The Object Configuration

«A description of the repository managed by the Config manager.»

5.1.2 Factories and the GmatBase Class

«A description of how GmatBase and the Factories are relatedy

5.2 The Factory Subsystem

5.2.1 Factory Classes
5.2.2 The Factory Manager
5.2.3 Extending GMAT

Chapter 6

GMAT Work Flow

Darrel J. Conway
Thinking Systems, Inc.

This chapter describes, at a high level, the interactions of the objects in GMAT during a typical session.

6.1 Configuring Objects
6.2 Running a Mission
6.3 Initialization

6.4 Execution

6.5 Interface Components

6.5.1 TUser Interfaces

GMAT can be run from either a command line interface or a graphical user interface (GUI). These inter-
faces are connected to the core GMAT code through objects in the User Interface portion of the Interface
subsystem. The command line interface controls GMAT exclusively through the singleton ScriptInterpreter
The GUI uses the ScriptInterpreter to read and write GMAT files and to preview GMAT scripts, and the
Guilnterpreter for other interactions with the internal GMAT objects.

The command line interface provides minimal feedback during a run. Users can use the command line
interface to execute GMAT scripts, either one at a time or in a batch mode. The interface displays status
messages during the run, but provides no other feedback regarding the status of a script run. In batch mode,
the interface runs multiple scripts sequentially based on the input from a batch file. Statistics regarding the
success or failure of the individual scripts are collected and displayed at the end of the run.

The graphical user interface is implemented using the wxWidgets GUI Library [wx|. It provides a rich
development environment for the implementation of the user interface. The GMAT GUI is built on all
three target platforms (Windows XP, MacIntosh OS X, and Linux) using the same GUI code, with minimal
customization for the different platforms. The communications layer between this library and core GMAT
functionality is the Guilnterpreter. Further information about the GUI can be found in Chapter 15.

All scripting capabilities in GMAT are implemented using the ScriptInterpreter and its helper classes.
This component is discussed in Chapter 14. The GMAT scripting language is documented in the GMAT
Mathematical Specifications and User’s Guide |MathSpec]|, a companion volume to this document.

53

54 CHAPTER 6. GMAT WORK FLOW

6.5.2 External Interfaces

Part 111

Subsystem Designs

Chapter 7

GMAT Base Classes and Defined
Constants

Darrel J. Conway
Thinking Systems, Inc.

This chapter documents the core classes used in GMAT to implement the system.

7.1 GmatBase
7.2 GmatCommand

7.3 Namespaces and Enumerations

GMAT uses several namespaces defined for specific purposes. The “Gmat” namespace is used to define
program specific enumerations defining the types of objects users can configure in GMAT, the types of
data structures commonly used in the system, and more specialized enumerations used by some of GMAT’s
subsystems.

7.3.1 Enumerations
The ObjectType Enumeration
SPACECRAFT This member is initialized to the value 1001.

FORMATION
SPACEOBJECT
GROUND _STATION
BURN

COMMAND
PROPAGATOR
FORCE _MODEL

58 CHAPTER 7. GMAT BASE CLASSES AND DEFINED CONSTANTS
PHYSICAL MODEL
TRANSIENT _FORCE
INTERPOLATOR
SOLAR_SYSTEM
SPACE_POINT
CELESTIAL_ BODY
CALCULATED_POINT
LIBRATION POINT
BARYCENTER
ATMOSPHERE
PARAMETER
STOP_CONDITION
SOLVER

SUBSCRIBER
PROP_SETUP
REF_FRAME
FUNCTION

FUEL _TANK
THRUSTER
HARDWARE Tanks, Thrusters, Antennae, Sensors, etc.
COORDINATE _SYSTEM
AXIS SYSTEM
ATTITUDE

MATH_ NODE
MATH_TREE

UNKNOWN OBJECT

7.3. NAMESPACES AND ENUMERATIONS 59

The ParameterType Enumeration

INTEGER_TYPE

UNSIGNED INT_ TYPE
UNSIGNED INTARRAY TYPE
REAL TYPE

REAL ELEMENT_ TYPE
STRING _TYPE
STRINGARRAY TYPE
BOOLEAN_TYPE
RVECTOR_TYPE

RMATRIX TYPE

TIME_TYPE

OBJECT_TYPE
OBJECTARRAY_ TYPE
ON_OFF_TYPE

TypeCount
UNKNOWN_PARAMETER_TYPE =-1

The WrapperDataType Enumeration

Some components of GMAT need to access data clements in a generic fashion. These components, most
notably including the Command subsystem, use a class of wrapper objects that take the disparate types
and present a common interface into those types. The WrapperDataType enumeration is used to identify
the type of underlying object presented by the wrapper classes. More information about this object can be
found in Section 21.4.3.

This enumeration has the following entries:

NUMBER a Real or Integer value entered explicitly into the command.
STRING a text string with no associated object.

OBJECT_PROPERTY an internal data member of an object, accessible using the GmatBase parameter
accessor methods (GetRealParameter(), GetIntegerParameter(), etc).

VARIABLE an instance of the Variable class.

ARRAY an instance of the Array class.

ARRAY_ ELEMENT an element of an Array object.

PARAMETER _OBJECT any other object derived from the Parameter class.

60 CHAPTER 7. GMAT BASE CLASSES AND DEFINED CONSTANTS

The RunState Enumeration
IDLE = 10000

RUNNING

PAUSED

TARGETING
OPTIMIZING

SOLVING

WAITING

The WriteMode Enumeration
SCRIPTING

SHOW _SCRIPT

OWNED _OBJECT
MATLAB STRUCT
EPHEM HEADER

7.3.2 Defined Data Types
typedef std::vector<Gmat::Object Type> ObjectTypeArray

Chapter 8

Utility Classes and Helper Functions

Darrel J. Conway
Thinking Systems, Inc.

This chapter documents the classes and functions that are used by GMAT to support program function-
ality.

8.1 The Messagelnterface
8.2 The GmatStringUtil Namespace

61

CHAPTER 8. UTILITY CLASSES AND HELPER FUNCTIONS

Chapter 9

The Space Environment

Darrel J. Conway
Thinking Systems, Inc.

The core purpose of GMAT is to perform flight dynamics simulations for spacecraft flying in the solar
system. There are many different components that users interact with to produce this imodel. In this chapter,
the architecture for the elements that comprise the model is introduced. The elements that are not directly
manipulated in the model - specifically, the Sun, planets, moons, and related points that comprise the stage
on which the spacecraft and related objects perform their actions — are described in some detail in the
chapter. Descriptions for the other objects - most specifically spacecraft and formations - introduced here
appear in chapters for those components. References for those chapters are provided when the objects are
introduced.

9.1 Components of the Model

The environmental elements that have a spatial location and evolve over time in the GMAT model are all
derived from the SpacePoint class. The class hierarchy, shown in Figure 9.1, includes classes that model the
objects and special locations in GMAT’s solar system - referred to as “background” objects because their
evolution is modeled through precalculated ephemerides or computations performed off of these precalculated
data - along with the pieces that are directly manipulated in the mission control sequence and that evolve
through numerical integration using GMAT’s propagation subsystem. In the figure, the classes used to
model background objects are shown in purple; those that evolve through direct modeling in GMAT using
the propagation subsystem are shown in blue, and other elements that will be incorporated in the future, in
red.

The space environment as defined in this document consists of the elements that, while dynamic, are
automatically updated as the model evolves, based on epoch data generated for the model. These elements
are the gravitating bodies in the model - that is, the Sun and the planets and their moons - and points
with specialized significance in flight dynamics, like the Lagrange points and gravitational barycenters. All
of these elements are managed in an instance of the SolarSystem class. SolarSystem acts as a container, and
manages both the objects in the space environment and the resources needed to calculate ephemerides for
these objects. The bulk of this chapter provides details about the classes and objects comprising this space
environment.

A key feature of GMAT is the ability to model spacecraft and formations of spacecraft as they move
through the space environment. These elements of the model are configured in detail by GMAT users,
and evolve through time using precision numerical integrators configured by the users. The Spacecraft and
Formation classes, along with their base SpaceObject class, are discussed in detail in Chapter 11. The
numerical integrators and associated force model components are presented in Chapter 18.

63

64 CHAPTER 9. THE SPACE ENVIRONMENT

cd: Environmental Objects J

Figure 9.1; Objects in the GMAT Model.

The clements shown in purple are core constituents of GMAT’s solar system. Classes shown in yellow are
GMAT base classes. Elements shown in blue are the key components studied in GMAT’s model: Spacecradft
and Formations of Spacecraft. Those shown in red are future enhancements, primarily focussed on contact
analysis with different types of objects.

The class hierarchy includes provisions for future model elements attached to components of the space
environment. These classes, FixedObject and the derived GroundStation, FixedTarget and FixedRegion
classes, will be documented at a later date in preparation for implementation.

Before proceeding with a detailed description of GMAT’s space environment, the base class used for all
of the model elements needs some explanation. Those details are provided in the next section.

9.2 The SpacePoint Class

All spatially modeled components need some common data in order to define the positions of objects in the
model. These data are collected in the SpacePoint base class. This base class provides the foundation for
objects used to define coordinate systems (see Chapter 10), for the user configured Spacecraft and Formations
(see Chapter 11), and for other specialized points and objects in the space environment.

Figure 9.2 shows the elements of the SpacePoint class. In order for GMAT to accurately model flight

9.2. THE SPACEPOINT CLASS 65

cd: SpacePoint Details J

Figure 9.2: The SpacePoint Class

dynamics problems, the GMAT space model needs to specify an internal origin and coordinate system
orientation used as a reference for computations. SpacePoint defines one object, the J2000 body, which is
used to define that origin. GMAT uses the Mean-0f-J2000 Earth Equatorial axis system as the orientation
for all such calculations.

Class Attributes SpacePoint defines two data members to track the J2000 body:
¢ SpacePoint* j2000Body: The body used to define the coordinate origin for the SpacePoint.

¢ std::string j2000BodyName: The name of the body defining the coordinate origin.

Methods All classes derived from SpacePoint inherit the implementation of six methods used to set
and access the J2000 body. Five of these methods are used specifically for the internal data members; the
sixth, GetMJ2000Acceleration(), provides a default implementation so that derived classes that do not have
acceleration data do not need to provide an implementation

¢ bool RequiresJ2000Body(): Returns a boolean used to determine if the SpacePoint requires a
J2000 body.

const std:string& GetJ2000BodyName(): Returns the name of the J2000 body for the Space-
Point.

SpacePoint *GetJ2000Body(): Returns the pointer to the J2000 body for the SpacePoint.

bool SetJ2000BodyName(const std::string &toName): Sets the name of the J2000 body for
the SpacePoint.

void SetJ2000Body(SpacePoint *toBody): Sets the pointer to the J2000 body for the SpacePoint.

66 CHAPTER 9. THE SPACE ENVIRONMENT

s Rvector3 GetMJ2000Acceleration(const A1Mjd &atTime): Returns the Cartesian accelera-
tion of the SpacePoint relative to its J2000 body at the specified epoch. The default implementation
returns [0.0, 0.0, 0.0]; derived classes that contain acceleration data should override this method.

Abstract Methods Each subclass of SpacePoint implements three pure virtual methods defined in the

class, using computations specific to that subclass. THese abstract methods have the following signatures:

¢ virtual Rvector6 GetMJ2000State(const A1Mjd &atTime) = 0: Returns the Cartesian state
of the SpacePoint relative to its J2000 body at the specified epoch.

¢ virtual Rvector3 GetMJ2000Position(const A1Mjd &atTime) = 0: Returns the Cartesian
location of the SpacePoint relative to its J2000 body at the specified epoch.

e virtual Rvector3 GetMJ2000Velocity(const A1Mjd &atTime) = 0: Returns the Cartesian
velocity of the SpacePoint relative to its J2000 body at the specified epoch.

9.3 The Solar System Elements

GMAT provides a container class, SolarSystem, that is used to manage the objects modeling the space
environment.

9.3.1 The SolarSystem Class

Members and Methods

Ephemeris Sources

9.3.2 The CelestialBody Class Hierarchy

Stars

Planets

Moons

9.4 The PlanetaryEphem Class

Chapter 10

Coordinate Systems

Darrel J. Conway
Thinking Systems, Inc.

NOTE: This chapter currently contains the original design spec for the coordinate systems.
It needs to be reviewed against the current GMAT system, the figures need to be recreated,
and some of the text needs to be fitted into the rest of the design document.

This chapter presents design guidelines for the coordinate system classes in the Goddard Mission Analysis
Tool (GMAT). It describes how the GMAT software implements the coordinate system math described in the
GMAT Mathematical Specifications{MathSpec]. This description includes the initial design for the classes
that provide coordinate system support in GMAT. The interactions between these classes and the rest of
the GMAT system are also described.

10.1 Introduction

The Goddard Mission Analysis Tool (GMAT) is a multi-platform orbit simulator designed to support multiple
spacecraft missions flying anywhere in the solar system. GMAT is written in C++ and runs on Windows,
Macintosh and Linux computer systems. The tool provides an integrated interface to MATLAB, a high level
computing environment from the Mathworks, Incfmatlabl. The GMAT graphical user interface (GUI) is
written using the wxWidgets GUI Toolkit|wx|, an open source library that compiles and runs under all of
the target operating systems.

GMAT is an object-oriented system, using the full extent of the C++ language to implement the object
model that provides GMAT’s functionality. The first three builds of GMAT provided capabilities to model
orbits in the vicinity of the Earth, including detailed force modeling, impulsive maneuvers, and parameter
targeting using a differential corrector. All of these capabilities can be controlled either using either the
GMAT graphical user interface or a custom scripting language designed to simplify GMAT and MATLAB
interactions. The fourth build of the system generalizes the capabilities of GMAT modeling for other orbital
regimes.

In order to model spacecraft trajectories in these regimes, GMAT needs to be able to represent the
spacecraft state and related quantities in coordinate systems that are convenient to each regime. This
document describes how these coordinate systems are implemented in the GMAT code.

10.2 Coordinate System Classes

Figure 10.1 shows the core C++ classes (drawn using Poseidon[poseidon|) added to GMAT to provide support
for coordinate systems in Build 4. The coordinate system capabilities are provided by the incorporation of

67

63 CHAPTER 10. COORDINATE SYSTEMS

these classes into the GMAT base subsystem!.

cd: High level coordinate system dasses)

CoordinateConverter GmatBase << Singleton =>
- J2000BodyName :String AxisSystent actory
-J2000Body: SpaceP oint
+Convert (...:boolean [F + CreateAxisSystem (...) AxisSystem *
+ AddCoordi ystem (... xbool

#solar : SolarSystem *
#orlginName :String
#origin : SpaceP oint

7

CoordinateSy stem AxisSystem
Raxes: AxisSystem #rotMatrix :Rmatrix33
#intemalState :Rvector #rotDotMatrix :Rmalrix33
+ ToMJ200CEq(...xRvector & + Rotate ToMJ2000Eq () voxd
+ FromMJ2000Eq (... YRvector & + RotateFromMJ2000Eq (:void
#TranslateToMJ2000 (:Rvector & +Initialize () void
#TransdateFromMJ2000Eq O:Rvecor & # CalculateRotMatrix :vokd
+ Initialize () void
+ operator==_(...xboolean

Figure 10.1: Coordinate System Classes in GMAT

The coordinate system classes consist of a CoordinateSystem class that acts as the interface between the
conversions and the rest of GMAT, an AxisSystem base class with a derived hierarchy used for rotational
conversions, a CoordinateConverter class that manages conversions between different coordinate systems,
and a factory constructed as a singleton that create the AxisSystem objects. The CoordinateSystem class is
the component that is instantiated when a user “Creates” a coordinate system object.

Previous builds of GMAT included classes that model spacecraft, formations, and celestial objects. These
classes were derived from a core base class named GmatBase. A new intermediate class, SpacePoint, is
implemented in GMAT to make access to position, velocity, and rotational data available to the coordinate
system classes when needed. Section 10.2.4 describes this class.

10.2.1 The CoordinateSystem Class

The CoordinateSystem class is a configured component that implements the functionality needed to convert
into and out of a specified coordinate system. Internally, GMAT performs computations in a Mean of
J2000 Earth Equatorial coordinate system, centered at one of the celestial bodies in the GMAT solar system
(i.e. the Sun, a planet, or a moon) or at a barycenter or libration point. Each CoordinateSystem instance
provides methods to transform into and out of these J2000 coordinate systems. It contains the data necessary
for translation calculations, along with a member object pointer that is set to an AxisSystem instance for
coordinate systems whose principle axes are not parallel to the Mean of J2000 Earth Equatorial axes, or to
NULL for coordinate systems that are oriented parallel to these axes.

IPhe GMAT cede base consists of a set of classes that provide the core functionality of the system, the “base™ subsystem,
and classes that comprise the graphical user interface, the “gui” subsystem. All of the classes described in this document are
wembers of the base subsystem, with the exception of the recommendations for changes to the pauels on the GUL

10.2. COORDINATE SYSTEM CLASSES . 69

cd: Axis System Overview J

AxisSystem
#rotMetrix :Rmatrix33
RrotDotMatrix :Rmatrix33

+ Rotate ToMJ2000Eq () void

+ Rotate FromMJ2000Eq ():voi!
+ Initislize (¥ void

CaicuiateRotMatrix ():void

-epoch :ATMjd

Figure 10.2: Top level AxisSystem Derived Classes

The AxisSystem class provides the methods needed to rotate the coordinate system into and out of the
Mean of J2000 Earth Equator frame. The AxisSystem is set for a given CoordinateSystem by setting the
axes member to an AxisSystem instance.

GMAT uses a late binding scheme to provide interconnections between objects used when modeling an
analysis problem. Individual components are configured from either the grapical user interface or a script
file describing the objects that need to be modeled. Connections between these objects are defined using the
names of the objects, but the actual object instances used in the model are not set until the simulation is run.
Upon execution, the configured objects are copied into the analysis workspace, called the Sandbox, and the
connections between the configured objects are established immediately prior to the run of the simulation.
The Initialize method in the CoordinateSystem class implements this late binding for the connection between
the coordinate system instance and the related SpacePoints.

10.2.2 The AxisSystem Class Hierarchy

GMAT is capable of supporting numerous coordinate system orientations. These orientations are defined
through the AxisSystem class; each unique axis orientation is implemented as a separate class derived from
the AxisSystem base class. Figure 10.2 shows an overview of the AxisSystem class hierarchy, and identifies
the top level classes in this hierarchy.

The orientations of the coordinate systems in GMAT fall into two broad categories: axes that change
orientation over time, and those that remain fixed in orientation. The latter category requires computation
of the rotation matrices one time, at initialization, in order to perform the rotations into and out of the
coordinate system. Figure 10.3 shows the six inertial axis systems supported in GMAT. These systems
support equatorial and ecliptic versions of Mean of J2000, Mean of Epoch, and True of Epoch transformations.

Coordinate systems that are not fixed in orientation over time are derived from the DynamicAxes class,
as is shown in Figure 10.4. These coordinate systems include equatorial and ecliptic versions of the mean
of date and true of date axes, along with axes that evolve with the polar motion of the body’s rotational
axis (implemented in the EquatorAxes class) and axes that are fixed on the body’s prime meridian (the
BodyFixedAxes class). All of these classes require recomputation of the orientation of the axes as the epoch
of the model evolves.

One additional class in Figure 10.4 bears discussion here. GMAT supports numerous coordinate systems
that reference bodies that are not celestial objects - specifically coordinate systems that use Lagrange points,

CHAPTER 10. COORDINATE SYSTEMS

cd: Axis System: Inertial J

InertialA

MJ2080EqAxes MJ2000E cAxes TOEEqgAxes TOEEcAxes MOEEqAxes MOEEcAxes

Figure 10.3: Inertial Axis Classes

cd: Axis System: Dynamic J

DynamicAxes
-epoch :A1Mjd

7
| | [|

TrueOfDateAxes EquatorAxes MeanOfD ateAxes BodyFixedAxes ObjectReferencedAxes
- xAxs : String
- yAxis: String
- zAxs :String
- primary :SpaceP oint *
- secondary :SpaceP oint *
TODE gAxes TODE cAxes MODEgAxes MODE cAxes

Figure 10.4: Dynamic Axis Classes

10.2. COORDINATE SYSTEM CLASSES

barycenters, spacecraft, and formations to define the coordinate origins and axes. These coordinate systems
use the ObjectReferencedAxes class to construct the coordinate basis and rotation matrices. The GMAT
Mathematical Specifications[MathSpec] provide detailed descriptions of how this class operates.

10.2.3 CoordinateSystem and AxisSystem Collaboration

The GMAT Mathematical Specification[MathSpec] includes a flow chart that describes the process of trans-
forming between coordinate systems. This process is performed in the GMAT code using the Coordinate-
Converter class and the public methods of the CoordinateSystem class. When GMAT needs a conversion
from one coordinate system to another, the method CoordinateConverter::Convert is called with the
epoch, input state, input coordinate system, output state, and output coordinate system as parameters.
The converted state vector is stored in the output state parameter.

The Convert method calls the conversion method CoordinateSystem: : ToMJ2000Eq on the input coordi-
nate system, followed by CoordinateSystem: : FromMJ2000Eq on the output coordinate system. ToMJ2000Eq
calls the AxisSystem: :RotateToMJ2000Eq method followed by the CoordinateSystem: : TranslateToMJ2000Eq
method, converting the input state from the input coordinate system into Mean of J2000 Equatorial coor-
dinates. Similarly, FromMJ2000Eq calls the CoordinateSystem: : TranslateFromMJ2000Eq method and then
the AxisSystem::RotateFromMJ2000Eq method, converting the intermediate state from Mean of J2000
Equatorial coordinates into the output coordinate system, completing the transformation from the input
coordinate system to the output coordinate system. FEach of the conversion routines takes a SpacePoint
pointer as the last parameter in the call. This parameter identifies the J2000 coordinate system origin to
the conversion routine. If the pointer is NULL, the origin is set to the Earth.

The following paragraphs provide programmatic samples of these conversions.

Code Snippets for a Conversion

Figure 10.5, generalized from the GMAT mathematical specification, illustrates the procedure used to im-
plement a transformation from one coordinate system to another. The following paragraphs provide code
snippets with the corresponding function arguments for this process.

When GMAT needs to convert from one coordinate system to another, this method is called:

if (!coordCvt->Convert(epoch, instate, inputCS, outstate, outputCS))
throw CoordinateSystemException("Conversion from * +
inputCS->GetName() + " to " + outputCS->GetName() + " failed.");

This method invokes the calls listed above, like this:

// Code in CoordinateConverter::Convert
if (!inputCS->ToMJ2000Eq(epoch, instate, internalState, J2000Body))
throw CoordinateSystemException("Conversion to MJ2000 failed for " +
inputCS->GetName()) ;

if (loutputCS->FromMJ2000Eq(epoch, internalState, outState, J2000Body))
throw CoordinateSystemException("Conversion from MJ2000 failed for " +
outputCS->GetName());

The conversion code from the input state to Mean of J2000 Equatorial Coordinates is accomplished using
the calls

// Code in CoordinateSystem::ToMJ2000Eq
if (axes) // axes == NULL for MJ2000Eq orientatiomns
if (!axes->RotateToMJ2000Eq(epoch, instate, internalState, J2000Body))
throw CoordinateSystemException("Rotation to MJ2000 failed for " +

-
[

2

CHAPTER 10. COORDINATE SYSTEMS

ad: Coordinete Conversion Control Flow |

Transformation requested

oordinateConveter::Convert
called

INputCS::ToMJ2000Eq

Q/Nu

Is InputCS same as converter's
MJ2000 system?

Yes

State retumed to
CoordinateConverter

lled
nputCS::RotateToMJ2000
Yes alled
InputCS has an
AxisSystem
No

il intermediate
ate

—

(InputCS:: TranslateToMJ2000
called

&

Is OutputCS same as converler's
MJ2000 system?

Yes

No

O utputC S::F romMJ2000E g
called

utputCS:: TranslateF romMJ2000Eq
alled

OutputCS has an AxisSystem

Flll Return
State

Yes

Return converted data

[outpuics:RoteteFomMJ2000Eq
lcaled

Figure 10.5: GMAT Procedure for a Generic Coordinate Transformation

10.3. CONFIGURING COORDINATE SYSTEMS

instanceName) ;
else // Set the intermediate state to the input state
internalState = instate;

if (!TranslateToMJ2000Eq(epoch, internalstate, internalState, J2000Body))
throw CoordinateSystemException("Translation to MJ2000 failed for " +
instanceName) ;

and the conversion from Mean of J2000 Equatorial Coordinates to the output state is performed using
these calls:

// Code in CoordinateSystem::FromMJ2000Eq
if (!TranslateFromMJ2000Eq(epoch, internalstate, internalState, J2000Body))
throw CoordinateSystemException("Translation from MJ2000 failed for " +
instanceName) ;

if (axes) // axes == NULL for MJ2000Eq orientations
if (taxes->RotateFromMJ2000Eq(epoch, internalState, outstate, J2000Body))
throw CoordinateSystemException("Rotation from MJ2000 failed for " +
instanceName) ;
else // Set the output state to the intermediate state
outstate = internalState;

10.2.4 The SpacePoint Class

In general, coordinate systems are defined in reference to locations and directions in space. Many of the
coordinate systems used in GMAT have the direction fixed based on an external reference — for example, the
MJ2000Eq system has the z-axis pointed along the Earth’s rotation axis at the J2000 epoch and the x-axis
aligned with the vernal equinox at the same epoch. GMAT also supports coordinate systems constructed in
reference to objects internal to the GMAT - typically a planet, the Sun, a moon, or a spacecraft can be used,
as can special points in space like Lagrange points or the barycenter of a multi-body system. The coordinate
system classes need to be able to access position and velocity data about these objects in a generic fashion.
GMAT has a class, SpacePoint, that provides this access. SpacePoint is the base class for all of the objects
that model location data in the solar system, as is shown in Figure 10.6. The SpacePoint class is described
in more detail in Chapter 9.

10.3 Configuring Coordinate Systems

10.3.1 Scripting a Coordinate System

The script commands used to create a coordinate system object in GMAT are defined in the GMAT Math-
ematical Specifications|MathSpec|. Coordinate System scripting is performed using the following lines of
script:

Create CoordinateSystem csName
GMAT csName.Origin = <SpacePoint name>;
GMAT csName.Axes = <Axis type>;
GMAT csName.Primary = <Primary SpacePoint name, if needed>;
GMAT csName.Secondary = <Secondary SpacePoint name, if needed>;
GMAT csName.Epoch.<Format> = <Epoch data, if needed>;

% Only two of these three can exist for a given coordinate system;

18

Figure 10.6: The SpacePoint Class Hierarchy

% see the coordinate system table for more information
GMAT csName.XAxis = <\pmR, \pnV, or \pmN>;
GMAT csName.YAxis = <\pmR, \pmV, or \pmN>;
GMAT csName.ZAxis = <\pmR, $\pm3V, or \pmN>;

The fields in angle brackets are used to set the parameters that define the coordinate system. Table 10.1
provides a brief description of these fields; more details are available in [MathSpec].

In the following paragraphs, the interactions between the script interpreter subsystem and the coordinate
system classes are described.

Script Interpreter Actions

In GMAT, the ScriptInterpreter reads each line of script and sets up the corresponding objects. The lines
of script above map to calls made in the ScriptInterpreter code, as described in the following text.

The Create line causes the ScriptInterpreter to call the CoordinateSystemFactory and requests a Coor-
dinateSystem instance:

// In the Interpreter subsystem

GmatBase *csInstance = moderator->CreateCoorxrdinateSystem("CoordinateSystem", "csName");

The resulting coordinate system is registered with the configuration manager.
The Origin line sets the originName parameter on this instance:

// First determine that the parm is a string
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘Origin’’);

// Here type is a string, so this is called:
csInstance->SetStringParameter ({}¢‘0Origin’’, <SpacePoint name>);

The Axes line creates an instance of the AxisSystem and passes it to the coordinate system:

10.3. CONFIGURING COORDINATE SYSTEMS

Table 10.1: Coordinate Systemn Parameters

Parameter Required/ Op- | Allowed Values Description
tional

Origin Required Defines the location of the coordinate sys-
Any Named tem origin.
SpacePoint

Axes Required Defines the orientation of the coordinate
Equat or, h/IJ‘ZOOOE c, axes in Spalﬁe.
MJ2000Eq, TOEEq,
MOEEq, TODEq,
MOD¥Eq, TOEEC,
MOEEc¢, TODEc,
MODEc, Fixed,
ObjectRefernced

Primary Optional Defines the primary body used to ori-
Any Named ent axes for systems that need a primary
SpacePoint body.

Secondary Optional Defines the secondary body used to orient
Any Named axes for systems that need a secondary
SpacePoint body.

Epoch Optional Any GMAT Epoch Sets the reference epoch for systems that
need a reference epoch.

XAxis Optional +R,=V,£N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference N,

YAxis Optional +R, &V, £ N Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference =N.

ZAxis Optional R, £V, =1 Used for ObjectReferences axes only; two
of the three axes are set, and one must
reference V.

~3

(=1}

76 CHAPTER 10. COORDINATE SYSTEMS

// First determine that the parm is an internal object
Gmat : :ParameterType type = csInstance->GetParameterType({}‘‘Axes’?);

// Here type is an object, so this is called:
GCmatBase {*}axesInstance = moderator->CreateAxisSystem(<Axis type>, {}¢’?);

// Then the object is set on the coordinate system
csInstance->SetRefObject (axesInstance);

The Primary line sets the primary body on the AxisSystem instance. This is done by passing the data
through the CoordinateSystem object into the AxisSystem object:

// First determine that the parm is a string
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘Primary’’);

// Pass the string to the coordinate system
csInstance->SetStringParameter ({}‘ ‘Primary’’, <SpacePoint name>);

// In CoordinateSystem, this parameter is passed to the AxisSystem:
axes->SetStringParameter ({}¢ ‘Primary’’, <SpacePoint name>);

The Secondary line is treated similarly to the primary line:

// First determine that the parm is a string
Gmat: :ParameterType type = csInstance->GetParameterType({}‘‘Secondary’’);

// Pass the string to the coordinate system
csInstance->SetStringParameter ({}¢‘Secondary’’, <SpacePoint name>);

// In CoordinateSystem, this parameter is passed to the AxisSystem:
axes->SetStringParameter ({}¢‘Secondary’’, <SpacePoint name>);

The Epoch line is handled like in the Spacecraft object, and the X Axis, YAxis and ZAxis lines are treated
as string inputs, like the Primary and Secondary lines, above.

10.3.2 Default Coordinate Systems

GMAT defines several coordinate systems by default when it is initialized. These systems are listed in Table
10.2.
10.4 Coordinate System Integration

Sections 10.2 and 10.3 describe the internal workings of the GMAT coordinate systems, but do not explain
how the coordinate system code interacts with the rest of GMAT. This section outlines that information.

10.4. COORDINATE SYSTEM INTEGRATION 7

Table 10.2: Defanlt Coordinate Systems defined in GMAT

| Name { Origin | Axis System | Comments |

EarthMJ2000Eq | Earth MJ2000 Earth Equator The default coordinate system for
GMAT

EarthMJ2000Ec | Earth MJ2000 Ecliptic

EarthFixed Earth Body Fixed The Earth fixed system is used
by the gravity model for full field
modeling

BodyFixed Other celestial | Body Fixed IMixed systems used by the grav-

bodies ity model for full field modeling

at other bodies

10.4.1 General Considerations

GMAT uses coordinate systems in several general areas: for the input of inijtial state data, internally in the
impulsive and finite burn code, force models and propagation code, in the calculation of parameters used to
evaluate the behavior of the model being run, and in the graphical user interface (GUI) to display data as
viewed from a coordinate system based perspective.

10.4.2 Creation and Configuration
Coordinate System Creation

Coordinate systems are created through a series of interactions between the GMAT interpreters, the Mod-
erator, and the Factory system. Figure 10.7 shows the sequence followed by the ScriptInterpreter when a
coordinate system is configured from a script. The procedure is similar when the GUI configures a coordinate
system, with one exception. The ScriptInterpreter translates a script file a line at a time, so it needs to look
up the CoordinateSystem object each time it is referenced in the script. The GUI configures the coordinate
system from a single panel, so the coordinate system object does not need to be found each time a parameter
is accessed.

Startup Considerations

When a user starts GMAT, the executable program creates a singleton instance of the Moderator. The
Moderator is the core control module in GMAT; it manages the creation and deletion of resources, the
interfaces between the core components of the system and the external interfaces (including the GUI and
the scripting engines), and the execution of GMAT simulations. When the Moderator is created, it creates
a variety of default resources, including the default factories used to create the objects in a simulation. The
factories that get created include the CoordinateSystemFactory.

After it has created the factories and constructed the default solar system, the Moderator creates the
default coordinate systems listed in Table 10.2, following a procedure like the one shown in Figure 10.7. These
coordinate systems are registered with the Configuration Manager using the names in the table. Users can
use these coordinate systems without any taking any additional configuration actions.

10.4.3 Sandbox Initialization
When a user runs a mission sequence, the Moderator takes the following sequence of actions 2:

1. Send the current SolarSystem to the Sandbox for cloning

2The description here references a Sandbox for the run. The Moderator can be configured to manage a collection of
Sandboxes; in that case, the actions described heve ave applied to the current Sandbox {roru that coliection.

78 CHAPTER 10. COORDINATE SYSTEMS

ad: Cresting a Coordinate System J 2

nterpreter calls Moderator
for named CoordinateSystem object
Coordinate system requested
oderstor creates CS okject
No factory call here)
oderator registersCS
h Configuration Manager
‘ Axis type ‘

Figure 10.7: Coordinate System Creation and Configuration Sequence

2. Load the configured objects one at a time into the Sandbox. These objects are cloned % into the
Sandbox. :

3. The Sandbox is initialized.
4, The Mission is executed.

The critical piece for successful execution of a GMAT mission is the third step. When the Sandbox is
initialized, the following actions are executed:

1. The local solar system object is set for all of the objects that need it.
2. Reference object pointers are set on objects that use them.

3. The objects are initialized.
4

. Parameters are configured.

o

. The command sequence is configured.

{a) The object table is passed to each command.
(b) The solar system is passed to each command.
(¢) The command is initialized.

The coordinate system objects are fully initialized and ready for use by the end of the step 3. Commands
that use the coordinate system objects have the object associations set in step 5c.

10.4.4 Initial States

Users need to set the locations and initial motion of spacecraft, ground stations, and other physical entities
modeled in GMAT using a coordinate system that makes this data simple to specify. For this reason, GMAT
lets users select all or a portion of the coordinate system needed for these objects.

3The current build of GMAT does not fully implement cloning for the configured objects. This issue is being corrected,

10.4. COORDINATE SYSTEM INTEGRATION 79

Spacecraft

The initial state for a spacecraft is expressed as an epoch and six numerical quantities representing the space-
craft’s location and instantaneous motion. These quantities are typically expressed as either six Cartesian
elements -~ the x, ¥, and z components of the position and velocity, six Keplerian elements - the semimajor
axis, eccentricity, inclination, right ascension of the ascending node, argument of pariapsis, and the anomaly
in one of three forms (true, mean, or eccentric), or one of several other state representations. The element
representation depends on the coordinate system used. Some representations cannot be used with some co-
ordinate systems - for example, the Keplerian representation requires a gravitational parameter, p = GM, in
order to calculate the elements, so coordinate systems that do not have a massive body at the origin cannot
be used for Keplerian elements. For these cases, GMAT reports an error if the element type is incompatible
with the coordinate system.

Ground Stations and Other Body Fixed Objects

Ground station objects and other objects connected to physical locations on a body are expressed in terms
of the latitude, longitude, and height above the mean ellipsoid for the body. The coordinate system used
for these objects is a body fixed coordinate system. Users can specify the central body when they configure
these objects. The body radius and flattening factor for that body are used to calculate the mean ellipsoid.
Latitude is the geodetic latitude of the location, and longitude is measured eastwards from the body's prime
meridian. .

GMAT does not currently support ground stations or other body fixed objects. This section will be
updated when this support is added to the system.

10.4.5 Forces and Propagators

Internal states in GMAT are always stored in a Mean of J2000 Earth-Equator coordinate system. The origin
for this system is set to either a celestial body (i.e. the Sun, a planet, or a moon), a barycenter between
two or more bodies, or a Lagrange point. The propagation subsystem in GMAT allows the user to specify
this origin, but no other coordinate system parameters. Propagation is performed in the Mean of J2000
Earth-Equator frame located at the specified origin.

Individual forces in the force model may require additional coordinate system transformations. These
transformations are described in the next section.

Coordinate Systems Used in the Forces

GMAT contains models for point mass and full field gravity from both a central body and other bodies,
atmospheric drag, solar radiation pressure, and thrust from thrusters during finite maneuvers. Table 10.3
identifies the coordinate system used for each force. Users set the point used as the origin for the force
model. This point is labeled r, in the table. Forces that require a central body reference that body as rcp, in
the table. Users also specify the coordinate system used for finite maneuvers. All other coordinate systems
are set up internally in the force model code, and managed by the constituent forces.

Transformations During Propagation

GMAT’s propagators consist of a numerical integrator and an associated force model. Each force model is
a collection os individual forces that get added togehter to determine the net acceleration applied to the
object that is propagated. The preceding section defined the coordinate systems used by each of these forces.
Figure 10.8 shows the procedure that is followed each time the force model calculates the acceleration applied
to an object.

The force model calls each force in turn. As a force is called, it begins by transforming from the
internal Mean of J2000 equatorial coordinate system into the coordinate system required for that force. The
acceleration from the force is then calculated.

80

CHAPTER 10. COORDINATE SYSTEMS

Table 10.3: Coordinate Systems Used by Individual Forces

| Force

| Coordinate System |

Notes |

Point Mass Gravity

1, centered MJ2060
Earth Equator

Point mass forces use the default representations

Full Field Gravity

rep centered Body Fixed

Full field models use the body fixed system to cal-
culate latitude and longitude data, and calculate
accelerations in the MJ2000 frame based on those
values.

Drag

Teb centered MJ2000
Earth Equator

Drag forces set the atmosphere to rotate with the
associated body, so the reference frame remains
inertial (i.e. MJ2000 based).

Solar Radiation Pressure

ro centered MJ2000
Earth Equator

Solar Radiation Pressure calculations are per-
formed in MJ2000 coordinates

Finite Maneuver Thrust

Any Defined Coordinate
System, user specified

Finite maneuvers determine the thrust direction
based on the thrust vector associated with the en-
gines. The spacecraft are aligned with this coordi-
nate system. A future build will add an additional
transformation to allow specification of the space-
craft’s attitude in this frame.

ad: Propagation and Coordinate Systems J

GetDerivatives called

T
.%Eﬂroemouet:cetoeﬁvaives called Loop through forces >@
J No
More Forces? Return derivative data
Yes
Actions in this box are intermnal
to the indivicual forces. ves mnsform to €3
Force needs
transfomation
No
E Calculate derivetives J

Figure 10.8; Control Flow for Transformations During Propagation

10.4. COORDINATE SYSTEM INTEGRATION 81

ad: Maneuver flow

Caloulate coordinate Caloulate delta-y Project d¥ along
system basis vectors or acceleration basis vectors

Maneuver Requested Return results

Figure 10.9: Calculating the Direction Used for Mancuvers

10.4.6 Maneuvers

The impulsive and finite burn models are used to simulate thruster actions on a spacecraft. Maneuvers are
applied either as an impulsive delta-V or as an acceleration in the force model. In either case, the coordinate
system related operations in the maneuver object are the same: the basis vectors for the coordinate system
are calculated in the MJ2000 frame, the magnitude of the change in the velocity is calculated for the maneuver
(resulting in a delta-V magnitude for impulsive maneuvers, or the time rate of change of velocity for finite
maneuvers), and the resultant is projected along the basis vectors using attitude data in the maneuaver object.
Figure 10.9 illustrates this flow.

10.4.7 Parameters

Many of the parameters that GMAT can calculate are computed based on the coordinate system of the
input data; in some cases this dependency uses the full coordinate system, and in other cases, it uses the
origin or central body of the coordinate system. The Parameter subsystem contains flags for each parameter
taht are used to indicate the level of coordinate system information required for that parameter. These flags
indicate if the parameter is specified independently from the coordinate system, depends only on the origin
of a coordinate system, or depends on a fully specified coordinate system.

10.4.8 Coordinate Systems and the GUI
OpenGL ViewPoints

The OpenGL visualization component in the first three GMAT builds set the Earth at the center of the display
view and allowed users to move their Earth-pointing viewpoint to different locations. The incorporation
of coordinate systems into the code opens GMAT to a greatly expanded visualization capability in this
component. Users can set the viewing direction to point towards any SpacePoint or an offset from that
direction. Users can also set the viewpoint location to either a point in space, to the origin of any defined
coordinate system, or to locations offset from any specified SpacePoints. The latter capability allows the
OpenGL view to follow the motion of the entities modeled in GMAT.

New Panels

GMAT needs a new GUI panel used to configure coordinate system objects.

Panel Changes

Several of the existing GUI panels in GMAT will change once the Coordinate System classes are functional.
Both the report file and the X-Y plot components use parameter data to produce output. The configuration
panels for these elements needs the ability to specify either the coordinate system or the origin for the calcu-
lated data that requires these elements. One way to add this capability to the GUI is shown in Figure 10.10.

Figure 10.10: The Updated Parameter Subpanel

As different parameters are selected, the “Coordinate System” and “Coordinate Origin” comboboxes become
active or disabled (“grayed out™), depending on the needs of the selected parameter.

The propagator subsystem needs information about the global origin for the forces in a force model.
Figure 10.11 shows one way to add this data to the panel. ‘

The OpenGL panel needs to be updated to allow configuration of the capabilities described in Section
10.4.8. Users can use the settings on this panel to specify both the coordinate system used to plot the
mission data and the location and orientation of the viewpoint used to observe these data. In some cases,
the viewpoint will not be a fixed point in space - for example, users will be able to view a spacecraft’s
environment in the simulation by specifying the location and orientation of the viewpoint relative to the
spacecraft in a spacecraft centered coordinate system, and thus observe how other objects move in relation
to that spacecraft.

10.5 Validation

In this section, several tables are presented that show the data for a single state in several different coordinate
systems. GMAT tests will be run that transform between these systems and validates that the conversions
are in agreement with the data in the tables to an acceptable level of precision. The test data were generated
in Astrogator by GSFC, Code 595. This output should be in agreement with GMAT results to at least one
part in 10'2. (Subject to change once tests are run - seems like a good value as a starting point.)

10.5.1 Tests for a LEO

Table 10.4 lists the expected state data for a spacecraft orbiting near the Earth.

10.5. VALIDATION

83

RKY 8(9)

60

9.999999999999999¢-012

0.001

2700

S0

Figure 10.11: Addition of the Propagation Origin

Table 10.4: Coordinate Conversions for an orbit near the Earth

A LEO State

roch: | UTC Gregorian UTC Julian Ephemeris Time
| 1 Jan 2005 12:00:00.00 2453372 2453372.00074287
sordinate System | X Y Z Ve V, | V.,

tth Centered Mean

J00 Eqguator

15999.999999959998

0.0000000000000

0.00000000G0000

0.0000000000000

3.8662018270519716

3.86620182705197

rth Centered Fixed

3100.7006422193112

15696.674760971226

7.54822029656669

-2.6485022470204602

0.5213224286561129

3.8663431768510¢

vth Centeved ~Mean 15999.988100569937 19.513619701949061 0.0163246416692983 | -0.0062037647908650 | 5.0850309969931660 | 2.0093417847447%
liptic of Date

rth Centered Mean 13999.999999999998 0.0000000000000 0.0600000000000 0.0000000000000 5.0850575916827729 | 2.0092840576358(
liptic of J2000

rth Centered Mean of | 15999.9881005699370 | 17.8969907643261870 | 7.7768465297859297 | -0.0062037647908650 | 3.8661983573941092 | 3.8662003193814¢

Ae

84 CHAPTER 10. COORDINATE SYSTEMS
Table 10.5: Coordinate Conversions for an orbit near the Earth/Moon-Sun L2 Point
A L2 State
ipoch: UTC Gregorian | UTC Julian Ephemeris Time
25 Sep 2003 16:22:47.94 | 2452908.18249931 2452908.18324218
‘oordinate Sys- X Y z Va Vy V.
am

arth Centered Mean
2000 Equator

1152413.9609139508

164482.90400985131

~270833.37069837836

~0.0237491328055502

0.5463496092637017

0.189695270537066

an-Farth /Moon 2659568.8530356660 | -467.97516783879695 | -314259.10186388291 | -0.0062197634008832 | 0.3610507604664427 | -0.04258067111669:
arycenter L1
un-Farth L2 -352659.29964214563 | -0.0002161438986659 | -313927.71991658572 | 0.0027515868356648 | 0.3488514802312706 | -0.04329161797131¢

olar Systemn Barycen-
J2000 Earth

o Mean

151524360.68432158

4848014.2434389694

1751879.7152567047

-1.6146532474186386

27.776726415749529

quator

11.99565717433273

10.5.2 Tests for a Libration Point State

Table 10.5 lists the expected state data for a spacecraft flying near the Earth-Sun.

10.5.3 Tests for an Earth-Trailing State
Table 10.6 lists the expected state data for a deep space object trailing behind the Earth.

10.6 Some Mathematical Details

This section will probably appear in some form in the mathematical specifications. I'm leaving
it here until I can confirm that assumption.

A spatial coordinate system is fully specified by defining the origin of the system and two orthogonal
directions. Given these pieces of data, space can be gridded into triplets of numbers that uniquely identify
each point. The purpose of this section is to provide some guidance into how to proceed with the definition
of the coordinate system axes once the origin and two directions are specified.

10.6.1 Defining the Coordinate Axes

The coordinate system axes are defined from the two orthogonal directions in the system specification. These
directions are given two of the three labels X, Y, and Z. These labels are used to define the corresponding
directions for the coordinate system. The third axis is calculated by taking the inner product of the other
two axes, using

X Y xZ
Y = ZxX
Z XxY (10.1)

10.6.2 Setting Directions in GMAT

The principal directions for a coordinate system are set in GMAT by specifying a primary direction and a
secondary direction. The specified secondary axis need not be orthogonal (i.e. perpendicular) to the primary

10.6. SOME MATHEMATICAL DETAILS

K

Table 10.6: Coordinate Conversions for an Earth-Trailing state

An Earth-Trailing State

roch: UTC Gregorian 1 UTC Julian Ephemeris Time

1 Jan 2012 00:00:00.60 2455927.5 2455927.50074287
rordinate Sys- X Y Z Ve Vy V.
n
th Centered Mean 18407337.2437560 146717552.364272 2436998.60808061622 -29.85775713588113 3.7988731566283533 -0.0883535323140
00 Eguator
th Centered Mean 18010745.566277718 135634904.81496251 -56121251.238084592 -29.8677194647804920 3.5629312165175098 -1.5921471032008
iptic of Date
th Centered Mean 18407337.2437560 135580104.86024788 ~56124988.196549937 | -29.8577571358811300 3.4502529604822207 -1.5921677410083

iptic of 2000

ar System Barycen-
Mean J2000 Earth
1ator

-7095223.559007301

279535881.30854195

60015670.739229225

-59.6890476068945470

-0.969033406060170

-2.1549980100429

i Centered PBarth
1ator Mean J2000

-6610248.770514084

279718577.50517684

60095016.884433664

-59.6964420074725410

-0.9617072219755838

~2.1516618821901

ws Centered Fixed

234671807.87997022

-184530264.43020287

-49090196.384031780

87.7042809962516540

130.412316317457850

-3.652395853117¢

on Ceutered Fixed

~28218680.593746454

-133515637.46513638

~56782561.276103499

-325.9434283713376800

70.716401043687014

on Centered Tuectial

on Equator

18009331.473252065

146686558.45310178

2386670.4083221816

-29.7707871076046790

2.8992895961634191

-2.3269361125638
-0.4436059951218

iiter Centered Iner-

Jupiter Equator

-0622564565.23257434

-225513430.99244595

-25746106.471387718

-50.5813599808322610

-13.854862630504574

-0.5666336109134

rs Centered Inertial
rs Equator

207783148.71266919

~43368297.655312374

131612956.341311477

~19.7427310285643220

35.2164929323613260

~21.767269119097

" rs Centered Fixed

127577663.32704885

-169644368.24313549

13138473.444519326

-12016.3787728729480

-9003.4840556764759

~21.769072220711

86 CHAPTER 10. COORDINATE SYSTEMS

axis. Given a primary direction P and a secondary direction S, the primary axis is oriented along a unit
vector given by

P= (10.2)

The unit vector defining the secondary axis is constructed by projecting the secondary direction S into the
plane perpendicular to the primary direction, and unitizing the resulting vector. This is done by calculating

(10.3)

In general, two points are needed to specify a direction.

Chapter 11

SpaceObjects: Spacecraft and
Formation Classes

Darrel J. Conway
Thinking Systems, Inc.

The Spacecraft and Formation classes used in GMAT are the core components studied when running the
system. Instances of these classes serve to model spacecraft state information as the model evolves. They
also serve as containers for hardware components used to extend the model to include finite burn analysis,
contact calculations, spatial mass distributions, and full six degree of freedom modeling. The core elements
of this modeling are presented in this chapter. The hardware extensions are documented in Chapter 12.

11.1 Component Overview

The central nature of Spacecraft and Formation objects in GMAT’s mission model makes the design of the
supported features of these classes potentially quite complex. The state data and related object properties
required for these objects must meet numerous requirements, including all of the following:

1. Supply State information to force model

e Origin dependent data, MJ2000 Earth Equator orientation
¢ Cartesian states
s «Future» Equinoctial states

2. Support input representations

¢ Convert between different representations

e Preserve accuracy of input data
3. Support coordinate systems

s Support internal MJ2000 Cartesian system for propagation
o Allow state inputs in different systems
o Show state in different systems on demand

4. Support time systems

e TAT ModJulian based internal time system

87

88 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

e Support ModJulian
s Support Gregorian
e Convert all time systems

5. Support mass and ballistic properties

s Basic spacecraft mass

e Cd, Cr, Areas

e Mass in tanks

s «Futurey Mass depletion from maneuvers

o «Future» Moments of Inertia
6. Support tanks and thrusters

s Add and remove tanks and thrusters
e «Future» Deplete mass during finite burn

¢ «Future, partially implemented» Model burn direction based on thruster orientations (BCS based)
7. GUI

e Provide epoch information
- Epoch representation string
— Epoch in that representation
- Supply different representation on request
— Preserve precision of input epoch data
Provide state information
— State type string
— State in that representation
— Provide units and labels for state elements
— Convert to different representations
— Preserve precision of input state data

e Provide support for finite maneuvers
8. Scripting

e Support all GUI functionality from scripting
e Provide element by element manipulations of state data

¢ Allow element entry for data not in the current state type without forcing a state type change
9. Provide Range Checking and Validation for all Editable Data
10. «Future» Support attitude

s Allow attitude input

e Convert attitude states
11. «Future» Support sensors

s Add and remove

e Conical modeling

11.2. CLASSES USED FOR SPACECRAFT AND FORMATIONS . 89

e Masking
¢ Contact information based on sensor pointing (BCS based)

GMAT defines a base class, SpaceObject, for the common elements shared by spacecraft and formations.
The primary feature of the SpaceObject class is that it provides the data structures and processes necessary
for propagation using GMAT’s numerical integrators and force models. Classes are derived from this base
to capture the unique characteristics of spacecraft and formations. Additional components that interface
with the propagation subsystem should be added to GMAT in this hierarchy; the propagation subsystem is
designed to work at the SpaceObject level.

The SpaceObject subsystem uses three categories of helper classes: PropStates, Converters, and Hard-
ware. In one sense, the SpaceObject classes can be viewed as containers supporting the features needed to
model objects in the solar system that evolve over time through numerical integration in GMAT.

The core data needed for propagation is contained in the PropState helper class. Each SpaceObject
has one PropState instance used to manage the data directly manipulated by the numerical integrators.
The PropState manages the core epoch and state data used by the propagation subsystem to model the
SpaceObjects as they evolve through time. Details of the PropState class are given in Section 11.2.3.

Each SpaceObject includes components used to take the data in the PropState and convert it into a
format appropriate for viewing and user interaction. The conversion subsystem described in Section 11.5
provides the utilities needed to convert epoch data, coordinate systems, and state element representations.
The conversion routines needed to meet the requirements are contained in a triad of conversion classes:
TimeConverter, CoordinateConverter, and RepresentationConverter, that share a common base that enforces
consistent interfaces into the conversion routines. These conversion routines interact with the state and epoch
data at the SpaceObject level on GMAT therefore, conversions on a Formation object are performed using
identical calls to conversions for individual Spacecraft. In other words, the state or epoch data for a Formation
is transformed for all members of the Formation with a single call, and that call looks identical to the same
transformation when performed on a single spacecraft.

The spacecraft as modeled in GMAT is a fairly simple object, consisting of several key properties required
to model ballistics and solar radiation forces. The state complexities are managed in the SpaceObject base
class. Additional spacecraft hardware — fuel tanks, thrusters, and eventually sensors and other hardware
elements - are modeled as configurable hardware elements that are added as needed to Spacecraft objects.
Hardware elements that contribute to the spacecraft model are broken out into separate classes modeling
the specific attributes of those elements. Users configure fuel tanks and thrusters as entities that the space-
craft uses for finite maneuvering. These elements include structures that allow location and orientation
configuration in the Spacecraft’s body coordinate system, so that detailed mass and moment data can be
calculated during the mission. A future release of GMAT will add support for attitude calculations and,
eventually, sensors, so that attitude based maneuvering, full six degree of freedom modeling, and detailed
contact modeling can be incorporated into the system. These components are discussed in more detail in
Chapter 12.

The remainder of this chapter details the design of the components that implement the core SpaceObject
classes, Spacecraft and Formation. It includes the design specification for the converters GMAT uses to
support these classes, along with a discussion of how these elements interact to provide the conversions
needed to meet the system requirements.

11.2 Classes Used for Spacecraft and Formations

Figure 11.1 shows the details of the classes derived from SpacePoint that are used when modeling spacecraft
and formations of spacecraft. The class hierarchy for the spacecraft subsystem consists of three core classes:
the SpaceObject class, which contains the common elements of the subsystem, the Spacecraft class, which
acts as the core component for all spacecraft modeling, and the Formation class, which collects spacecraft
and subformations into a single unit for modeling purposes. This subsystem also contains a helper class, the

90 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

PropState, which encapsulates the data that evolves as the model is run, simplifying the interface to the
propagation subsystem. In addition, two of the hardware classes — Thruster and FuelTank - are shown in
the figure.

11.2.1 Design Considerations

The central role of the Spacecraft and Formation SpaceObjects in GMAT’s models drives several design
considerations related to the consistent display and use of these objects in the model. Before presenting the
design of the classes used for these objects, several of the considerations that went into this design will be
discussed.

Data Consistency Philosophy

The SpaceObject subsystem follows a convention that requires that the state data in the PropState always
stays correct with respect to the model. In other words, once some data in the state vector is set, changes to
other properties of the SpaceObject do not change the state with respect to the model. That means that if
the internal origin changes for a SpaceObject, the data in the state vector is translated to the new location,
and the velocity data is updated to reflect the speed of the SpaceObject with respect to the new origin.
In order to change the state of a SpaceObject in GMAT’s model, the actual state data must be changed.
Changing the coordinate system or origin does not change the position or velocity of the SpaceObject with
respect to other objects in the space environment; instead, it changes the values viewed for the SpaceObject
by updating the viewed data in the new coordinate system. The epoch also remains unchanged upon change
of the coordinate system, the representation, or elements of the state vector.

Epoch data is simpler (because it is independent of location in the space environment), but follows
the same philosophy. Internally the epoch data is stored in the TAI modified Julian time system. Users
can view the epoch data in any of GMAT’s defined time systems. Changing the time system does not
change the internal epoch data, only the way that data is presented. Epoch data is changes by directly
updating the epoch. Upon change of epoch, the state of the spacecraft remains unchanged with respect to
the SpaceObject’s origin. However, a side effect of changing the epoch on a SpaceObject is that the locations
of the objects in the solar system may shift, so the location of the SpaceObject with respect to other solar
system objects may be different.

Data Presented to the User

Each SpaceObject includes data members used to track the current default views of the data. The epochType
member is used to store the current format for viewing the epoch data. State data requires two components
to fully define the view of the state data: the coordinateType member tracks the coordinate system used to
view the state data, and the stateType member the representation for that view of the state data. These
three members — epochType, coordinateType, and stateType — define the views used when a SpaceObject
is written to a file, displayed on a GUI panel, or accessed as strings for other purposes.

Access to the state and epoch data as Real values returns the internal data elements: the epoch is
returned as a TAI modified Julian value, and the state data is returned as Cartesian Mean-of-J2000 Earth
equatorial data, referenced to the origin specified for the SpaceObject. The SpaceObjects provide methods
that retrieve the data in other formats as well; the values described here are those returned using the default
GetRealParameter methods overridden from the GmatBase class.

State data can be read or written either element by element or as a vector of state data. The former
approach is taken by the Script Interpreter when setting a spacecraft’s state as expressed element-by-element
in the script, like shown here: '

Create Spacecraft sat;
sat.StateType = Keplerian;
sat.SMA = 42165.0;

11.2. CLASSES USED FOR SPACECRAFT AND FORMATIONS 91

cd: Spacecraft and Formation J

thrusters -

Figare 11.1: Class Structure for Spacecraft and Formations

92 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

sat.ECC = 0.0011;
sat.INC = 0.25;
sat.RAAN = 312.0;
sat.AQOP = 90.0;
sat.TA = 270.0;

The GUI works with the state data as a single entity, rather than element-by-element. Accordingly, the panel
that displays spacecraft state data accesses this data with a single call that returns the full state datal.

Spacecraft states can be displayed in many different representations. Rather than code text descriptions
for the different components of each representation into the representation converter, each representation
includes structures to provide the labels and units used for the components. The SpaceObjects provide
methods to retrieve these values.

Some state representations have optional settings for specific elements. For example, the Keplerian
representation can specify the anomaly in one of several forms: elliptical states can specify a true anomaly,
eccentric anomaly, or mean anomaly, while hyperbolic orbits use either the hyperbolic anomaly or a mean
anomaly defined off of the hyperbolic anomaly. Representations that support this type of option also provide
a method, SetOption(), to set the option. SpaceObjects provide methods to access these methods as well,
50 that the representation options can be set through calls to the SpaceObject.

11.2.2 The SpaceObject Class

GMAT’s force model constructs a state vector that is manipulated by the system’s numerical integrators
to advance the state vector through time, as described in Chapter 18. The core building block for the
construction of this state vector is the SpaceObject, a class used in GMAT as the base class for Spacecraft
and Formations?, as shown in the class diagram, Figure 11.1.

The SpaceObject class supports all operations and data elements that Spacecraft and Formations share
in common. In particular, the vector used by the propagators to model evolution over time is encapsulated
in the SpaceObject class. Conversions that involve the data in this vector are performed at the SpaceObject
level. The SpaceObject class maintains pointers to the elements that are necessary for these conversions.

SpaceObject instances also act as containers for several helper classes, responsible for performing coor-
dinate system conversions, state transformations between different state representations, and time system
conversions that allow the object’s epoch information to be presented to users in common time systems,
described in Section 11.5. The SpaceObject class implements several methods that call those components
to supply requested data. The returned data from these calls is always an std::string or StringArray. The
SpaceObject class manages the underlying Real data internally, and uses these as checkpoints to manage the
precision of the output, to validate that the data is consistent, and to ensure that all data presented to the
users is consistent with the internal data structures in the SpaceObject.

Class Attributes

s PropState state: The container for the raw state and epoch data that gets propagated. Details of
the PropState class are provided in Section 11.2.3.

¢ bool isManeuvering: A flag used to indicate if there is a finite burn active for any of the members
of the SpaceObject.

LA future release of GMAT wili provide a scripting option to sei the {ull state in a single script Hive, using the format

Create Spacecraft sat;
sat.StateType = Keplerian;
sat.State = [42165.0, 0.0011, 0.25, 312.0, 90.0, 270.0];

2 A future release will inciude the State Trausition Matrix ($TM) in the SpaceObject class hierarchy,

11.2. CLASSES USED FOR SPACECRAFT AND FORMATIONS 93
o std::string originName: The name of the SpacePoint that is the origin of the data contained in the
SpaceObject’s PropState.
s SpacePoint *origin: A pointer to the SpacePoint that is the origin of the data in the state.

s bool parmsChanged: A flag used to indicate if the size or data contained in the PropState has
changed, so that consumers of those data can perform updates.

e SpacePoint *origin: The origin used for the state data.

¢ CoordinateSystem *baseCoordinates: The coordinate system used for the state data. This co-
ordinate system is a Mean-of-J2000 Earth-Equator system, with the origin set to the SpaceObject’s
origin.

o std::string epochType: Text descriptor for the current epoch type used for display.

o TimeConverter timeConverter: The time converter used by this SpaceObject.

o «Future» TimeBase* baseTimeSystem: The time system matching the epochType.

¢ std::string coordinateType: Text descriptor for the current coordinate system used for display.

¢ CoordinateConverter coordConverter: The coordinate system converter used by this SpaceOb-
ject.

e CoordinateSystem* baseCoordinates: The coordinate system associated with the SpaceObject’s
PropState.

e CoordinateSystem* viewCoordinates: The coordinate system associated with the SpaceObject’s
coordinateType, used for display.

o std::string stateType: Text descriptor for the current state representation used for display.
e RepresentationConverter repConverter: The representation converter used by this SpaceObject.
e «Future» Representation* baseRepresentation: The representation used for display.

o std::string textEpoch: The most recently accessed string version of the epoch. This string is only
updated if the epoch field is accessed as a string using GetEpochString(), and the epoch or epoch type
has changed since the last access.

e StringArray textState: The most recently accessed string version of the state. This string array is
only updated if the state is accessed as a string array using GetStateString(), and the coordinate type
or representation has changed since the last access.

Methods
¢ PropState &GetState(): Returns the internal PropState.

¢ Real GetEpoch(): Returns the TAI modified Julian epoch of the SpaceObject, obtained from the
PropState.

e Real SetEpoch(Real ep): Sets the SpaceObject’s epoch to a new value. The input parameter is the
new TAI epoch. This mathod passes the new epoch into the PropState for storage.

e bool IsManeuvering(): Returns a flag indicating if a finite burn is currently active for the SpaceOb-
ject.

94

*

CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FC RMATION CLASSES

void IsManeuvering(bool mnvrFlag): Sets the flag indicating the presence of a finite burn.

bool ParametersHaveChanged(): Returns a flag indicating that the state data has been changed
outside of the propagation subsystem, and therefore the states need to be refreshed.

void ParametersHaveChanged(bool flag): Method used to indicate that an external change was
made, and therefore states should be refreshed before propagating.

std::string GetOriginName(): Returns the name of the SpacePoint used as the origin of the state
data.

void SetOriginName(const std::string &cbName): Sets the name of the origin used for the state
data.

void SetOrigin(SpacePoint *cb): Sets the SpacePoint corresponding to the origin of the state
vector. The SpacePoint passed in the parameter c¢b is the new origin, and gets set on the base
coordinate system as its origin.

Rvectort GetMJ2000State(A1Mjd &atTime): Returns the Cartesian state relative to the SpaceOb-
ject’s J2000 body>.

Rvector3 GetMJ2000Position(A1Mjd &atTime): Returns the Cartesian position relative to the
SpaceObject’s J2000 body.

Rvector3 GetMJ2000Velocity(A1Mjd &atTime): Returns the Cartesian velocity relative to the
SpaceObject’s J2000 body.

bool SetCoordSystem(CoordinateSystem* coordsys): Sets the viewCoordinates member to the
input coordinate system.

std::string GetEpochString(std::string toTimeType): Returns the current epoch in string form,
in the format in the toTimeType input. If toTimeType is an empty string, epochType is used as the
format for the output.

StringArray GetStateString(std::string toType, std::string toCoords, CoordinateSystem*
toCS): Returns the SpaceObject state in the representation specified by toType, in the coordinate
system set by toCoords, using the internal coordinate converter and the input coordinate system, toCS.
If toCS is NULL, the coordinate converter locates the required coordinate system. If, in addition,
toCoords is an empty string, viewCoordinates is used for the output coordinate system. If the toType
is also an empty string, the baseRepresentation is used.

bool SetEpochFromString(std::string epochString, std::string timeType): Sets the epoch in
the PropState using the input epochString, which is formatted using the input timeType.

bool SetStateFromString(StringArray stateString, std::string fromType, std::string from-
Coords, CoordinateSystem* fromCS): Sets the state in the PropState using the data in the
stateString array, which has the representation specified in the fromType string in coordinate system
fromCoords, which has an instance in the fromCS input.

StringArray GetStateLabels(): Returns a string array containing the labels identifying the state
elements.

StringArray GetStateUnits(): Returns a string array containing the units for the state elements.

void Synchronize(): Method used to fill the textEpoch and textState from the data in the PropState.

3The current GetMJ2000 methods take an a.1 epoch as the epoch for the calculation. A future release will change this call

to use TAL epochs.

11.3. THE SPACECRAFT CLASS 95

11.2.3 The PropState Class

All SpaceObjects contain a member PropState element that is designed to encapsulate all data needed to

propagate the SpaceObject. This member class is used to provide the single state vector propagated as the

core component seen by GMAT’s propagators. The PropState objects can contain data for a single spacecraft,

multiple spacecraft (typically flown in a Formation), and related mass depletion and state transition matrix

data. The propagator subsystem ensures that these data are treated appropriately during propagation.
Each PropState instance defined the following data members and methods:

Class Attributes

e Real epoch: The current epoch for the state. This value is a TAI modified Julian value, and is used
in the force model to specify the epoch for force evaluations.

e Real* state: The state vector that gets propagated.

e Integer dimension: The total number of elements in the state vector.

Methods

e Real &operator|J(const Integer el): Provides element by element access to the state vector, so
that the components can be set using the same syntax as is used to set C++ array elements.

« Real operator||(const Integer el) counst: Provides element by element access to the state vector,
so that the components can be read using the same syntax as is used to read C++ array elements.

s void SetSize(const Integer size): Resizes the state vector. This method copies the current state
data into the resized vector once the new vector has been allocated.

e const Integer GetSize() const: Returns the current size of the state vector.

e Real *GetState(): Returns the state vector. The returned vector is the internal Cartesian state used
by the propagators. The state data is in Mean-of-J2000 Earth-Equatorial coordinates, referenced to
the SpaceObject’s origin.

¢ bool SetState(Real *data, Integer size): Sets the state vector to match the input vector. If the
size parameter is less than or equal to the dimension of the state vector, the data vector is copied
into the state vector, filling from the start until the indicated number of elements is filled. If size is
greater than the PropState dimension, the method returns false. The input state is in Mean-of-J2000
Earth-Equatorial coordinates, referenced to the SpaceObject’s origin.

¢ Real GetEpoch() const: Returns the value of the epoch data member. The returned value is a TAI
modified Julian value.

¢ Real SetEpoch(const Real ep): Sets the value of the epoch data member. The input value is a
TAI modified Julian value.

11.3 The Spacecraft Class

One key component that supplies PropState data to GMAT is the Spacecraft class, used to model satellites
in the mission control sequence. Each satellite studied in the mission has a corresponding Spacecraft object,
configured to simulate the behavior of that satellite. The Spacecraft contains core data elements necessary
to model the physical characteristics of the satellite, along with the inherited SpaceObject properties that
form the core state representations used for propagation.

96 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

In GMAT, the Spacecraft model allows for the addition of new satellite components that model specific
hardware elements. The current implementation supports fuel tanks and thrusters for use when modeling
finite maneuvers. The base class for the hardware subsystem was designed to be flexible, incorporating
data elements designed to model the location and orientation of the hardware relative to a satellite body
coordinate system. The orientation data is used in GMAT to set the thruster direction during finite burns.
Once the thrust direction has been determined, it it rotated based on the satellite’s attitude to determine
the thrust direction in the propagation frame, so that the maneuver acceleration can be incorporated into
the force model. This modular hardware incorporation is also the first step towards incorporating moments
of inertia into the model, so that full six degree of freedom modeling can be performed in GMAT. Additional
details of the hardware model are provided in Chapter 12.

11.3.1 Internal Spacecraft Members

Spacecraft objects are SpaceObjects, so they contain all of the data structures associated with SpaceObjects
described above. They manage a StringArray that contains the current state as expressed in the current
state representation. This array typically contains the state as seen on the GUI or in the script file that
configured the Spacecraft; the data in this array is only updated when needed for display purposes.

The Spacecraft class contains data members controlling the core ballistics of the object. Mass is handled
as a core Spacecraft mass plus all magses associated with the hardware attached to the Spacecraft. The
force model accumulates the mass into a total mass used in the acceleration calculations. Areas and force
coefficients are included in the Spacecraft model for drag and solar radiation pressure calculations.

11.3.2 Spacecraft Members

The Spacecraft class provides data memebers used to manage the ballistic properties of the spacecraft.
Properties are defined to manage the spacecraft mass, incident areas for drag and solar radiation pressure
perturbations, associated coefficients of drag and reflectivity, and the structures needed to add hardware
elements to the core spacecraft objects. The members that provide this support are:

Class Attributes

o Real dragCoefficient: The coeflicient of drag, Cq (see equation 19.3), used when calculating atmo-
spheric forces acting on the spacecraft.

¢ Real dragArea: The area of the spacecraft encountering the atmosphere.

o Real srpCoeflicient: The reflectivity coefficient, Cr (see equation 19.2), used when calculating
accelerations from solar radiation pressure.

e Real srpArea: The area exposed to solar radiation, for the purposes of calculating the solar radiation
pressure force.

e Real dryMass: The total mass of the spacecraft, excluding fuel and other massive hardware elements.
e StringArray tankNarmes: Names of the fuel tanks that the spacecraft uses.
e StringArray thrusterNames: Names of the thrusters that the spacecraft uses.

¢ ObjectArray tanks: Array of fuel tanks on the spacecraft. Fuel tanks are added to spacecraft by
making local copies of defined tanks. Each fuel tank contributes fuel mass to the total mass of a
spacecraft. Fuel is depleted from the tanks during finite maneuvers?.

*Mass depletion is scheduled for implementation during the summer of 2007.

11.3. THE SPACECRAFT CLASS 97

e ObjectArray thrusters: Array of thrusters attached to the spacecraft. Thrusters are added to
spacecraft by making local copies of defined thrusters. Each thruster has a location and pointing
direction defined in teh spacecraft’s body coordinate system. The applied thrust dir ection is computed
by rotating the thrust direction based on teh spacecraft’s attitude®. The thruster mass should be
included in the dry mass of the spacecraft.

¢ Real totalMass: The total mass of the spacecraft, including fuel and other massive hardware elements.
This is a calculated parameter, available only as an output. Users cannot set the spacecraft’s total
mass.

Methods The support for Spacecraft state and epoch access and manipulation is provided by the
SpaceObject base class. Access to the new data members described above is provided using the GmatBase
access methods described in Section 7.1. Generally speaking, the ballistic properties are accessed using
the GetRealParameter and SetRealParameter methods overrifdden from the base class. Hardware elements
are set by name, and configured on the Spacecraft by passing in pointers to configured hardware elements
which are then cloned inside the spacecraft tto make the local copy used when executing the mission control
sequence. Since most of the infrastructure for these steps is described elsewhere, the list of new methods
on the Spacecraft is rather sparse, consisting of notes describing Spacecraft specific details implemented for
these core methods:

¢ virtual Real GetRealParameter(const Integer id) const: Returns the real parameters listed in
the data member section. Of particular interest here is the treatment of the mass parameter. Requests
can be made for either the dry mass of the spacecraft or the total mass of the spacecraft. When the
total mass is requested, the returned value is the output of the UpdateTotalMass() method described
below.

o virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):
TakeAction in the Spacecraft class adds the following new actions to the object:

— SetupHardware: Examines the hardware on the spacecraft, and sets up internal linkages required
for this hardware. For example, each thruster reqires a pointer to a fuel tank; that connection is
configured by this action.

— RemoveHardware: Removes one or all hardware elements from the Spacecraft. If a name is
specified for the hardware element, only that element is removed. If the actionData string is
empty, all hardware elements are removed.

— RemoveTank: Removes one or all fuel tanks from the Spacecraft. If a name is specified for the
fuel tank, only that tank is removed. If the actionData string is empty, all fuel tanks are removed.

— RemoveThruster: Removes one or all thrusters from the Spacecraft. If a name is specified for
the thruster, only that thruster is removed. If the actionData string is empty, all thrusters are
removed.

The Spacecraft Class includes the following protected methods used to maintain some of the internal
data structures, and to generate data needed for the public methods:

¢ Real UpdateTotalMass(): Updates the total mass by adding all hardware masses to the dry mass.

¢ Real UpdateTotalMass() const: Updates the total mass by adding all hardware masses to the dry
mass. The const version does not update the internal member, and therefore can be called by other
const methods.

5The cutrent implementation uses either an inertial attitude or a velocity-normal-binorinal attitude for shis caiculation.

93 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

11.4 Formations
In GMAT, SpaceObjects can be grouped together and treated as a single entity, the Formation, which evolves
over time as a single state vector. Each Formation can contain Spacecraft, other Formations, or any other
SpaceObject defined in the system. Formations are modeled using instances of the Formation class, described
in this section.

Class Attributes

e StringArray componentNames: Names of the SpaceObjects in the formation.

e std::vector <SpaceObject *> components: Pointers to the formation members.

e Integer dimension: Size of the state vector used in propagation.

e UnsignedInt satCount: Number of SpaceObjects in the components vector.

Methods The Formation class defines the following methods, used to manage the objects in the For-
mation:

e virtual void BuildState(): Constructs the PropState for the Formation.

¢ virtual void UpdateElements(): Updates the member SpaceObjects using the data in the Forma-
tion PropState.

e virtual void UpdateState(): Updates the internal PropState data from the member SpaceObjects.

e virtual bool TakeAction(const std::string &action, const std::string &actionData = ""):TakeAction

in the Formation class adds two actions to the object:

— Clear: Calls ClearSpacecraftList() to remove all SpaceObjects from the Formation.

- Remove: Calls RemoveSpacecraft() with a specific SpaceObject name to remove that SpaceObject
from the Formation.

Formation also contains two protected methods that are used to pupport the public interfaces:

e bool ClearSpacecraftList(): Clears the list of SpaceObjects in the Formation. This method clears
both the list of SpaceObject names and the list of instance pointers.

¢ bool RemoveSpacecraft(const std::string &name): Removes a SpaceObject from the list of
Formation members. This method removes both the SpaceObject name from the componentNames
member and the instance pointer from the components list.

11.5 Conversion Classes

GMAT’s Spacecraft and Formation models act as a data provider for state information that is fed into the
propagation system. Users interact with this aspect of the model by selecting the view of the data, spacecraft
by spacecraft, in one of many different coordinate systems and state representations at a user specified epoch.
On a coarse level, the views into the state data can be broken into three separate components: the time system
used to track the epoch for the spacecraft, the coordinate system that specifies the origin and orientation of
coordinate axes defining the position and velocity of the spacecrait, and the representation used to express
this state data — a set of Cartesian or Keplerian elements, or some other representation based on the needs
of the user.

11.5. CONVERSION CLASSES 99

Internally, these data are managed as Mean-of-J2000 Earth-Equatorial states, translated to the origin
specified for the SpaceObject, in either the Cartesian or equinoctial representation®. Epoch data is stored
internally in international atomic time (TAI, Temps Atomique International), in a modified Julian time
format measured in days from January 5, 1941 at 12:00:00.000.

The Conversion classes and the related base classes defining the interfaces for the conversion types are
designed to satisfy GMAT’s extensibility requirements. Users can define new coordinate systems as needed,
from either GMAT’s graphical user interface or from a script file. Representations and time systems are
more difficult to add to the system because the underlying math and is more specialized to meet the needs
of the system. Users that need to add state representations or time systems not currently in GMAT should
refer to Chapter 26.

The basic philosophy for conversions performed by GMAT is that all conversions proceed from the internal
data type, and go through that type when converting from one system to another. Conversions for epoch
data are referenced to the base TAI epoch. Coordinate system conversions are referenced to the Mean of
J2000 Earth Equatorial system. Element conversions are referenced to the Cartesian or equinoctial state
representation.

All of the conversion components that support the Spacecraft and Formation classes have a similar
structure. Each acts as a pipeline from the data in the SpaceObject to the code that transforms that data
into the requested format. In that sense, the converters play the role of the controller in a simplified model-
view-controller pattern, as described in Section B.5. The SpaceObject plays the role of the model, and the
presentation to the user - the GMAT GUI or the Script file - presents a view of these data to the user.

There are three converters used by the SpaceObjects for this purpose. Each SpaceObject has a Time-
Converter, a CoordinateConverter, and a RepresentationConverter. The Converter classes contain instances
or references to the support classes used in the conversions. Each support class represents a single view of
the data. The support classes implement a conversion method that transform the internal data into the
requested view.

The class hierarchy for the converters and the support classes is shown in Figure 11.27. Each converter is
derived from the Converter base class. All converters support the ability to take a PropState and transform
the data in that state into the requested format for display and manipulation by the user. They also support
the inverse operation, converting a set of user data specified into a PropState. The interfaces for these
conversions are contained in the Converter base class.

Each Converter subclass holds a reference to the data type used in the PropState as the base repre-
sentation for the corresponding data. The object that owns the PropState is responsible for setting this
reference.

11.5.1 The Converter Base Class

All conversions performed for spacecraft and formations are managed through the Converter classes. GMAT
provides three types of converters: time system converters, coordinate system converters, and state represen-
tation converters. Each of these converters manages the corresponding conversion code. The SpaceQObjects
wrap these calls in methods that simplify interface to the data. Specific conversions are made through the
calls to the Convert method on the appropriate converters.

The Converter base class has the following internal data members and methods:

Class Attributes

e static StringArray supportedConversions: String array of all of the defined conversions supported
by this converter.

8 The curreud implementation in GMAT uses Cartesian elements exclusively; equinoctial representstions will be added as au
option for the PropState data when the Variation of Parameters integrators are incorporased into the system.

TFigure 11.2 shows the long term design for the conversion classes. The code base developad for the first release of GMAT
supports the interfaces needed for conversion, but ouly partially irnplements the illustrated design.

100

CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

& Conwerter Classes)

Figure 11.2: Classes Used to Provide Views of the SpaceObject State Data. The converter classes are shown
in yellow. Base classes for the View support classes are green, and specific support classes are shown in blue.

Integer precision: Precision used for numeric data when converting to a string format.

Methods

void Inmitialize(): Method called to prepare and validate the converter for use in a SpaceObject.

static bool AddConversion(const std::string &conversionType, GmatBase *toBase): Method
used to add support for a new conversion to the Converter. This method is used to add configured
CoordinateSystems to the CoordinateConverter. The TimeConverter and RepresentationConverter
classes do not support addition of new systems in the current builds of GMAT.

static StringArray GetSupportedConversions(): Method used to return the list of all of the
conversions supported by the Converter.

std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL
toObject) = 0: Abstract method that converts data from a PropState into the requested type.

PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase*=NULL
fromObject) = 0: Abstract method that fills a PropState in the internal representation from input
data of the specified type.

virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string
fromFormat) = 0: Abstract conversion routine that takes a state in Real vector (value) in a specified
format (fromFormat) and converts it to a string array in a target format (toFormat).

11.5. CONVERSION CLASSES 101

o virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string
toFormat) = 0: Abstract conversion routine that takes a the text form of a state in StringAr-
ray (value) in a specified format (fromFormat) and converts it to a Real vector in a target format
(toFormat).

11.5.2 Time Conversions

The TimeConverter class provides implementations for the abstract methods inherited from the Converter
base class. The current code base supports time conversions using C-style functions enclosed in a namespace,
TimeConverterUtil. The TimeConverter class wraps these conversions so that there is a time conversion
interface in GMAT that looks identical to the other conversion interfaces in the system. A future release of
the system will rework the time conversions do that the class structure matches the class hierarchy shown
in Figure 11.2. The following descriptions provide initial steps toward this goal, marked as with the prefix
“«Future»” for elements that are not planned for the system until these elements are incorporated during
these time system revisions®.

cd: The TimeSystem Converter Class)

#baseTime

#timeSystems

-

Figure 11.3: Clagses Used to Convert Epoch Data

The TimeConverter class is shown in Figure 11.3. The properties of this class, including the arguments
for the methods that are hidden in the figure, are tabulated below.

Class Attributes

e «Future» TimeBase *baseTime: An instance of the base time system used internally in GMAT.
This member contains a pointer to a TAIModJulian instance so that the conversion code has the time
system for methods that use PropStates at one end of the conversion.

8GMAT is, by design, extensible to incorporate new cowpouneuts as they are identified aud constructed by the GMAT
comununity, without violating the iutegrity of the official code base. The timne system code as currently implemented would
require rework in the GMAT’s base code to support any new time system, violaiing this requirement; the design shown here
provides the framework needed to correct this discrepancy.

102 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

s «Future» std::vector<TimeBase*> timeSystems: A vector containing pointers to each of the
defined time systems in GMAT, so that the conversion code can perform conversions without requiring
time system pointers on the function calls.

Methods
¢ void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

¢ std::vector <Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL
toObject): Method that converts the TAI epoch data from a PropState into the requested type. The-
resulting modified Julian data is stored in the first element of the returned array.

¢ PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase*=NULL
fromObject): Method that sets the epoch on a PropState to the epoch contained as the first ele-
ment in the input data (fromState), which is expressed in the time system given by the name in the
fromType string.

e virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string
fromFormat) = 0: Conversion routine that takes epoch data in a vector of Reals in a specified format
(fromFormat) and produces the string equivalent of each element in the requested format, given by
toFormat, in the returned StringArray.

e virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string
toFormat) = 0: Conversion routine that takes one or more epochs in a StringArray (value) in
a specified format (fromFormat) and converts them into a vector of Real data in a target format
(toFormat). The resulting data is a vector of modified Julian data in the target time system. If a
request is made from Gregorian data in the Real vector, an exception is thrown.

The TimeSystem Classes

As mentioned above, the current time system conversion code does not use a class bases system to handle
the time systems. This section will be completed when the time system code is brought into conformance
with the conversion system design.

11.5.3 Coordinate System Conversions

Figure 11.4 shows the CoordinateConverter class, used to transform state data between different coordinate
systems. The CoordinateConverter class works with state data expressed in Cartesian coordinates exclusively.
Consumers that have state data in other representations first convert the data into Cartesian coordinates,
and then use the facilities provided by instances of this class to transform between coordinate systems.

The CoordinateConverter objects work with any coordinate system defined by the user. The other two
converters provided by GMAT - the TimeConverter class and the RepresentationConverter class - require
code compiled into GMAT in order to function®. Coordinate systems in GMAT can be defined at run time, as
described in [UsersGuide]. The dynamic nature of these objects requires greater versatility in the conversion
methods. Consumers of these methods must provide pointers to instances of the coordinate systems used in
the conversions.

CoordinateConverter Attributes and Methods
Class Attributes

ryv

? A future release of GMAT may aliow dynamic definition of representations and time systems. That facility is not planned
{or near terrn GMA'L functionality.

11.5. CONVERSION CLASSES 103

cd: The CoordinateCorverter Class)

#baseCoordSys

#available CoordSys

*

Figure 11.4: Classes Used to Convert Between Coordinate Systems

e CoordinateSystem *baseCoordSys: An instance of the CoordinateSystem class used as the base
class for conversions involving a PropState. This member is initialized to NULL, and set by SpaceOb-
jects that need it prior to use.

¢ Rmatrix33 lastRotMatrix: The most recent rotation matrix used in coordinate conversions, stored
so that it can be accessed externally.

e std::map <std::string, CoordinateSystem*> availableCoordSys: A map of coordinate systems
available for use in methods that do not pass on CoordinateSystem pointers. These pointers are stored
in a map so that they can be accessed by name.

Methods
e void Initialize(): Method called to prepare and validate the converter for use in a SpaceObject.

e bool Convert(A1Mjd epoch, Rvector inState, CoordinateSystem* inCoord, Rvector out-
State, CoordinateSystem* outCoord, bool forceNutationComputation = false, bool omit-
Translation = false): General purpose conversion routine that converts a Cartesian Rvector in a
given input coordinate system into a Cartesian Rvector in the output coordinate system.

¢ bool Convert(A1Mjd epoch, Real* inState, CoordinateSystem* inCoord, Real* outState,
CoordinateSystem* outCoord, bool forceNutationComputation=false, bool omitTransla-
tion=false): General purpose conversion routine that converts a Cartesian Real array in a given input
coordinate system into a Cartesian Real array in the output coordinate system. This method requires
that the input and output Real arrays both contain the Cartesian state in the first six elements.

¢ Rmatrix33 GetLastRotationMatrix() const: Method used to access the most recent rotation
matrix used in conversions.

164 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

¢ std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*
toCS): Method that converts the state in the input PropState into the specified CoordinateSystem.
The toCS parameter is a pointer to an instance of the target coordinate system. This method uses the
base coordinate system, baseCoordSys, as the coordinate system of the input PropState. The calling
code must ensure that the base coordinate system is set correctly.

¢ PropState Convert(std::vector <Real> fromState, std::string fromType, GmatBase* fromCS):
Method that sets the state in the data in a PropState in the base coordinate system, given an input
state in a specified CoordinateSystem. The fromCS parameter is a pointer to an instance of the co-
ordinate system used for the input state, fromState. This method uses the base coordinate system,
baseCoordSys, as the coordinate system of the target PropState. The calling code must ensure that
the base coordinate system is set correctly.

e StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor-
mat): Method that takes a Cartesian state contained in a vector of Reals is a specified coordinate
system, and converts it into a target coordinate system, then stores the data in a StringArray at the
precision set for the converter.

e std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor-
mat): Method that takes a Cartesian state contained in a StringArray in a specified coordinate system,
and converts it into a target coordinate system, then stores the data in a vector of Reals.

¢ void AddCoordinateSystem(CoordinateSystem *cs): Method used to add a CoordinateSystem
pointer to the map of available coordinate systems.
The CoordinateSystem Classes
Coordinate Systems in GMAT are described in detail in Chapter 10.

11.5.4 State Representation Conversions

Once the coordinate system has been selected for a state, the actual format for the data must also be
selected. The state can be displayed in many different ways: as Cartesian data, as the corresponding
Keplerian elements, or in any other representation defined in GMAT. The conversion from the Cartesian
state into a selected representation is managed by the RepresentationConverter class, shown in Figure 11.5.

RepresentationConverter Attributes and Methods
Class Attributes

¢ SpacePoint* origin: The SpacePoint defining the coordinate system origin. Some representations
need this object to determine the representation data; for instance, the Keplerian representation needs
the gravitational constant for the body at the origin.

e StringArray elements: A vector of text string labels for the elements. This vector contains the
labels for the most recent target conversion.

e StringArray units: A vector of text string labels for the element units. This vector contains the
units for the most recent target conversion.

e «Future» Representation baseRep: The representation used for the PropState data.

o «Future» std::vector<Representation*> supportedReps: A vector of instances of all supported
representations, provided so that conversions can be made without passing in a pointer to a target
representation.

11

¥

cd: The RepresentationConverter Class)
25
#baseRep
#supportedReps
”
Figure 11.5: Classes Used to Convert State Representations
Methods

¢ «Future» bool AddRepresentation(Representation* rep): Method used to register a new rep-
resentation with the converter. This method is used to register new representations that are built into
shared libraries loaded at run time.

s std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*
toRep=NULL): Method that converts the state in the input PropState into the specified Represen-
tation. The optional toRep parameter is a pointer to an instance of the target Representation; if it
is not provided, the converter finds an instance in its internal array of Representations. This method
uses the base representation, baseRep, as the representation of the input PropState. The calling code
must ensure that the base representation is set correctly.

¢ PropState Convert(std::vector<Real> fromState, std::string fromType, GmatBase* from-
Rep): Method that sets the state in the data in an PropState in the base representation, given an input
state in a specified Representation. The fromRep parameter is a pointer to an instance of the Repre-
sentation used for the input state, fromState. This method uses the base Representation, baseRep, as
the representation of the target PropState. The calling code must ensure that the base representation
is set correctly.

e std::string SupportsElement(std::string label): Method used to query all supported representa-
tions to determine which representation supports a specified element. The return value is the name of
the supporting representation.

106 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

e StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor-
mat="Cartesian"): Conversion routine that generates a text view of the state contained in the input
Real vector in a target representation. The resulting StringArray contains data at the Converter's pre-
cision.

¢ std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor-
mat="Cartesian"): Conversion routine that takes a text version of a state in a StringArray, expressed
in a specified representation, and converts it into a Real vector of data in a target representation.

The Representation Classes

«Future»'? All state representations share a common interface, enforced by the Representation base class.
Representations like the Keplerian representation that provide options for certain elements provide the list
of options for the elements on an element by element basis..

11.6 Conversions in SpaceObjects

The SpaceObject classes — SpaceObject, Spacecraft, and Formation, and other classes as they are added to
GMAT - all share a common representation of locations in the GMAT SolarSystem, the PropState. As its
name implies, the PropState class is the core component that interacts with the propagation subsystem; it
contains the epoch, position and velocity data that is advanced to model the motion of user defined objects
in the solar system. The data stored in the PropState is a TAI epoch and the Mean-of-J2000 Cartesian
positions and velocities of the objects that are propagated. The origin for these data is a SpacePoint object
defined in the solar system. Each SpaceObject includes a pointer to the SPacePoint defining the origin and a
CoordinateSystem object configured as a Mean-of-J2000 Earth-Equatorial origin-centered coordinate system
to facilitate conversions between the data in the encapsulated PropState and external consumers of the data.

The PropState data is encapsulated inside of SpaceObject instances. Users interact with the PropState
indirectly, by making calls to these SpaceObjects. This feature provides a buffering mechanism to GMAT’s
SpaceObjects, so that the data in the PropState can be formatted for presentation purposes for the user.
The SpaceObject class provides interfaces that convert the internal PropState data into other formats for
display, and that take data from those formats and convert them into the internal PropState structures
needed for computation.

SpaceObjects include four data structures used this buffering of the state data. The epochType and
stateType data members are strings containing the current settings for the displayed format of the epoch
and state representation. String versions of the epoch and state in these formats are stored in the textEpoch
and textState data members. These string versions of the data are the versions that users interact with
when configuring a mission, either from the GUI or using the scripting interface. The following paragraphs
describe the procedure followed when performing these interactions.

11.6.1 SpaceObject Conversion Flow for Epoch Data

Figure 11.6 shows the procedure employed to send and receive epoch data for a SpaceObject using the string
format needed for display and output purposes. Epochs can be displayed in either Gregorian or Modified
Julian format, using one of several different supported time systems. The time system used and the format
for the output are separate entities, and treated as such in GMAT. The internal epoch data is stored in the
TAI system as a Modified Julian Real number. This data is retrieved for external manipulation as a string,
using the GetEpochString() method on the SpaceObject that owns the epoch. Updated epoch data is passed
into the SpaceObject using the SetEpochFromString method.

101ike the tie couversion classes, the representation conversion classes do not currently conform to the design presented
here. Accordingly, in the following descriptions, the elements that are not planned for imumediate implementation are marked
as luture enhanceruents,

11.6. CONVERSIONS IN SPACEOBJECTS 107

ad: Time C ion in Space Objects F

toTimeType =
hTyper

CetEpochString(
std::string toTimeType)

retum the epoch
(string in rewal)

system="TAI?

std::string toTimeType,
std::string epochString)

Figure 11.6: Procedure for Retrieving or Setting a Formatted Epoch

The top activity diagram in the figure shows the procedure followed to retrieve the current epoch data
from the SpaceObject using the GetEpochString method. The first action taken is a test to determine if the
target time format matches the epoch format used in the SpaceObject. If so, then the string that is returned
is the textEpoch data member for the SpaceObject, as set immediately after synchronizing the textEpoch
with the PropState. If the time systems do not match, the target time system is broken into two pieces:
the time system used and the format for the string. The format portion is the suffix on the toTimeType
parameter, and is either “ModJulian” or “Gregorian”. The GetEpochString method retrieves the epoch from
the PropState and, if the target system is not TAI, converts it into the target time system. Then it takes
that ModJulian real number, and converts it into a formatted string using the timeConverter’s ToString
method.

The lower activity diagram in Figure 11.6 shows the procedure followed when setting the epoch from
the GUI or script, using the SetEpochString method on the SpaceObject. The first parameter in this call
specifies the format of the input time. It is broken into the input time system and the format of the string.
The time converter then constructs a modified Julian real value for the input string using its ToReal method.
If the input time is not a TAI time, it is then converted into TAI. The resulting modified Julian epoch is
then set on the PropState using the SetEpoch method. Finally, the Synchronize method is called on the
SpaceObject to update the string representation of the epoch with the data in the PropState.

11.6.2 SpaceObject Conversion Flow for State Data

The state data in the PropState can be manipulated either element by element or as a complete vector. The
following paragraphs describe the conversion procedures for both approaches.

Converting State Vectors

Figure 11.7 shows the procedures employed to convert the state in vector form. State conversions are always
a two step procedure. The state data in the PropState is always defined with respect to the Mean-of-J2000
Earth Equatorial coordinate axes orientation, wit h the coordinate origin located at a user specified origin.

The internal data is stored in the Cartesian representation’’. Users can view the state in any defined

J1A future update wili allow internal storage in either Cartesian or Equinoctial clements, so that Variation of Farameters
propagation wethods can be impleriented.

108 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

ad: State G ion in SpaceObjects J
toCoords = baseCoords?
® S
No
GeSuate String(ioType, Yes

toCoords, toCoordSys)

>®

Return State Strings
Qn rewal)

from Coords = baseCoords?

fromType, from Coords, from CS)

Return true
{on success)

Figure 11.7: Procedure for Retrieving or Setting a Formatted State

coordinate system using any representation defined in GMAT. Hence the procedure for building the state
for display to the user potentially involves both a coordinate transformation and an element conversion, as
shown in the figure.

Conversion of the PropState data for display is shown in the top diagram in the figure. The state vector
is requested using the GetStateString method, which contains three parameters: the target representation in
the toType parameter, the name of the target coordinate system in the toCoords parameter, and a pointer
to an instance of the target coordinate system. The SpaceObject has a pointer to a base coordinate system,
along with the name of the base system. If these match the target coordinate system, then the coordinate
conversion step can be skipped: otherwise, the internal state vector in the PropState is converted into the
target coordinate system. The resulting intermediate state vector is then converted into a StringArray in
the target representation using the ToString() method on the SpaceObject’s representation converter.

The lower diagram in Figure 11.7 shows the inverse process, used to set the state vector on a SpaceOb-
ject through the SetStateFromString method. This method has four parameters: the input state in the
StringArray parameter stateString, the representation that that StringArray uses (fromType), the name of
the coordinate system (fromCoords) used for the input state, and a pointer to an instance of that coordi-
nate system (fromCS). First the input state is converted into a Cartesian vector using the SpaceObject’s
RepresentationConverter. Once the Cartesian state has been constructed, it is transformed into the internal
coordinate system and stored in the SpaceObject’s PropState. Finally, the SpaceObject’s text representation
of the state is updated suing the Synchronize method*?

Counverting Single Elements

The procedure for setting single state elements is shown in Figure 11.8. This procedure is slightly more
involved than the procedure employed to set a complete state because the procedure includes provisions for
setting elements from one representation while maintaining a different text representation of the state in the
textState buffer. This allows a user to script, for example, a semimajor axis for a spacecraft that stores its
state in a Cartesian representation. Element setting is performed using the standard SetStringParameter
method defined for all GmatBase subclasses.

J21f both the representation and internal coordinate system for the PropState match the input values, the input state vector
strings are copied into the testState member, and Synclwonize() is not called.

11.6. 109

Figure 11.8: Procedure for Setting a Single Elemnent in the State

The procedure employed for setting a single element when the element’s name is a member of the current
state representation is straightforward. The string containing the new element data in inserted into the
textState string array, converted into a real vector in Cartesian coordinates by the representation converter,
and then into the internal coordinate system by the coordinate system converter. This state is set on the
PropState.

If the element is not a member of the current representation, the procedure is slightly more complicated.
The textState is converted from the current state type into a vector of real numbers in the representation
containing the element that is being set. The element is set to the input value, and the resulting vector is con-
verted back into the textState StringArray. Then the textState is converted into the internal representation
and eoordinate system as described in the previous paragraph.

110 CHAPTER 11. SPACEOBJECTS: SPACECRAFT AND FORMATION CLASSES

Chapter 12

Spacecraft Hardware

Darrel J. Conway
Thinking Systems, Inc.

Chapter 11 described the structure of the core spacecraft model used in GMAT. This chapter examines

the components that can be used to extend the spacecraft model to include models of hardware elements
needed to model finite maneuvers and sensor measurements.

12.1 The Hardware Class Structure

12.2 Finite Maneuver Elements

12.2.1 Fuel tanks
12.2.2 Thrusters

12.3 Sensor Modeling in GMAT

GMAT does not contain sensor modeling capabilities at this time. The Hardware class infrastructure was
designed to support sensor modeling at a later date.

12.4 Six Degree of Freedom Model Considerations

112 CHAPTER 12. SPACECRAFT HARDWARE

Chapter 13

Attitude

Wendy C. Shoan
Goddard Space Flight Center

13.1 Introduction

GMAT provides the capability to model the attitude of a spacecraft. The attitude can be computed in
any of three different ways: kinematically, by performing six-degree-of-freedom calculations, or by reading
an attitude file (format(s) TBD). The current version of GMAT has only two types of kinematic modeling
available; other methods are to be implemented at a later date.

13.2 Design Overview

When the user creates a Spacecraft object, via the GUI or a script, and s/he needs to compute or report the
attitude of that spacecraft at one or more times during the run, s/he must specify a type of attitude for the
spacecraft. The user must also set initial data on the spacecraft attitude.

A Spacecraft object therefore contains a pointer to one Attitude object, of the type specified by the user.
This object will need to be created and set for the spacecraft using its SetRefObject method. The spacecraft
object contains a method to return its attitude as a direction cosine matrix, and a method to return its
angular velocity.

GMAT can model several different types of attitude, as mentioned above, each computing the attitude
differently. However, since the types of attitude representations are common to all models, many of the data
and methods for handling attitude are contained in a base class, from which all other classes derive.

The base class for all attitude components is the Attitude class. It contains data and methods required
to retrieve spacecraft attitude and attitude rate data. The method that computes the attitude is included
as a pure virtual method, and must be implemented in all leaf classes.

The base Attitude class contains methods that allow the user, the spacecraft, or other GMAT subsystems,
to request attitude and attitude rate data in any of several different parameterizations. Attitude may be
returned as a quaternion, a direction cosine matrix, or a set of Euler angles and a sequence. An attitude
rate is retrievable as an angular velocity or as an Euler axis and angle (computed using the Euler sequence).

Also included in the base Attitude class are many static conversion methods, allowing other parts of
GMAT to convert one attitude (or attitude rate) parameterization to another, depending on its needs,
without having to reference a specific spacecraft or attitude object.

As mentioned above, GMAT includes several different attitude models. Kinematic attitude propagation
options are 1) a Coordinate System Fixed (CSFixed) attitude; 2) a Spinner attitude; and 3) Three-Axis
Stabilized attitude (TBD).

113

114 CHAF IZER 13. ATTITUDE

To implement these, GMAT currently has a Kinematic class that is derived from the Attitude class. The
CSTixed (Coordinate System Fixed) and Spinner attitude classes derive from the Kinematic class and, as
leaf classes, contain implementations of the method, inherited from the base class Attitude, that computes
the attitude at the requested time.

13.3 Class Hierarchy Summary

This section describes the current attitude classes in GMAT, summarizing key features and providing addi-
tional information about the class members. Figure 13.1 presents the class diagram for this subsystem.

Attitude

The Attitude class is the base class for all attitude classes. Any type of attitude that is created by user
specification, via a script or the GUI, will therefore include all public or protected data members and methods
contained in the Attitude class. Key data and methods are:

Data members

o eulerSequencelist: a list of strings representing all of the possible Euler sequences that may be
selected by the user

o refCSName: the name of the reference coordinate system - the user must supply this

o refCS: a pointer to the reference coordinate system - this must be set using the attitude object’s
SetRefObject method

e initialEulerSeq: an UnsignedIntArray containing the three values of the initial Euler sequence
« initialEulerAng: an Rvector3 containing the three initial Euler angles (degrees)

s initialDcm: an Rmatrix33 containing the initial direction cosine matrix

s initialQuaternion: Rvector representation of the initial quaternion

e initialBulerAngRates: Rvector3 containing the initial Euler angle rates (degrees/second)

¢ initialAngVel: Rvector3 containing the initial angular velocity (degrees/second)

Methods
s GetEpoch(): returns the epoch for the attitude

s SetEpoch(Real toEpoch): sets the value for the attitude; this method is called by the GUI, script
interpreter or spacecraft

¢ SetReferenceCoordinateSystemName(const std::string &refName): sets the reference coor-
dinate system name

o GetEulerSequenceList(): returns a list of strings representing all possible Euler sequence values

e GetQuaternion(Real atTime): returns the quaternion representation of the attitude, computed at
the A1Mjd time atTime

e GetEulerAngles(Real atTime): returns the Euler angle representation of the attitude, computed
at the A1Mjd time atTime

13.3. CLASS HIERARCHY SUMMARY

Attitude Classes)

Figure 13.1: Attitude Classes

116 CHAPTER 13. ATTITUDE

¢ GetCosineMatrix(Real atTime): returns the direction cosine matrix representation of the attitude,
computed at the A1Mjd time atTime

e GetAngularVelocity(Real atTime): returns the angular velocity representation of the attitude
rate, computed at the A1IMjd time atTime

e GetEulerAngleRates(Real atTime): returns the Euler angle rates representation of the attitude
rate, computed at the A1IMjd time atTime

In addition to class methods, there are several static methods in the base Attitude class that may be
used without instantiating an object of type Attitude. These are all methods to convert between attitude
representations or between attitude rate representations (angles are assumed to be in radians). They are:

e ToCosineMatrix(const Rvector &quatl): converts the input quaternion to a direction cosine
matrix

e ToCosineMatrix{const Rvector3 &eulerAngles, Integer seql, Integer seq2, Integer seq3):
converts the input Euler angles and sequence to a direction cosine matrix

e ToEulerAngles(const Rvector &quatl, Integer seql, Integer seq2, Integer seq3): converts
the input quaternion to Euler angles, given the input Euler sequence

e ToEuler Angles(const Rmatrix33 &cosMat, Integer seql, Integer seq2, Integer seq3): con-
verts the input: direction cosine matrix to Euler angles, given the input Euler sequence

e ToQuaternion(const Rvector3 &eulerAngles, Integer seql, Integer seq2, Integer seq3):
converts the input set of Euler angles and sequence to a quaternion

s ToQuaternion(const Rmatrix33 &cosMat): converts the input direction cosine matrix to a
quaternion

¢ ToEulerAngleRates(const Rvector3 angularVel, Integer seql, Integer seq2, Integer seq3):
converts the input angular velocity to Euler angle rates, using the input Euler sequence

¢ ToEulerAngleRates(const Rvector3 eulerRates, Integer seql, Integer seq2, Integer seq3):
converts the input Euler angle rates to angular velocity, using the input Euler sequence

Kinematic

The Kinematic class is the base class for the kinematic models: Coordinate System Fixed, Spinner, and
Three-Axis Stablized (TBD). At this time, there are no additional data members or methods for this class.

CSFixed

The CSFixed class models a Coordinate System Fixed attitude. The user supplies the initial attitude and
specifies the reference coordinate system, from the current set of default and user-defined coordinate systems,
to which the attitude is fixed. Since the attitude is fixed to this coordinate system, no initial attitude rate
need be provided. The code in this class then computes the attitude at a requested time using the initial
input data and the rotation matrix between the reference coordinate system and the inertial coordinate
system at the specified time, obtained from the Coordinate System subsystem. There are no significant data
members.

Methods

¢ ComputeCosineMatrixAndAngularVelocity(Real atTime): computes the direction cosine ma-
trix and angular velocity at the requested time; these data can then be retrieved in other representations
as well

13.4. PROGRAM FLOW

Spinner

This class models a Spinner attitude. The user must supply an initial attitude and reference coordinate
system when initializing a Spinner attitude. In addition, s/he must provide an initial attitude rate. This
rate does not change over time, for this model. The initial epoch is expected to be an A1Mjd time, input
as a Real, and is assumed to be the same as the orbit epoch (i.e. when the orbit epoch is set, the spacecraft
knows to use that epoch for the attitude as well). This class can then compute the attitude at a specified
time, using the initial input data and the rotation matrix from the reference coordinate system to the inertial
coordinate system at the epoch time. It contains some protected data members to store data computed on
initialization.

Methods

¢ ComputeCosineMatrixAndAngularVelocity(Real atTime): computes the direction cosine ma-
trix and angular velocity at the requested time; these data can then be retrieved in other representations
as well

13.4 Program Flow

After an Attitude object is created and passed to a Spacecraft object, the initial data must be set. Then, as
it is for most objects, the Initialize method must be called on the attitude. After that, the Attitude object
is ready to compute the spacecraft attitude at any time requested.

13.4.1 Initialization

As mentioned above, the user must specify attitude initial data for a spacecraft, via the GUI or the script.
An example script appears here:

Sat.AttitudeMode = {Kinematic, 6DOF, FromFile};
Sat.KinematicAttitudeType = { Spinner, CSFixed}; ¥ 3-Axis TBD

Sat.AttitudeCoordinateSystem = MJ2000Ec;

Sat.AttitudeStateType = {EulerAngles, Quaternion, DCM};
Sat.EulerAngleSequence = {123, 132, 213, 312, ... 321};
Sat.EulerAnglel = 5.0; % degrees

Sat.EulerAngle2 = 10.0; % degrees

Sat.EulerAngle3 = 15.0; % degrees

% Sat.ql = 0.0; % these are set if the type is Quaternion

% Sat.q2 = 0.0;
% Sat.q3 = 0.0;
% Sat.qg4 = 1.0

% Sat.DCM11i = 1.0; % set if attitude type is DCM

118 CHAPTER 13. ATTITUDE

% Sat.DCM12 = 0.0;
% Sat.DCM33 = 1.0;

Sat.AttitudeRateStateType = {EulerAngleRates, AngularVelocity};
Sat.EulerAngleRatel = 5.0;

Sat.EulerAngleRate2 = 5.0;

Sat.EulerAngleRate3 5.0;
% Sat.AngularVelocityX = 5.0; 7% set if attitude rate type is angular velocity
% Sat.AngularVelocityY = 5.0;

% Sat.AngularVelocityZ = 5.0

In all models, the initial attitude may be input as a direction cosine matrix, a quaternion, or a set of
Euler angles and sequence. The initial rate may be input as an angular velocity or as an Euler axis and
angle (to be used along with an Euler sequence from the input attitude specification).

13.4.2 Computation

GMAT uses the initial data to compute the attitude at any time requested. For better performance, GMAT
keeps track of the last attitude computed, and the time for which it was computed, and only recomputes
when necessary.

For the two models implemented thus far, it is necessary for GMAT to compute a rotation matrix (and
for the CSFixed attitude, its derivative as well) between the inertial (MJ2000 Equatorial) coordinate system
and the specified reference coordinate systemm. GMAT has this capability, implemented in its Coordinate
System subsystem.

Chapter 14

Script Reading and Writing

Darrel J. Conway
Thinking Systems, Inc.

GMAT stores mission modeling data in a text file referred to as a GMAT script file. The scripting
language used in GMAT is documented in {UsersGuide]. This chapter describes the architecture of the
ScriptInterpreter subsystem, which is used to read and write these files.

GMAT scripts, like MATLAB scripts, are case sensitive. In the sections that follow, script elements, when
they appear, will be written with the proper case. That said, this chapter is not meant to be a comprehensive
text on GMAT scripting. Script lines and portions of lines are presented here for the purpose of describing
the workings of the ScriptInterpreter and related classes.

14.1 Loading a Script into GMAT

Figure 14.1 shows the sequence followed when GMAT opens a script file and reads it, constructing internal
objects that model the behavior dictated by the script. Some of the detailed work performed in this process
is dictated by the properties of the objects; the figure provides the general flow through the process. The
figure is color coded to reflect three basic groupings of actions taken while reading a script file. The large
scale flow through the ScriptInterpreter system is colored blue; actions that affect configured objects are
colored green, and actions related to the time ordered Mission Sequence are colored yellow. This figure
shows a fair amount of complexity; the section describing the subsystem classes breaks this complexity into
more manageable pieces.

When a user instructs GMAT to read a script, either from the command lire or from the graphical user
interface, the Moderator receives an InterpretScript() command containing the name of the file that needs
to be read. This command calls the Interpret() command on the ScriptInterpreter, which uses the classes
and methods provided in the Interpreter subsystem and described in this chapter, to read the script and
configure the objects described in it.

There are four types of physical lines in a script file: (1) comment lines, which start with a percent sign
(%), (2) object definition lines, which start with the word “Create”, (3) command lines, which start with
the text assigned to a GmatCommand class, and (4) assignment lines, which optionally start with the word
“GMAT"!. Comments can be appended on the end of script lines; when that happens, all of the text following
the percent sign comment delimiter is associated with the line and referred to as an inline comment in this
document.

UThe GMAT keyword is automatically inserted on assignment lines when a script is written. The ScriptReadWriter class
has an internal flag that toggles this feature cn and off when writing, so that future versions of GMAT can provide the ability
to turn this feature on or off,

119

Reading a Script J

script passed to

Scriptinterpreter Isline a

comment?

Is the line

&

Is line a block
delimiter?

Script parsing
succeeded

Yes Vare we buliding the
headerCommen?

Is this a Create line?
Yes Y
No

Isthisa
< Command?

Yes

Can this line
set a varlable, array
element, or an

internal parameter?

A Is this an

line?

Have any Commands
been created?

Terminate and repont error

Figure 14.1: Sequence Followed when Loading a Script into GMAT

The script file is read one “logical block” at a time, using the ScriptReadWriter helper class. A logical
block consists of one or more physical lines in the script file. Each logical block can have three elements: one
or more lines of opening comments (identified with leading % characters), an instruction that tells GMAT
to do something, and an inline commment appended to the end of the instruction. Each logical block has at
least one of these elements, but need not have all three. Inline comments cannot exist on their own — they
require the instruction component.

The instruction element can be split up over multiple physical lines in the script file, as long as each
physical line is terminated by ellipsis (...). Inline comments for a multiline instruction must be placed at
the end of the last physical line of the block. White space at the beginning of each line of an instruction
is discarded. Lines that are continued using ellipsis markers pick up an extra space in place of the ellipsis
characters. Instructions in a logical blocks can be terminated with a semicolon; this character has no effect
in GMAT?. Once a logical block has been read from the file using these rules, it is analyzed to determine
the type of information contained in the block.

The ScriptInterpreter treats comment lines that start with the sequence « Y%------- ” as a special type
of comment, called a block delimiter. These lines are ignored by the ScriptInterpreter when reading a script.
Details concerning comment handling are presented later in this chapter, as are the detailed control flow
procedures GMAT follows when working with scripts.

28emicolons are used in MATLAB to suppress display of the vesult of the line of text. Since GMAT scripts can be read in the
MATLAB environiuent, the GMAT scripting language allows, but does not, vequire, a semicolon at the end of an instruction.

10

12

14.1. LOADING A SCRIPT INTO GMAT 121

14.1.1 Comment Lines

Comments in GMAT scripts are started with the percent sign (%). Comments can exist in one of two
different forms: either on individual lines, or inline with other GMAT scripting, as shown here:

% This is the main spacecraft in the mission.

Create Spacecraft mainSat % Not to be confused with MaineSat

GMAT mainSat.X = 42165.0 % Start at GEO distance

GMAT mainSat.Y 0.0

GMAT mainSat.Z = 0.0
% This is the velocity part. 1I’ve intentionally made the
% indentation ugly to make a point: leading white space is
% preserved in comment lines.

GMAT mainSat.VX = 0.0 7 But slower tham a circular orbit

GMAT mainSat.VY = 1.40

GMAT mainSat.VZ = 0.95

Lines 1-3 and lines 5 and 10-12 are individual comment lines. Lines 6, 7 and 13 contain inline comments.
The individual comment lines fall into two categories: lines 1-3 here are block delimiter lines, denoted by
the delimiter identifier at the start of each line, while lines 5 and 10-12 are user supplied comments. The
ScriptInterpreter inserts the block comments automatically when a script is written, and skips over those
comment lines when reading the script. The user provided comments like lines 5 and 10-12 are stored with
the data provided immediately after those lines. In this script snippet, for example, the comment “Y, This
is the main spacecraft in the mission” is associated with the object creation line, and stored as an
object level comment for the Spacecraft named mainSat. The comments on lines 10-12:

% This is the velocity part. I’ve intentionally made the
% indentation ugly to make a point: leading white space is
% preserved in comment lines.

are associated with the assignment line “GMAT mainSat.VX = 0.0”, and stored, including lincbreaks, in the
data member associated with the object parameter mainSat.VX. Each entire line is stored, including the
leading whitespace, so that the ScriptInterpreter can reproduce the comment verbatim.

Inline comments are stored with the GMAT structure that most closely matches the comment line. Hence
the inline comment on line 6 is stored in the data member associated with the Spacecraft mainSat, while
the inline comments on lines 7 and 13 are stored incorresponding members of a StringArray in that object
that maps the comment to the corresponding spacecraft parameters: mainSat.X and mainSat.VX for this
example.

The ScriptInterpreter makes these associations when it finds comments in a script. Comment lines
are buffered in the ScriptInterpreter, and written to the next resource encountered in the script file. The
GmatBase class contains the data structures and interfaces needed to implement this functionality. These
interfaces are shown in Figure 14.2.

There are two additional types of comment blocks that GMAT manages. Comments that occur at the
beginning and at the end of a script are saved in the ScriptInterpreter in case they are needed for display
on the GUI or when writing a script. The header comment consists of all comment lines found at the start
of a script to the first blank line in the script. If an instruction is detected before a blank line, the header
comment is set to the empty string. Similarly, the script’s footer comment consists of all comments that are
found after the final instruction in the script. If no comments are found after the final instruction, the footer
comment is set to the empty string.

122 CHAPTER 14. SCRIPT READING AND WRITING

Scripting Interfaces in GmatBase J

Figurc 14.2: Scripting Interfaces in the User Classes

14.1.2 Object Definition Lines

When the ScriptInterpreter detects an object definition instruction (starting with the word “Create”), it
breaks the line into three pieces: the initial “Create™ keyword, the type name for the object that needs to be
created, and one or more names used for the created objects. When multiple objects are created on a single
line, the object names are separated using commas®. Three examples of object definition are provided here:

Create Spacecraft MMSRef;
Create Spacecraft MMS1, MMS2, MMS3, MMS4;
Create Array squareArray[3, 3] notSquare[4, 7] vector[6]

The first script line here (“Create Spacecraft MMSRef;") demonstrates basic object creation. When the
ScriptInterpreter parses this line, it calls the Moderator and instructs it to create an instance of the Spacecraft
class named MMSRef. The Moderator calls the appropriate factory (the spacecraft factory in this case) and
obtains the object. It then adds this object to the configured objects, and returns the object pointer to
the ScriptInterpreter. The ScriptInterpreter validates the returned pointer, ensuring that the pointer is not
NULL, performs finalization on the object by calling the “FinalizeCreation()” method, and then moves
to the next line. If no factory is available to create the object, the Moderator throws an exception which the
ScriptInterpreter handles. The ScriptInterpreter throws an expection that is displayed to the user, indicating
the line number of the offending line, the nature of the error encountered, and. in quotation marks, the text
of the line that caused the error.

The second script line (“Create Spacecraft MMS1, MMS2, MMS3, MMS4;") works identically, calling the
Moderator four consecutive times to create the four spacecraft named MMS1, MMS2, MMS3, and MMS4.
Each object is created, validated by testing the returned pointer to see if it is NULL, and finalized using

3Note that cornmuas ave required. This restriction comes from the interoperability requirement beiween GMAT and MATLAB.
If the commas are omitted, then when MATLAB parses the line, it creates a cell array for the elements following the Create
keyword. A similar constraint applies to all script instructions when the blocks in the instruction exist cutside of parentheses,
brackets, or braces.

14.1. LOADING A SCRIPT INTO GMAT 123

FinalizeCreation(). The ScriptInterpreter loops through the list of requested objects, and performs this
procedure one name at a time.

The array creation line (“Create Array squareArray(3, 3] notSquare[4, 7] vector[6]”) requires
a bit of additional parsing. Arrays require the count of the number of rows and columns? in the array before
it can be constructed. These counts are contained in square braces in the array creation line. Each array
on the line has a separate field indicating this size. If a user specifies a single dimension for the array, as
in the case of the array named vector in this example, that dimension is the column count for the object:
vector as specified here is a 1 by 6 array. Once the size parameters have been parsed, the ScriptInterpreter
proceeds as before: the Moderator is called and instructed to create an array with the desired dimensions.
This array is created in the factory subsystem, added to the object configuration, and returned to the
ScriptInterpreter for pointer validation. Once the pointer has been validated, the ScriptInterpreter executed
the FinalizeCreation() method on the new object, and then proceeds to the next line of script.

14.1.3 Command Lines

If the logical block is not an object definition line, the ScriptInterpreter next checks to see if the line is a
GMAT command. GMAT commands all start with the keyword assigned to the specific command; examples
include Propagate, For, Maneuver, Target, and BeginFiniteBurn. A typical (though simple) command
sequence in a script is shown here:

Fori=1:5
Propagate propagator(satellite, {satellite.ElapsedDays = 1.0})
EndFor;

The command sequence is usually found after all of the objects used in the script have been defined and
configured in the script file. A complete list of the commands available in the configuration managed GMAT
code® can be found in the User’s Guide[UsersGuide]. The ScriptInterpreter builds a list of commands in the
system upon initialization. It uses this list to determine if a script line contains a command. If the first word
in the script line is in the list of commands, the ScriptInterpreter calls the Moderator, requesting a command
of the indicated type. The Moderator uses the factory subsystem to create the command. It then adds the
command to the Mission Sequence using the Append method on the first command in the sequence. One
item to note here: the commands manage the time ordering of the sequence through the Append interface of
the GmatCommand classes; the ScriptInterpreter does not directly set the command sequence ordering.

Once a command has been created in the Moderator, the Moderator returns the new command to the
ScriptInterpreter. At this point, the command has not yet been configured with the details of the script line
that was used to create it. GMAT commands can be configured in one of two different ways: they can parse
and configure internal data using methods inside the command, or they can receive configuration settings
from the ScriptInterpreter. Only one of these options exists for each command - either the command is self-
configuring, or it relies on the ScriptInterpreter for configuration. Self-configuring commands override the
InterpretAction method defined in the GmatCommand base class to parse the script line; this approach allows
the creation of commands that do not follow a generic configuration strategy. The default implementation
of the InterpretAction method returns false, indicating that the ScriptInterpreter needs to complete the
command configuration. Further details of command configuration can be found in Chapter 21.

The ScriptInterpreter takes the newly created command and passes the script line into it. Then the
ScriptInterpreter calls the InterpretAction method on the command. If the InterpretAction method succeeds,
the ScriptInterpreter considers the command fully configured, completing parsing for this line of script. If
the InterpretAction method returns false, the ScriptInterpreter parses the rest of the command line and
configures the command accordingly.

4GMAT does not support matrices with more than 2 dimensiocns at this time.
“Note that since commands are user objects, the command list can be expanded using a user defined library, as discussed in
Chapter 26.

124 CHAPTER 14. SCRIPT READING AND WRITING

14.1.4 Assignment Lines

The final type of logical block that the ScriptInterpreter can encounter is an assignment line. GMAT
assignment lines all take the form

<<Left Hand Side>> = <<Right Hand Side>>

Assignment lines perform multiple purposes in GMAT. Assignment lines can be used to initialize the internal
data for an object, to reset the value of a piece of internal data, to set one object’s data to match another
object’s, or to perform custom calculations as described in Chapter 24. This complexity adds an underlying
wrinkle to GMAT’s internal structure when parsing an assignment line: assignment lines in a script can set
object data or represent Assignment commands in the Control Sequence. The ScriptInterpreter tracks the
state of a script while parsing; it starts the parsing sequence in *object” mode, and toggles into “command”
mode when the first command is encountered. This mode switching has direct implications on the way
assignment commands are handled: when in object mode, assignment commands can set the values of
parameters on configured objects. In command mode, this parameter setting is deferred until the script is
executed. The following script segment illustrates this difference:

Create Spacecraft sat; % Start in object mode
Create Propagator prop;
GMAT sat.SMA = 10000.0; % Set some object parameters

GMAT sat.ECC = 0.25;
GMAT sat.TA = 0.0;

Propagate prop(sat, {sat.Apoapsis}); % Switches to command mode
GMAT sat.SMA = 12500.0; % Brute force circularization
GMAT sat.ECC = 0.0;

Propagate prop(sat, {sat.ElapsedDays = 1.0});

The assignment lines in this script all begin with the GMAT keyword. The first three assignments (lines 3 -
5) are used to set the internal data on the Spacecraft named sat. When the ScriptInterpreter builds the
Propagate command on line 7, it switches into command mode. The next assignment lines, lines 8 and
9, do not set the internal data on sat during script parsing. Instead, they each construct an Assignment
command which is inserted into the command sequence, configured to set the internal Spacecraft data when
that Assignment command fires during the run of the mission. In effect, the assignments made here are
postponed; the Spacecraft parameter is set to the scripted value when the Assignment command executes
for the scripted line, rather than when the ScriptInterpreter parsed the line of script. This toggling from
object mode into command mode makes it possible for a user to reset object properties partway through the
execution of a script; other uses inclnde the ability to alter the mass of the spacecraft, modeling the release
of a stage during a mission, and adding new spacecraft to or removing spacecraft from a formation that has
already propagated for a period of time.

When an assignment line is parsed by the ScriptInterpreter, the ScriptInterpreter first breaks the line
into three pieces: the left hand side, the equals sign, and the right hand side. If the equals sign is missing,
the ScriptInterpreter throws an exception and exits. The left hand side (LHS) may start with the keyword
“GMAT”. If it does, this word is ignored by the ScriptInterpreter®. After the optional keyword, the LHS of
the line can consist of one and only one entity: either an object parameter, an object name, or an array
element identity, as shown here:

GMAT sat.X = ... % An object parameter
forceModel.Gravity.Earth.Degree = ... % A nested object parameter

%The GMAT keyword simiplifies script interchangability between GMAT and MATLAB; the GMAT keywork can be used to
tell MATLAB that the lue js a special construct, built lor GMAT, when a script file is read in the MATLAB environmeni.

a2 W N

14.2. SAVING A GMAT MISSION 125

sat2 = ... % Object assignment

GMAT squareArray(1,3) = ... % Array element setting
vector(3) = ... % More array element setting
myFormation.Add = ...

GMAT SatReplacementl.Z = ... % Another object parameter

Note that the GMAT preface on lines 1, 4, and 7 is optional. When a valid right hand side (RHS) is provided,
all of these lines will be parsed correctly by the ScriptInterpreter. Line 2 deserves some special consideration
here. This line sets a parameter on an object owned by a force model. The ScriptInterpreter includes parsing
capabilities that it uses to drill into owned objects like this one; these capabilities are described in the class
descriptions later in this chapter.

The right side of an assignment line provides the data that is set for the left side. This data can be s
number, a string, an object name, a GMAT or MATLAB function, an array or array element, or an equation.
Working from the partial lines presented earlier, some examples of complete assignment lines are:

GMAT sat.X = 7218.88861988453; % A number

forceModel.Gravity.Earth.Degree = 12 % An integer for a nested object

sat2 = sat3 % All object attributes (except the name)
GMAT squareArray(1,3) = satl.VZ % Array element set to an object property...
vector(3) = BuildZComponent (sat2) % ...and to a function return value
myFormation.Add = SatReplacementl % A string -- here an object name

GMAT SatReplacementl.Z = vector(3); % An array element

The ScriptInterpreter provides the interfaces required to configure these RHS elements as well. It first
analyzes the RHS string and determines the type of expression encoded in the string. The string is then
decomposed into its constituent elements, which are configured based on the detected type information. If
the ScriptInterpreter is operating in object mode, it remains in object mode as long as the LHS is an object
parameter and the RHS provides data compatible with that parameter. If this condition is not met, then
the ScriptInterpreter builds an Assignment command for the assignment line, and sets up the objects for
this command.

Once all of the lines in a script file have been parsed and the corresponding actions taken, the ScriptInter-
preter takes a final pass through the objects in memory. This final pass is used to set intermediate pointers
where needed for the user interface - for instance, Spacecraft created in a script need to have pointers set
to referenced coordinate systems so that conversions between element representations can be performed on
the user interface.

14.2 Saving a GMAT Mission

The procedure followed when writing a script file from GMAT is markedly simpler than that followed when
parsing a script file. Figure 14.3 shows the basic control flow exercised when the ScriptInterpreter writes
a script file. First the ScriptInterpreter initializes itself if it has not been initialized previously, and opens
the output stream that is the target of the script. Then the ScriptInterpreter retrieves the configured items
by type, and writes these items to the output stream. Comment lines are inserted at appropriate places
during this process, as indicated in the figure. After all of the configured objects have been written, the
ScriptInterpreter walks through the command sequence, writing the commands out in order. This completes
the script writing process.

Script writing is significantly simplified because each user configurable object in GMAT includes a method,
GetGeneratingString(), which returns the full script string required to reproduce the object. This interface
is included in the GmatBase class diagram, Figure 14.2. The GetGeneratingString() method essentially
serializes any GMAT object derived from GmatBase (see Section 5.1). When the GetGeneratingString
function is called, the object builds this string based on its internal data. Command strings consist of a

126 CHAPTER 14. SCRIPT READING AND WRITING

Writing a Script J

SaveScript called

At end of
mtype list?

Yes

Command
sequence NULL?

Yes

2 Is object
7 list empty?

Finished saving
script

At end of
object list?

Figure 14.3: Sequence Foliowed when Writing a Script

single instruction, optionally decorated with preceding comments or inline comments. Configured objects
build multi-instruction strings, consisting of an opening “Create” line and the assignment lines required to
set the internal object parameters. Details of this process are shown in Figure 14.4. The ScriptInterpreter
just calls this method sequentially on the objects to write the requested script.

This same facility is used at several other places in GMAT. The MATLAB interface supports seri-
alization and passing of GMAT objects into MATLAB classes. This support is also provided by the
GetGeneratingString() method. Similarly, the GMAT graphical user interface includes a popup win-
dow that shows scripting for all GMAT objects and commands. The GetGeneratingString() method is
called to populate this window.

14.3 Classes Used in Scripting

The preceding sections described the process followed when reading and writing scripts. This section outlines
how those processes are implemented in GMAT.

14.3. CLASSES USED IN SCRIPTING 127

ad: GetGeneratingString Details J

Is object a CmatComm and?

Yes
GetGeneratingString

ID == param eterCount?

Generating string
com plete

Figure 14.4: Sequence Followed by GmatBase: :GetGeneratingString() when Writing a Script

14.3.1 The Script Interpreter

The ScriptInterpreter is the class that manages the reading and writing of script files for GMAT. It makes
use of several helper classes when actually reading and writing scripts, along with core Interpreter functions
from the Interpreter base class. Actions taken by the ScriptInterpreter can be broken into two categories:
script reading and script writing. The complexity of these processes is shown in Figures 14.1 and 14.3. In
this section, the Interpreter and ScriptInterpreter classes are described, along with their helper classes, the
ScriptReadWriter and the TextParser. These classes are shown in Figure 14.5. Then the process followed
to accomplish each of the reading and writing tasks is presented. Script reading is particularly complex, so
the script reading procedure is broken into descriptions of the process followed for each of the four types of
script blocks GMAT supports. The description of the class interactions performed when reading a script can
be found in Section 14.4. The class interactions followed when writing a script are outlined in Section 14.4.

Global Considerations

The Interpreter subsystem used several components that exist at the program scope in GMAT. There are
three enumerations used by the Interpreters that are defined in the Gmat namespace:

* Gmat::ParameterType: An enumeration used to identify the data type for internal parameters in
GmatBase derived objects.

s Gmat::WriteMode: An enumeration that identifies the type of output requested from a call to an
object’s GetGeneratingString() method.

e Gmat::BlockType: An enumeration identifying the type of logical block parsed from a seript.

128 CHAPTER 14. SCRIPT READING AND WRITING

Scriptinterpreter Classes J

Figure 14.5: Classes in the ScriptInterpreter Subsystem

The first two of these enumerations, ParameterType amd WriteMode, are used in a fairly rigid manner
in the Interpreter subsystem. ParameterTypes are used to determine how to access the internal data on
objects for reading and writing; the object is queried for the type of the internal parameter, and that
parameter is accessed accordingly. For example, when a parameter value on an object needs to be set, the
Interpreter use the results of this query to call the correct set method on the object - SetRealParameter
for floating point, data, SetIntegerParameter for integers, SetStringParameter for strings, and other calls for
their corresponding types.

When calling the GetGeneratingString methods on objects, the Interpreters need to identify the style
of text that is required. This style is identified using the identifiers in the WriteMode enumeration. The
ScriptInterpreter uses the Gmat::SCRIPTING entry from this list. Objects that are passed to MATLAB use
the Gmat::MATLAB_STRUCT entry, and so forth.

The BlockType enumeration has four members: COMMENT_BLOCK, DEFINITION BLOCK, COM-
MAND_BLOCK, and ASSIGNMENT_BLOCK. These members are used to identify the type of logical
block parsed from a script, as described in Section 14.4.

The ScriptInterpreter Class

The ScriptInterpreter class manages the script reading and writing process. Derived from the Interpreter
class, this singleton” has methods that use a ScriptReadWriter to open and close file streams and to use
those streams to perform the actions required to load and save GMAT scripts. The entry point methods
that take input from the stream include the word “Interpret” in their names; the methods that launch the

7See Section B.1

14.3. CLASSES USED IN SCRIPTING 129

serialization of GMAT objects and that subsequently write them out to streams use the work “Build” as part
of the method name. :

The key ScriptInterpreter data members and methods are described below.

Class Attributes

« Integer logicalBlockCount: A counter that counts the logical blocks of script as they are read.

e bool inCommandMode: A flag that is used to detect when a script switches from object parameter
mode into command mode, so that assignment blocks can be configured correctly.

o std::iostream scriptStream: The stream used for script reading or writing.

e ScriptReadWriter* theReadWriter: A pointer to the ScriptReadWriter used when reading or
writing the script.

Methods

« ScriptInterpreter* Instance(): The method used to obtain the pointer to the singleton.

e bool Build(): Method used to write a script to the stream. This method calls WriteScript() to
perform the actual work required when writing a script.

e bool Build(const std::string &scriptfile): Method used to initialize the stream to an output file.
This method calls Build() (above) after setting up the stream.

e bool Interpret(): Method used to read a script from the stream. This method calls the protected
ReadScript() method to perform the actual script reading tasks.

e bool Interpret(const std::string &scriptfile): Method used to initialize the stream to an input
file. This method calls Interpret() (above) after setting up the stream.

o void ReadScript(): The method that controls script reading. This method is called by Interpret().
The process followed in the ScriptInterpreter::ReadScript() method and the methods it calls is shown
in Figure 14.6 and the diagrams derived from it, and described in Section 14.4.

o std::string ReadLogicalBlock(): Method that obtains a logical block from teh ScriptReadWriter
for the ReadScript() method.

e void Parse(std::string &block): Method that interprets a logical block for the ReadScript() method.

¢ bool WriteScript(): Control method used to write a script. This protected method is called by the
Build() method when a script needs to be written. The process followed in the WriteScript() method
is shown in Figure 14.11 and described in Section 14.4.2.

The Interpreter Base Class

The Interpreter base class defines the interfaces into the Interpreter system, and provides functionality shared
by all GMAT Interpreters. This class contains the data structures necessary to manage data that exists at
the mission scope rather than at object scope, like header and footer comments.

130

CHAPTER 14. SCRIPT READING AND WRITING

Class Attributes

StringArray type maps: Lists of the names of classes of corresponding types of configurable objects.
There are separate maps for commands (commandMap), hardware components (hardwareMap),
forces (physicalmodelMap), solvers (solverMap), parameters (parameterMap), stopping condi-
tions (stopcondMap), and functions (functionMap). These arrays are populated when the Inter-
preter is initialized.

std::string currentBlock: the current logical block of script, used while parsing.

std::string headerComment: The optional commentary, provided by the user, that precedes all
instructions in a GMAT mission.

std::string footerComment: The optional commentary, provided by the user, that completes all
instructions in a GMAT mission.

TextParser theParser: A TextParser used to pieces of text.

enum currentBlockType: An identifier for the type of the current logical block of text, used when
reading a script.

Methods

void Initialize(): Fills or refreshes the type maps by retrieving the lists of type names from the
Moderator.

bool Interpret(): Retrieves input from a stream and translates it into GMAT actions. This abstract
method is implemented by all derived Interpreters.

bool Build(): Accesses GMAT objects and writes them to a stream. This abstract method is imple-
mented by all derived Interpreters.

void FinalPass(): Invoked after objects have been interpreted from a stream, this method sets
pointers for object references that are required outside of the Sandbox, so that required functionality
can be provided prior to initialization for a mission run. Derived Interperters should call this method
as the last call in their Interpret() methods if internal pointers are not set during execution of the
method.

void Register Aliases(): Some GMAT script identifiers can be accessed using multiple text strings.
The RegisterAliases() method creates a mapping for these strings so that scripts are parsed correctly.
The current GMAT system has five aliased parameter strings: “PrimaryBodies” and “Gravity” are both
aliases for “GravityField” forces, “PointMasses” is an alias for ‘a PointMassForce, “Drag” is an alias for
a DragForce, and “SRP” is an alias for SolarRadiationPressure.

GmatBase* FindObject(const std::string objName): Method used to find a configured object.
void SetParameter(GmatBase *obj, const Integer id, const std::string &value): Method

used to set parameters on configured objects. Note that while the input value is a string, it is converted
to the correct type before being set on the object.

ElementWrapper* CreateElement Wrapper(const std::string &name): Method used to create
wrapper instances needed to use object properties, Parameters, array elements, and other types of
object data inside of the commands that implement the Mission Control Sequence. The wrapper
infrastructure is described in Section 21.4.3.

Rt

14.3. CLASSES USED IN SCRIPTING | 131

14.3.2 The ScriptReadWriter
File management tasks necessary to scripting are provided by the ScriptReadWriter class. This class, a
singleton, is used by the ScriptInterpreter to retrieve script data a logical block at a time and to write script
files out on user request. It does not directly interact with GMAT objects; rather, it provides the interfaces
into the file system that are used to store and retrieve GMAT configurations in the file system.

Class Attributes

o std::string fileName: The current script name.

o std::fstream script: an std::fstream object used to read or write the script.

¢ Integer lineWidth: The maximum line width to use when writing a script; the default width is 0
characters, which is treated as an unlimited line width.

® bool writeGmatKeyword: A flag used to determine if the keywork GMAT is written when a script
file is written. This flag defaults to true, and all assignment lines are prefaed with the GMAT keyword.
Future builds of GMAT may toggle this feature off.

o Integer currentLineNumber: The current physical line number in the script file.

Methods

o TextReadWriter* Instance(): Accessor used to obtain the pointer to the TextRead Writer singleton.
¢ void SetScriptFilename(const std::string &filename): Sets the name of the script file.

* std::string GetScriptFilename(): Gets the current name of the script file.

¢ void SetLineWidth(Integer width): Sets the desired line width. If the input parameter is less than
20 but not 0, GMAT throws an exception stating that line widths must either be unlimited (denoted
by a value of 0) or greater than 19 characters.

o Integer GetLineWidth(): Gets the desired line width.
¢ Integer GetLineNumber(): Gets the line number for the last line read.

* bool OpenScriptFile(bool readMode): Opens the file for reading or writing, based on the read
mode (true to read, false to write). This method sets the fileStream object to the correct file, and
opens the stream.

» std::string ReadLogicalBlock(): Reads a logical block from the file, as described below.

¢ bool WriteText(const std::string &textToWrite): Writes a block of text to the stream. The text
is formatted prior to this call.

e bool CloseScriptFile(): Closes the file if it is open.

Overview of the ReadLogicalBlock() Method

The ReadLogicalBlock() method is designed to handle ASCII files written from any supported platform -
Windows, Macintosh, or Linux - without needing to update the line ending characters. This method works
by scanning each line for CR and LF characters, and treating any such character or combination of characters
found as a physical line ending character. This process lets GMAT handle text files on all of the supported
platforms®.

8Here’s what the Computer Dictionary (http://computing-dictionary.thefreedictionary.com/CR/LF) says about the line
ending issue:

132 CHAPTER 14. SCRIPT READING AND WRITING

For the purposes of the ReadLogicalBlock() method, a logical block is one or more physical lines of text
in the script file, joined together into a single block of text. A script file indicates that physical lines should
({3

be connected by appending ellipsis (“...”) to indicate that a line is continued. For example, if this scripting
is found in the file:

Propagate Synchronized propl(MMS),
prop2(TDRS) ;

the encoded instruction that is returned is
Propagate Synchronized propl(MMS), prop2(TDRS) ;

Note that the white space is preserved in this process. The ellipsis characters are replaced by a single space.

ReadLogicalBlock(): Reading Comment Lines

Comments related to specific GMAT objects need to be preserved when reading and writing script files.
The comments associated with specific objects are considered as part of the object’s logical block. Thus,
expanding on the example above, if the scripting reads

% Single step both formations
Propagate Synchronized propl(MMS),
prop2(TDRS) ;

the logical block that is returned is two physical lines:

% Single step both formations
Propagate Synchronized propl(MMS), prop2 (TDRS) ;

where the line break delimits the separation between the comment prefacing the command from the text
configuring the command object. Similarly, inline comments are preserved as part of the logical block; for
example, the following scripting

% Build the spacecraft

Create Spacecraft Indostarl 7 An Indonesian GEQ

% Set up a Geostatiomary orbit

GMAT Indostarl.SMA = 42165.0 % Geosynchronous
GMAT Indostarl.ECC = 0.0005 % Circular

GMAT Indostarl.INC = 0.05 % Nearly equatorial

produces 4 logical blocks:
1. The object creation block:

% Build the spacecraft
Create Spacecraft Indostarl /) An Indonesian GEO

2. The first parameter setting block, with 2 comments:

% Set up a Geostationary orbit
GMAT Indostari.SMA = 42165.0 % Geosynchronous

(Carriage Return/Liue Feed) The end of line characters used in standard PC text files (ASCIL decimal 13 10, hex
03 0A). In the Mac, only the CR is used; in Unix, only the LF. When one considers that the computer world
could not standardize the code to use to end a simple text line, it is truly a miracle that sufficient standards were
agreed upon to support the Tnternet, which fourishes only because it is a standard.

Linux follows the Unix convention. Maciutosh cau be switched to Unix format or uative Macintosh format.

14.3. CLASSES USED IN SCRIPTING 133

3. a second parameter block:

GMAT Indostari.ECC = 0.0005 % Circular
4. and the final parameter block:
GMAT Indostarl.INC = 0.05 % Nearly equatorial

There are three additional types of comment blocks that the ReadLogicalBlock() method manages. These
blocks, (1) the script header, (2) the script footer, and (3) section delimiter blocks, are not associated with
specific GMAT objects, but rather with the script file as a whole.

GMAT script header comments are comment lines that begin on the first line of the script file, and that
are terminated by a blank line. An example, taken, with minor edits, from one of the GMAT test scripts, is
shown here:

% GMAT Script File

% GMAT Release Build 6.0, February 2006

%

% This test script uses the GMAT script language to convert from
% the Cartesian to the Keplerian state. I only implemented the
%, conversion for elliptic inclined orbits, as described in the
% math spec. I didn’t implement other special cases, because it
% would not test anything different in the inline math.

% Create a s/c
Create Spacecraft Sat;

This script snippet contains a header comment, read into the logical block

% GMAT Script File

% GMAT Release Build 6.0, February 2006
v :

% This test script uses the GMAT script language to convert from
% the Cartesian to the Keplerian state. I only implemented the
% conversion for elliptic inclined orbits, as described in the

% math spec. I didn’t implement other special cases, because it
% would not test anything different in the inline math.

and an object creation logical block:

% Create a s/c
Create Spacecraft Sat;

The script header comment is stored in the headerComment data member of the ScriptInterpreter. The
comment associated with the object creation logical block is stored with the associated object, as described
in the next section.

Some script files include comments after the last executable line of the script file. When such comments
are found, they are collected into a single logical block and stored in the ScriptInterpreter’s footerComment
data member. The stored data in the header and footer comment blocks are written in the appropriate
locations when a script file is saved using the Build() method of the ScriptInterpreter.

The final category of script comments, the section delimiters, are automatically generated when writing
a script file, and ignored when reading a 'script. An example of a section delimiter is shown here:

134 CHAPTER 14. SCRIPT READiNG AND WRITING

Create ImpulsiveBurn LunarPhasedV;

GMAT LunarPhasedV.Origin = Earth;

GMAT LunarPhasedV.Axes = VNB;

GMAT LunarPhasedV.VectorFormat = Cartesian;
GMAT LunarPhasedV.V = 0.027;

Create ForceModel LunarSB_ForceModel;
GMAT LunarSB_ForceModel.CentralBody = Earth;
GMAT LunarSB_ForceModel.PointMasses = { Earth, Sun, Luna};

Section delimiter comments exist on single lines, and always start with the string

with no preceding white space. When the ReadLogicalBlock() method encounters this string of characters
at the start of a physical line, the physical line is ignored.

The ScriptInterpreter takes these logical blocks from the ScriptReadWriter, and uses the TextParser class
to process each logical block. The facilities implemented in the TextParser and used for this processing are
described next.

14.3.3 The TextParser Class

The ScriptReadWriter provides the interface to script files, and includes a method, ReadLogicalBlock(),
that accesses a script file and reads it one logical block at a time. The ScriptInterpreter uses this method
to obtain each logical block of text from a script. When ReadLogicalBlock() returns a script block, the
ScriptInterpreter begins a process of breaking the block into pieces until the entire block has been consumed
and interpreted into internal GMAT data structures. The ScriptInterpreter uses the TextParser to perform
this decomposition.

The TextParser class is used to process logical blocks of script, breaking them into their constituent parts
so that the Interpreters and Commands can setup the underlying class relationships and parameter values
needed to model the mission described in the script file.

The TextParser class provides methods used by the ScriptIntererpter to iteratively decompose a logical
block of text. This class supplies all of the low level parsing functionality necessary to manage script lines,
and is used both by the ScriptInterpreter and by other classes - notably commands that are too complex to
be treated generically. The TextParser does not parse inline mathematics; when inline math is detected by
the ScriptInterpreter, it hands the parsing task off to the MathParser, described in Chapter 24.

Class Attributes

e std::string prefaceComment: All comment lines that precede the instruction in the current block
of text. This member is the empty string if there are no comment lines preceding the instruction.

¢ std::string inlineComment: Any comment text that is appended to the instruction. This member
is the empty string if there is no comment lines following the instruction.

o std::string thelnstruction: The text that is decomposed to tell GMAT what to do.

o StringArray commandList: The list of available commands, excluding the GMAT keyword, which
is used for assignments.

14.3. CLASSES USED IN SCRIPTING 135

Methods

o void Initialize(const StringArray &commandList): Method that sets up the internal data for the
TextParser. The parser’s owner calls this method during construction, identifying all of the commands
available to the parser in the current scope.

o Gmat::LineType EvaluateBlock(const std::string &block): The method that takes a logical
block and breaks it into three pieces: preface comments, the instruction in the block, and inline
comments. These pieces are stored in internal TextParser data members until needed by the ScriptIn-
terpreter. The method returns the type of block found, using these rules:

1. If thelnstruction is empty, the block is a COMMENT _BLOCK, otherwise
2. If thelnstruction has the word “Create” as the opening word, it is a DEFINITION _BLOCK,

otherwise
3. If theInstruction has a member of the commandList as the opening word, it isa COMMAND _BLOCK,
otherwise

4. The line is an ASSIGNMENT _BLOCK®.

e StringArray ChunkLine(): Breaks the instruction string into logical groups, called “chunks” in this
document. The instruction line is broken at white space and comma characters. Blocks marked with
the grouping delimiters (), {}, and [] are kept together as independent chunks.

e StringArray Decompose(std::string chunk): Breaks a text chunk into its constituent pieces, and
returns them in a StringArray. This method is used to take a chunk from the ChunkLine() method,
and break it into substrings. Decompose calls into the Separate methods described below, looking first
for brackets to break apart, then commas and spaces, and finally periods.

e StringArray SeparateBrackets(const std::string &text, const char bracket): Finds the text
in a bracket grouping, and separates it into its constituent pieces. These pieces are returned in a
StringArray. The first element of the array is the opening bracket, and the last element is the closing
bracket.

text: The string that contains the bracketed text.

bracket: The opening bracket type; this is one of the following characters: *(, ’{?, [, or ’<’.

e StringArray SeparateSpaces(const std::string chunk): Separates the chunk into pieces at whites-
pace and comma, characters.

e StringArray SeparateDots(const std::string chunk): Separates the chunk into pieces at period
(aka “dot”) characters.

e std::string GetPrefaceComment(): Accessor method used to get the preface comment from the
logical block. If no preface was available, the method returns the empty string.

o std::istring GetInlineComment(): Accessor method used to get the inline comment from the logical
block. If no inline comment was available, the method returns the empty string.

s std::string GetInstruction(): Accessor method used to get the instruction from the logical block.
If no instruction was available, the method returns the empty string,.

e void Reset()): Clears the internal data in the TextParser.

®Note that identifving a line as an assignment line means that it will be used cither to set an internal object parameter or
to build an Assigiment corumand iu the rnission sequence.

136 CHAPTER 14. SCRIPT READING AND WRITING

14.4 Call Sequencing for Script Reading and Writing

The class descriptions described above provide a static picture of the components used to configure GMAT
to run a script and to save a script for later use. In this section, the sequence followed for script reading and
writing is presented to show how the structures and methods described for the classes interact with GMAT.

14.4.1 Script Reading Call Sequence

Script reading is the process through which the instructions in a script are translated into internal object
configuration in GMAT. This process is, of necessity, rather complicated. However, the division of the types
of lines that a script can contain into four sets: comment blocks, object definition blocks, command blocks,
and assignment blocks, makes it possible to break the process into more manageable pieces. Accordingly,
this section provides a top level look at the process followed when reading a script, followed by a description
of the sequence executed for each type of logical block.

Process Followed for All Logical Blocks.

When the ScriptInterpreter is instructed to read a script, it performs some basic initialization in preparation
for a new script file. The headerComment and footerComment bata members are set to empty strings, the
logicalBlockCount data member is set to zero, the the TextParser owned by the ScriptInterpreter is reset to
prevent inadvertent use of data from a previous script. Once these preliminary actions are completed, the
script can be read.

Figure 14.6 shows the sequence followed when the ScriptInterpreter reads a script. The ScriptInterpreter
sends the ScriptReadWriter the name of the script that needs to be read, and then requests that the script
be opened for reading. If these commands succeed, the ScriptInterpreter uses the ScriptReadWriter to read
the file, one logical block at a time.

The ScriptInterpreter calls the TextParser::EvaluateBlock method with each block of script that it receives
from the ScriptReadWriter. That method breaks the logical block into three pieces: the comment lines that
precede the instruction in the block, the instruction that needs to be interpreted to configure GMAT, and
any inline comments that appear in the block. The TextParser examines the instruction portion of the block
to determine what type of instruction is encoded in the block, and returns the type information using the
LineType enumeration from the Gmat namespace.

The ScriptInterpeter then initiates actions that translate the block into components used to setup the
script instructions, based on the type of block that was detected. The process foloowed for the four possible
types of script line are detailed in the sections that follow this one, and illustrated in Figures 14.7 - 14.10.

Once the ScriptInterpreter has processed all of the blocks from a script, it instructs the ScriptReadWriter
to close the script. The ScriptInterpreter then executes a final pass through the objects in the current
configuration, setting a minimal set of object cross references that are required to make GMAT’s GUI
functional. When this final pass has been performed, control is returned to the Moderator with all of the
instructions encoded in the script translated into GMAT objects.

The following paragraphs describe the details executed when translating each of the types of logical blocks
that GMAT scripts use.

Comment Blocks

The only time the ScriptReadWriter returns a comment block -~ that is, a block of script that has no
instructions, and consists only of comments - is when the block is either the header comment for the script
or the footer comment for the script. Script files do not necessarily have either of these blocks. The
ScriptInterpreter maintains an internal counter tht it uses to count the logical blocks as they are read from
the file. If that counter is zero and a comment block is found, then the block is the header comment;
otherwise it is the footer comment. Figure 14.7 shows this sequence.

14.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING

Scriptinterpreter Sequence Top Level)

1) Interpret ! [

A
3).0pen file .
True if_file_opgsiucc_esslullll

loop(stant of file,end of file))
[For each logical block]i
1

4) Read Logical Block

4) Returns logical block of text

5) .Evaluate :block
1

S) Returns type: of block

[Com mentBlock]

[AssignmentBlock]¥

6) .Close the script file

11y Report success or failuref

Figure 14.6: Overview of Interpreter Class Interactions when Reading a Script

13

i

138 CHAPTER 14. SCRIPT READING AND WRITING

sd: Scriptinterpreter Sequence: Comment Blocks)

1

]

1

1

i

T i

ot]) J
[logicalBlockCount == 0] : :
] 2) .petHeade rfCom ment '.

i

1

1

1

— » \

1 1

"' - 1

1 1

ittt st |
[else] 1 1
'

' |3).;etFomerComment :

1

:

L I

1 1

_ 13) '

1

]

|

L}

-

Figure 14.7: Interpreter Class Interactions when Reading a Comment Block

Object Definition Blocks

“Create” lines an a script file invoke object definition instructions, which are processed following the sequence
shown in Figure 14.8. These instructions instantiate the user configurable objects that are used to model a
mission.

When the TextParser tells the ScriptInterpreter that an object definition block has. been detected, the
ScriptInterpreter asks the TextParser to break the instruction in the block into smaller pieces, referred to as
chunks. The text parser breaks the instruction at each white space or comma character in the instruction, and
places these pieces, in order, into a StringArray, referred to here as the “chunkArray.” Once the instruction
has been broken into chunks, the chunkArray is returned to the ScriptInterpreter for processing.

Object definition instructions all have the format

Create <0ObjectType> <Namel>{, <Name 2>, ...]

where ObjectType is a string identifying what type of object is desired - examples are a Spacecraft, a
ForceModel, a Propagator, an Array, and so on. The instruction has one or more object names; one object
will be created for each name found in the instruction. Object names start at the third element in the
chunkArray, chunkArray[2]. If the size of the chunkArray is less than 3, the ScriptInterpreter throws an
exception stating that no object name was found in the object definition line.

The object names in the instruction text are separated by commas, white space, or both. The Array
object type has, in addition, a block specifying the array’s dimensions, contained in square brackets. The
array dimensions are written to a separate chunk in the chunkArray, starting from the opening square bracket
(“[") and ending with the closing bracket (“]”), when the instruction is broken into pieces.

14.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING

sd: Scriptinterpreter Sequence: Definition Blocks)

loop(2,chunkCount -1)]

‘_

‘ Eg’mer is NULL, lhl;mi

'
1
['
[1
1 1
1 1
ont ! !
f churk[1] == "Array")]] 4) Decompose | i
i] |
Ll 1
Ll 1
¢ 4) 1
1 5).SeparateBrackets : :
1
!] :
1)
5)
:‘_ _______] :
' 6) .SetintegerParameter
| ‘
1 1
6)
- ------2- - - -
| 7) .SetintegerParameter
| |
1 7) 1
*+ - - - - - -—— - - ==

b |
ll 9).Set preface comment
‘ ‘
1 1
9
- - ——— -2 - -
[10).Get inline comment [
'
: 10)
)
- - = = =
1 11) .Set inline comment
' i
' T
- - - - - —-———— = .
1 | 1
’ 1 Ll
1 1 Ll

Figure 14.8: Interpreter Class Interactions when Reading an Object Definition Block

139

140 CHAPTER 14. SCRIPT READING AND WRITING

Once the instruction has been broken into chunks, the ScriptInterpreter starts to loop through the list of
object names found in the chunkArray. For each object name, it calls the Moderator to create an instance
of the object. The Moderator returns a pointer to the new object, which the ScriptInterpreter checks. If
the pointer is NULL, the ScriptInterpreter throws an exception stating that a requested object could not
be created. This exception includes the name of the object, the object type, and the text of the instruction
that attempted to create the object. If the returned pointer was not NULL, the ScriptInterpreter continues
processing.

If the object created was an Array, the ScriptInterpreter takes the next chunk from the chunkArray, and
asks the TextParser to break the bracketed dimensions apart. These dimensions are then passed into the
new Array object to set the number of rows and columns for the array.

Finally, the ScriptInterpreter sets the comment strings for the new object by accessing the preface and
inline pieces in the TextParser, and passing those pieces into the object. This completes the configuration of
the object, so the ScriptInterpreter requests the next name from the chunkArray. It then repeats the process
until all of the named objects have been created.

Command Blocks

The time ordered sequence of events executed when GMAT runs a mission sequence are encoded in commands
- objects that instantiate the classes derived from the GmatCommand class, as described in Chapter 21.
Figure 14.9 shows the sequence of events that is followed by the Script Interpreter when a command is config-
ured. The first command detected by the script interpreter toggles the ScriptInterpreter’s inCommandMode
flag on, and sets the flag in the ScriptReadWriter so that all subsequent assignment blocks are treated as
Assignment commands.

When a command is detected and set for configuration, the ScriptInterpreter calls the Moderator and
asks for an instance of the command. It then sets the generating string on the command. Some commands
parse the generating string internally, using the bool InterpretAction() method. Commands that use this
method create an instance of the TextParser, and use its public methods to decompose the string into its
constituent pieces. An example of this type of command is the Propagate command, which has a generating
string that can consist of many different options. The complexity of the command makes it difficult to handle
in a generic fashion in the ScriptInterpreter; hence it provides the parsing service internally. Commands that
perform internal parsing return a value of “true” from the call to InterpretAction; those that expect to be
configured by the ScriptInterpreter return “false.”

If the command is not parsed internally, the instruction line is broken into chunks, using the cams call
as performed for object definition. The resulting chunks are the command components needed to configure
the command. The instruction components embedded in a GMAT command line typically exist in one of
several different forms:

1. Stand alone commands. Some commands take no parameters at all, and are simply added to the
command list unadorned. An example of this type of command is the EndTarget command, which
identifies the end of a targeting loop.

2. Lists of referenced objects, separated by white space or commas. An example of this type of command
is the Save command, which has the format

Save <objectName>

When a Save command is encountered, the name of the object is passed to the command using the
SetReferenceObjectName()) method.

3. Lists of parameters, separated by white space or commas. An example of this type of command is the
Report command, which has the format

Report reportObject parameteri parameter2 ...

144. CALL SEQUENCING FOR SCRIPT READING AND WRITING 141

sd: Scriptinte rpreter Sequence: Command Blocks J

')

' '

' 3) AppendCommand

r T T P

! !) LCreate the Command
- —— — = 3)Retums command painter! *_ I
' 4).5€1G '

'

'

(PR j

' 5) .InterpretAction
: S) retums true if s&rin:; was internally
' l

l Iinterpreted, false o:_hen_nis: _

opt

'
'
'
[retumned false]]
'
'
'

loop(2,chunk Count - 1) J

[

'
1 L}

1 L}

' '

1 1

L 1

6).DecomposeChunk o ! '

' l | '
1 6) StringAmay of parts, '
' '
_typelndicor h

-« '
' '
1 L}
1 1
T v
' '
' '
' '
T T
' '
' '
'

'
'
'
)
1
7)' +GetConfigureditem
T
'
'
'

[Chunk is object reference]

opt

[Chunk is parameter reference]

[Else]

Figure 14.9: Interpreter Class Interactions when Reading a Command Block

142 CHAPTER 14. SCRIPT READING AND WRITING

When a Report command is encountered, the name of the items in the list are passed to the command
using the SetRefObject() method. The command validate teh first object as a ReportFile instance,
and the subsequent objects as parameters.

4. Objects with references. Some commands identify objects that have associated objects. An example
of this type of command is the BeginFiniteBurn command, which has the format

BeginFiniteBurn <burnName>(<spacecraftName>)

The objects identified on this line are accessed from the Moderator, and passed into the command as
reference objects.

Once these components have been set on the command, the ScriptInterpreter sets the comment strings
for the new object by accessing the preface and inline pieces in the TextParser, and passing those pieces into
the object. This completes the configuration of the command, so the ScriptInterpreter requests the next
name from the chunkArray. It then repeats the process until all of the named objects have been created.

Assignment Blocks

All logical blocks that are not comment blocks, object definitions, or commands are assignment blocks’®.
Processing for these blocks is shown in Figure 14.10. The result of parsing an assignment block can be either
a changed value in a configured object or a new command inserted into the mission sequence, depending on
the setting of the inCommandMode flag. If the assignment line includes a function call or inline mathematics,
the ScriptInterpreter automatically switches into command mode and an appropriate command is created.

All assignment lines consist of an object identifier, and an optional equals sign followed by a right side
expression (typically referred to as the “right hand side”, or RHS). The only assignment lines that are missing
the equals sign are function calls, which execute a CallFunction command. Assignment lines fall into the
following categories:

1. Object properties. Object property assignments are used to set the internal data on configured objects.
Object properties can be set to constant values, the current values of variables, or the value of an array
clement.

2. Objects. Objects can be set equal to other objects of the same type. When this form of assignment is
used, the Copy() method of the object on the left side of the assignment is called with the object on
the right as the input parameter.

3. Function calls. Function call lines are used to execute GmatFunctions and MatlabFunctions.

4, Mathematics. Scripted mathematics, as described in Chapter 24, are also managed on assignment
lines.

Figure 14.10 shows the sequence of function calls required to interpret assignment lines. The command
configurations segments, shown in green on the figure, execute the sequence described in the preceding section
and shown on Figure 14.9.

14.4.2 Script Writing Call Sequence

The script writing process is considerably simpler than the reading process because all of the objects that
need to be written to script already exist and are configured to meet the user’s needs. Figure 14.11 shows
the interactions performed between the GMAT classes when a script is written.

10 Agsignrment lines in the current scripting for GMAT all start with the text string “GMAT”. Since the Scriptlnterpreter
treats assignment lines last in the parsing sequence, this string is now optional, though recommended for any scripts that will
be read in MATLAB to avoid confusing that system.

143

‘Saquencs.

s o e D e R aE e L g
- | | | . I \ ! | m I I
1 [1] | I
- " | m “ Ve " . " 1 " m 1 F
" UE CE Vo LR AR
U S | I A A R PTTTTTTTTTTTTTT = I CTy T - [AR R = I
| h g
2 = " i i] Mk ¥
< ! ! 1 1 | 1
& - " VT N Pl LT _
| ' I | I i
T T 1| R SO SO N SO IO B “.._J R _:«.V:". Lt ST TR U S 4 2 N el
= | D "m | (I | mm ; “
D L 0l N [&l " g "m a1 al [@1 1
5 " B 1 I I B I
Y N M o i N el I e Y B ool o
:] i ! I | | , ! I g i ! |
P e e ot e
m L] I | | ! l i I h l h 1 | 1 | |
= £ g A HE | e HE "
- X]
mw m u_m 3 £ 3 l m ! _m | . I m | 1 | _m | m | m
jaf i m_c 1 1 (] Ll | ' " | " | ' 1 1 |
. IR INEL RN B N H i
—
et
o
O
0
~ ™\
3 1 B | !
ry _.N 1
- Lm g i
o 2 ‘e e
> F A A
Sy
QO
2,

)
24
(= J
fChunksindude an 7
[Build CalFunctior|

gument Block

881

an A

4

cading

SEQUE

‘ALL

C

14.4.

Figure 14.10: Interpreter Class Interactions when R

144

CHAPTER 14. SCRIPT READING AND WRITING

sd: Scriptinte rpreter Sequence: Writing as:um)

! 1) .Build

a 5) .GetClobalit em Text

6) .WriteText

) R

loop(objectTypes::beginQ,objectTypes:.end())

(1

: 4 7) .GetlistOfConfiguredhems

opt
[If list is not empty)]

8) WriteText

loop{objectName s::begin(),objectName s enﬂ(»)

(1

| g 9) .CerConfigureditem

13) .CetNextCommand

loop(current Cmd = firtCommand,currert Cmd = NULL))
14}.CetGeneratingString

1) Success!

Figure 14.11: Calls Made when Writing a Script

14.4. CALL SEQUENCING FOR SCRIPT READING AND WRITING . 145

A script writing sequence is initiated then the Moderator calls the Build(std::string nameOfFile) method
on the ScriptInterrpeter. If the nameOfFile parameter in the Build() call is not the empty string, then the
ScriptInterpreter sets the script file name on the ScriptRead Writer to the name passed in with the call. Next
the script is opened as an output stream. The header comment is written to the stream, followed by any
global model information contained in the current GMAT run''.

After all of these preliminary data have been written, the ScriptInterpreter writes the configured objects
stored in the ConfigurationManager to the script stream. These configured objects are accessed by type, so
that the resulting script presents the objects in sections based on the object type. The ScriptInterpreter calls
the Moderator to get the list of objects by type. If the list is empty for a given type, the ScriptInterpreter
skips to the next type. Each block of objects is prefaced by a section delimiter comment (as shown above).
The section delimiters are generated internally in the ScriptInterpreter when it determines that there is an
object of a specified type that needs to be written.

Configured objects are written in the following order: spacecraft, hardware, formations, force models,
propagators, Burns, variables and arrays, coordinate systems, solvers, subscribers (plots, views and reports),
and functions. Each configured object supplies its own serialized description, encoded in an std::string. This
string is accessed using the object’s GetGeneratingString() method; the ScriptInterpreter calls GetGenerat-
ingString, and sends the resulting string to the ScriptReadWriter, which writes it to the script stream.

Once all of the configured objects have been written to the output stream, the ScriptInterpreter sends
the block delimiter for the mission sequence to the ScriptReadWriter. The ScriptInterpreter then accesses
the starting command in the mission sequence by calling the GetNextCommand() method on the Moderator.
Since the command sequence is a linked list of GmatCommand objects, the ScriptInterpreter no longer needs
to access the Moderator for command information. It sets an internal pointer to the first command in the list.
This pointer, the current command pointer, is used to call GetGeneratingString() on that command. The
returned string is passed to the ScriptReadWriter, which writes it to the script stream. The ScriptInterpreter
then accesses the next command in the sequence by calling the Next() method. This process repeats as long
as the pointer returned from the call to Next() is not NULL.

BranchCommands automatically include the string data for their branches when their GetGenerat-
ingString() method is called. The ScriptInterpreter does not have any special code that needs to be run
when a BranchCommand appears in the command sequence.

Once all of the commands in the command sequence have been written to the script streamn, the Script-
Interpreter sends the footer comment to the TextReadWriter, which writes out the footer com ment. The
ScriptInterpreter then tell the ScriptReadWriter to close the script stream, completing the script write func-
tion.

1rehe plobal information currently consists of the flags used Ly the SolarSystem to control the update intervals for planetary
positions and the Earth nutation matrix. The Moderator call, GetGloballtemText(), listed here returns the resuit of calling
GetGeneratingString on the current SolarSystem. This method needs to be added to the Moderator,

146 CHAPTER 14. SCRIPT READING AND WRITING

Chapter 15

The Graphical User Interface

292
297

I'm not sure yet how to structure this piece...
15.1 wxWidgets
15.2 GmatDialogs

147

148 CHAPTER 15. THE GRAPHICAL USER INTERFACE

Chapter 16
External Interfaces

2922
292

GMAT can be driven from the MATLAB environment, using the design presented in this chapter. More to
be written later.

16.1 The MATLAB Interface
16.2 GMAT Ephemeris Files

149

150

CHAPTER 16. EXTERNAL INTERFACES

Chapter 17

Calculated Parameters and Stopping
Conditions

Linda O. Jun
Goddard Space Flight Center

Darrel J. Conway
Thinking Systems, Inc.

GMAT contains classes designed to perform numerous data calculations applicable to the analysis of
spacecraft trajectories, orientations, and mission goals. These calculations are performed by the Parameter
class hierarchy. This chapter describes, in some detail, the design of these Parameter classes.

The Parameter classes can be used in conjunction with the propagators to perform precision propagation,
enabling the ability to stop on calculated values provided by the Parameter objects. Section 17.2 provides
a description of the stopping condition classes. Stopping conditions are used by the Propagate command,
described in Section 22.2.2.

17.1 Parameters

«To be completed.»

17.2 Stopping Conditions and Interpolators

Propagation in GMAT is described in Section 22.2.2. The propagation algorthme described there include
descriptions about stopping at specific locations on a SpaceObject’s trajectory, and include a discussion of
the use of interpolators for these stopping points. The parameters and interpolators used for stopping are
encapsulated in the stopping condition classes and interpolator classes shown in Figure 17.1. These classes
are described in the following sections.

17.2.1 Stopping Conditions

Stopping conditions are implemented in two classes, as shown in the figure. These classes are described
below.

Note: These sections need to be filled in. There will be some updates as implementation of the Propagate
updates proceed.

151

152 CHAPTER 17. CALCULATED PARAMETERS AND STOPPING CONDITIONS

cd: Stopping Condition Classes)

7

mirderpolator

Figure 17.1: Stopping Condition Classes

The BaseStopCondition Class
Methods

e bool Initialize()

¢ virtual bool Evaluate() = 0

e virtual bool IsTimeCondition() = 0

¢ virtual void AddToBuffer(bool isInitialPoint) = 0
e bool Validate()

e void Reset()

s Real GetStoplnterval()

¢ Integer GetBufferSize()

¢ Real GetStopEpoch()

The StopCondition Class
Methods

e virtual bool Evaluate()

17.2. STOPPING CONDITIONS AND INTERPOLATORS 153

¢ virtual bool IsTimeCondition()

e virtual void AddToBuffer(bool isInitialPoint)
¢ Real GetStopEpoch()

e GmatBase Clone()

17.2.2 Interpoiators

GMAT implements interpolators using a framework implemented in the Interpolator base class. Each derived
class uses the Interpolator data structures and methods that implement the data buffers, add points to them,
clear the buffers, and provide buffer size information. The base class provides the interface to the call to
obtain interpolated data as an abstract method, Interpolate().

The Interpolator Class

Interpolator is the base class for all GMAT interpolators. It implements the data storage and access functions
needed by interpolation routines, and provide the facilities needed to store and access the data in a ring
buffer sized to match the interpolation algorithm.

Class Attributes

¢ Real* independent: The array of independent data used for interpolation.

¢ Real** dependent: The dependent data arrays used for interpolation.

Methods

¢ bool AddPoint(Real ind, Real* date): Adds independent and dependent data to the arrays of
data elements. The data is stores in these arrays using a ring buffer allocation, so that data does not
need to be copied when the number of points in the buffer exceeds the allocated array sizes. Instead
the new data overwrites the oldest values in the arrays.

e void Clear(): Resets teh rind buffer pointers, so that the buffers appear to be empty on their next
use.

o Integer GetBufferSize(): Returns the number of data points that can be stored in the ring buffer.
e virtual bool Interpolate(Real ind, Real* results) = 0: The abstract method that gets overridden
to implement specific interpolation algorithms.
The Linear, Cubic Spline, and Not-a-Knot Interpolators

GMAT implements three interpolators: a linear interpolator, a standard cubic spline interpolator using the
algorithm described in [NRecipes], and the not-a-knot algorithm described in [MathSpec]. These classes
implement two class specific methods:

Methods

o GmatBase* Clone(): Calls the class’s copy constructor to make an exact copy of the interpolator.

s virtual bool Interpolate(Real ind, Real* results): Implements the specific interpolation algo-
rithm used by the interpolator.

The Clone method behaves as in all other GmatBase subclasses. The Interpolate() methods implement the
interpolator specific algorithms, as described in the references.

154

CHAPTER 17. CALCULATED PARAMETERS AND STOPPING CONDITIONS

Chapter 18

Propagators = Integrators |+ Forces

Darrel J. Conway
Thinking Systems, Inc.
18.1 Propagator Overview

18.1.1 The Equations of Motion

18.1.2 Division of Labor: Integrators and Forces

18.2 Integrators

18.3 The GMAT Force Model

18.3.1 The PhysicalModel Class

18.3.2 The ForceModel Class
Adding and Removing Forces

18.3.3 Applying Forces to Spacecraft
18.4 The State Vector

156 CHAPTER 18. PROPAGATORS = INTEGRATORS -+ FORCES

Chapter 19

Force Modeling in GMAT

Darrel J. Conway
Thinking Systems, Inc.

Chapter 18 describes GMAT’s propagation subsystem, and introduced the force model components used
to perform precision propagation. This chapter describes the implementation of individual components of
the force model.

19.1 Component Forces

19.1.1

19.1.2
19.1.3

19.1.4

19.1.5

Gravity from Point Masses

Gpm = —r—l;'f"
Aspherical Gravity
Solar Radiation Pressure
Rov ATo
= —P_ E—
asrp ©Cr RS, mrd)
Atmospheric Drag
1C4A , Ure
Gdrag = =5 = PUrel,
€

Engine Thrust

(19.1)

(19.2)

(19.3)

CHAPTER 19. FORCE MODELING IN GMAT

Chapter 20

Maneuver Models

Darrel J. Conway
Thinking Systems, Inc.

159

160 CHAPTER 20. MANEUVER MODELS

Chapter 21

Mission Control Sequence Commands

Darrel J. Conway
Thinking Systems, Inc.

21.1 Command Overview

Users model the evolution of spacecraft over time in GMAT using a mission control sequence that consists of
a series of commands. These commands are used to propagate the spacecraft, model impulsive maneuvers,
turn thrusters on and off, make decisions about how the mission should evolve, tune parameters, and perform
other tasks required to perform mission analysis. This chapter describes the core components of the system
that implement this functionality. Chapter 22 provides a more in depth examination of the specific commands
implemented in GMAT, providing details about the implementation of each.

21.2 Structure of the Sequence

The mission control sequence is designed to present users with a configurable, flexible mechanism for control-
ling the GMAT model. Commands may manipulate modeled components, control model visualization and
other output data, determine the order of subsequent operations through looping or branching, tune param-
eters to meet mission criteria, or group commands together to be executed as a single block. Each GMAT
Sandbox is assigned its own mission control sequence!. This design feature drives the late binding features
of objects in the GMAT Sandbox (see Section 4.2), which, in turn, places demands for late binding support
on the GMAT commands. The following paragraphs provide an overview of these features. Implementation
details are described later in the chapter.

21.2.1 Command Categories
GMAT commands can be broken into four distinct categories: “Regular” commands, Control Logic com-

mands, Solver commands, and Function commands, as described here.

Regular commands are commands that perform a single, isolated operation and do not depend on any
other command to operate. Examples of the regular command are the Propagate command and the Maneuver
command. The regular commands can appear anywhere in the Mission Control Sequence.

I'While the current implementation of GMAT has a single Sandbox, GMAT is designed to support multiple sandboxes.

161

162 CHAPTER 21. MISSION CONTROL SEQUENCE COMMANDS

Control Logic commands are used to perform control flow operations in the Mission Control Sequence.
Each control logic command controls a list of commands - called the command subsequence - that is executed
by the control logic command when that command determines that execution is needed. All control logic
commands are paired with a matching End command. The End commands identify the end of the command
subsequence controlled by the control logic command.

GMAT supports three control logic commands: If, While and For, which are paired with the commands
EndIf, EndWhile and EndFor. For commands are used to iterate over the subsequence for a fixed number
of iterations. If commands provide a mechanism to fork the Mission Control Sequence based on conditions
detected during execution. While commands are used to iterate over the command subsequence until some
condition is met.

Solver commands are similar to control logic commands in that they manage a command subsequence
and use that subsequence to explore how changes in parameters affect the results of executing the subse-
quence. GMAT has three classes of solver commands: Targeters, Optimizers, and Iterators. Targeters adjust
parameters in order to meet a specific set of goals. Optimizers also adjust parameters, in order to find the
set that optimizes a problem objective. Iterators are used to observe the results of changes to parameters,
so that the statistical behavior or the solution space of the subsequence can be measured and recorded.

One key difference between solver commands and control logic commands is that for the control logic
commands, the changes to the spacecraft and other mission components applied during a subsequence run
affect subsequent runs of the subsequence. Solvers reset the spacecraft states from one iteration to the next,
so that the effect of changes to the input parameters are applied to the same set of initial conditions from
one iteration of the subsequence to the next.

Functions are used in GMAT to generalize common tasks, to communicate with MATLAB, and to en-
capsulate multistep tasks into a single call in a mission. The function subsystem design will be documented
at a later date.

21.2.2 Command Sequence Structure

The mission control sequence is implemented as a linked list of command objects. The sequence is constructed
from a script by appending links to the list as they are constructed by the script interpreter. Commands that
control subsequences build the subsequences by managing a child linked list. The child list is constructed
by appending links until the related subsequence termination command is encountered, terminating the
subsequence list.

Users can also interact with the command sequence from the GMAT GUIL these interactions let users
append commands to the sequence, insert commands at intermediate points, and remove commands. Users
view the sequence as a hierarchical tree, as shown in Figure 21.1. The mission is modeled by executing the
commands in the linked list sequentially. The mission tree shown on the GUI provides a graphical view
into the linked list, including the command subsequences for commands that control subsequences. The top
node in the tree is the the first link in the list; in the figure, that node is a Propagate command, labeled
Propagatel on the mission tree. The entire linked list consists of seven nodes: Propagate - Propagate -
Target - Propagate - Propagate - Target - Propagate. Each of the target nodes controls a subsequence used
in the targeting process. The first of these nodes is expanded in the figure to show the subsequence. For
this example, the subsequence consists of five links: Vary - Maneuver - Propagate - Achieve - EndTarget.

Rework this piece — it’s not currently used GMAT does not restrict the depth of the nesting levels
for the commands that control subsequences. The command classes include a counter that monitors the
current nesting level in the command sequence. The nesting level is set when the command is added to the
linked list. The main command sequence has a nesting level of 0. Subsequences off of the main sequence
increment the level to 1; subsequences contained in these subsequences have a nesting level of 2, and so forth.
The subsequence termmination commands, typically identified by an “End” prefix, have a nesting level set

21.3. THE COMMAND BASE CLASSES 163

Figure 21.1: GMAT Command Sequence in the GUI

to the same level as the rest of the subsequence, because they are the last command in the subsequence, and
therefore exist at the subsequence level.

21.2.3 Command-Sandbox Interactions

When a mission control sequence is run, all of the configured objects used in the run are copied from the
Configuration Manager into the Sandbox used for the run. These copies are place into a standard template
library (STL) map matching the object names to pointers to the local copies in the Sandbox. These pointers
need to be bound to the commands prior to execution of the mission control sequence. This late binding is
performed during the initialization phase described below. Additional details about the late bindign strategy
implemented in GMAT can be found in Section 4.2.

During mission control sequence execution, the commands interact with the object copies to model the
interactions dictated for the model, as described in the execution section below. These interactions change the
local copies, modeling the evolution of the system. Once the command sequence completes execution (either
by finishing the sequence, encountering a “Stop” command, or detecting a user generated stop event), each
GMAT command is given the opportunity to complete any pending operations. This final step, described
in the Finalization section below, is used to close open file handles, clean up temporarily allocated memory,
and perform any other housekeeping tasks needed to maintain the mission control sequence for subsequent
user actions.

21.3 The Command Base Classes

Figure 21.2 shows core properties of the base classes used in the Command subsystem. The top level
base class, GmatCommand, provides linked list interfaces and methods used to parse command scripts.
BranchCommand adds capabilities to implement and execute commands that run subsequences - specifically,
the Control Logic, Solver, and Function categories of commands. Additional capabilities required by the
Control Logic commands are provided by the ConditionalBranch class. Capabilities shared by all Solvers
are implemented in the SolverBranchCommand class.

21.3.1 List Interfaces
To be filled in

164 CHAPTER 21. MISSION CONTROL SEQUENCE COMMANDS

Command Base asses }

Figure 21.2: Base Classes in the Command Subsystem

21.4. SCRIPT INTERFACES 165

21.3.2 Object Interfaces
To be filled in

21.3.3 Other Interfaces
To be filled in

21.4 Script Interfaces

The standard script syntax for a command is the command name followed by zero or more text strings
separated by white space. Commands that are scripted using this syntax are handled generically in the
Interpreter subsystem, as described in Chapter 14%2. Commands that use more complex scripting than a
simple list of elements manage their own parsing in a customized implementation of the InterpretAction()
method. This section describes the command base class structures and methods that are used by commands
that override InterpretAction() and parse their configurations internally. Parsing for Commands that do not
override the InterpretAction() method is handled in the ScriptInterpreter. The methods described in the
following text are not used by those Commands.

21.4.1 Data Elements in Commands

Commands can be scripted to describe the actions taken on elements of the model (i.e. objects instantiating
GMAT classes), or to manipulate specific data elements of these objects based on the rules encoded into the
command. When performing the latter task, the specific data element is accessed using an ElementWrapper
helper object that can manipulate data represented by the following types: numbers, object properties,
variables, array elements, and Parameter objects. In addition, commands may be construsted in the future
that operate on Array objects and strings; the infrastructure needed for these objects is included in the
wrapper enumerations, but not yet implemented.

The data wrappers are described in Section 21.4.3%. These wrappers are designed to be used by commands
when needed to handle single valued Real data elements in the commands. The Gmat namespace includes
an enumeration, WrapperDataType, with entries for each of the supported data types. This enumeration
is described in Section 7.3.1. The data wrappers are used to standardize the interface to numbers, object
properties, variables, array elements, and other Parameter objects to perform the command operations.
Arrays and Strings are handled separately by the commands — arrays, because they can have more than one
value, and strings, because they do not provide Real number data for use in the commands.

Figure 21.3 shows an overview of the process used to build and validate commands encountered in scripts
and on the GUI The portions of the digram colored orange are performed through calls launched by the
ScriptInterpreter. Commands created from the GUI follow the procedure shown in purple. In both cases,
once the command has been built and the early binding data has been set, the command is validated using
methods provided by the Interpreter base class. The calls made for this validation include calls that build
the ElementWrapper members used in the command. These calls are shown in the figure in blue.

The process shown in Figure 21.3 must be performed before the mission control sequence can be executed
in a Sandbox. That includes identifying all of the names of configured objects that the sequence will need,
creation of any Parameters (performed in the CheckUndefinedReference method) that will be required, and
creation of the DataWrappers that will need to be populated during Initialization in the Sandbox.

THe following subsections describe the support methods provided by the Interpreter and GUI subsystems
to configure the command objects. These paragraphs are separated to match the three sections of Figure 21.3.

280me commands that do not follow this generic description are also handled in the Interpreters at this writing.
37he Elemeui Wrappers use the Adapter design paiteru, described in B.4

166

ad: Com mand Parsing and Validation

Command Created

from Script Returns
false

SaveData called

. for GUI panel J

Command Configured
from the GUI

Command ready
Initialization

Figure 21.3: Calls Made in the Interpreters to Build and Validate Commands. Specific calls to the command
are prefaced on this diagram with the C++ pointer notation, “cmd->>".

Scripted Command Configuration: Interpreter Support

Scripted commands are configured using the Interpreter::CreateCommand method called from the Scriptin-
terpreter while parsing a script. The parsing process followed for commands is described at a high level in
Section 14.4.1. The Interpreter base class provides several methods that facilitate that process, described
here:

¢ GmatCommand* CreateCommand(const std::string &type, const std::string &desc, bool
&retFlag, GmatCommand *inCmd = NULL): The method that drives the command creation
process for the Scriptinterpreter. This method takes the generating string for the command as found
in the script, and creates an instance of the corresponding GmatCommand object. It then calls
InterpretAction() on the command; if that call fails, it calls the Interpreter’s AssembleCommand
method. Finally, it builds any wrappers needed by the command, and validates that referenced objects
used in the command have been created.

¢ bool AssembleCommand(GmatCommand *cmd, const std::string &desc): Commands that
are not internally parsed are configured in this method. '

Once this step has been completed, the command has been created and strings have been set decribing
all objects and data wrappers referenced by the command. The data wrappers are not yet created; thaqt
process is described after the next subsection.

21.4. SCRIPT INTERFACES

Command Configuration in the GUI

The GMAT GUI configures commands directly, based on the entries made by a user on the GUI panel
corresponding to the command. Commands are created when a user inserts them into the mission control
sequence, configured with default settings. When a user opens the configuration panel, makes changes, and
then applies the changes using either the Apply of OK button, the panel calls an internal method, “SaveData”,
which passes the data on the panel to the command object.

The data passed into the object identifies all of teh objects referenced by the command. Commands
configured by the GUI typically get populated with valid descriptors; as we will see shortly, the validation is
repeated after the data wrappers are built, as described in teh next section. All data that requires wrappers
is passed into the command as an std::string, using the SetStringParameter method. The command stores
these data for use contructing the wrappers.

Interpreter Support for Wrappers and Validation

Once GMAT has completed the steps described above, the command is configured with strings describing
wrappers and referenced objects, along with any other command specific data needed to fully configure the
command. The final steps used configuring the command are shown in blue on Figure 21.3. These steps are
all encapsulated in the Interpreter method ValidateCommand. The methods in the Interpreter base class
used for wrapper construction and validation are provided here:

¢ void ValidateCommand(GmatCommand *cmd): The method that executes the steps shown in
blue on the figure. This method is called directly from the GUIL, and as the final piece of CreateCom-
mand from the ScriptInterpreter.

o ElementWrapper* CreateElementWrapper(const std::string &description): This method
takes the descripion of a wrapper object and builds the corresponding wrapper.

bool CheckUndefinedReference(GmatBase *obj, bool writeLine = true): Method used to
verify that all referenced objects needed by the object (in this case, a Command) exist. The command
is passed in as the first parameter. The second parameter is a flag indicating if the line number in the
script should be written; for commands, that flag is left at its default true value.

CreateElementWrapper Of these methods, the CreateElementWrapper bears additional explanation.
The following steps are implemented in that method:

1. Determine if the string is a number. If so, create a NumberWrapper, set its value, and return the
wrapper.

2. Check to see if there a parentheses pair in the string. If so, perform the following actions:

o Check to see if the text preceding the opening paren is an array. If not, throw an exception.
e Create an ArrayElementWrapper, and set the array name to the text preceding the opening paren.
e Separate text enclised in the parentheses into row and column strings.

o Call CreateElementWrapper() for the row and column strings, and set the corresponding wrappers
and strings in the ArrayElementWrapper.

e Return the wrapper.

3. Check to see if there a period in the string. If so, the wrapper needs to be either an ObjectProperty-
Wrapper or a ParameterWrapper. Performs these steps to create the correct type:

e Break apart the string using the GmatStringUtil::ParseParameter method.

168 CHAPTER 21. MISSION CONTROL SEQUENCE COMMANDS

* Find the owner object, and check to see if it has the type provided in the string. If so, create an
ObjectPropertyWrapper, otherwise create a ParameterWrapper

s Set the description string.
Return the resulting wrapper.

4. Check to see if the string describes a Variable. If so, create a VariableWrapper, set the description and
value, and return the wrapper; otherwise, throw an exception*.

21.4.2 Command Support for Parsing and Wrappers

The command base class, GmatCommand, includes an instance of the TextParser described in Section 14.3.3,
along with an include statement for the GmatStringUtil namespace definition (see Section 8.2 for details of
the GmatStringUtil namespace). These inclusions make all of the methods used for general purpose parsing of
text from the TextParser and the low level GmatStringUtil namespace functions available for use in command
parsing. These elements are used by custom InterpretAction() methods when they are implemented for the
commands.

The base class also provides methods used during the creation and validation of the data wrappers. These
methods are used by the ScriptInterpreter, interacting with the Moderator in the Interpreter::CreateCommand()
method, to validate the objects required by the data wrappers. The methods supplied by the command base
class to support data wrappers are described in Section 21.4.4. Before describing these methods, the wrapper
classes will be described.

21.4.3 Data Type Wrapper Classes

Many of the commands need to be able to treat all of the usable data types through a common interface.
Table 21.1 presents representative examples to the allowed data types in commands. The data type interface
used by the commands is captured in the ElementWrapper class, shown with its subclasses in Figure 21.4.
Derived classes are available for each of the supported types, using these classes: NumberWrapper, Ob-
jectPropertyWrapper, VariableWrapper, ArrayElementWrapper, and ParameterWrapper. The Array class,
when accessed as an entity rather than as a data provider for a single Real number, is handled as a special
case by any commmand designed to work with Array instances. As indicated in the table, no current command
uses this capability, though it will be supported in the NonlinearConstraint command in a future release of
GMAT. Similarly, strings are handled separately.
The wrapper classes implement the following methods:

o std::string GetDescription() Returns the current description string for the wrapper.
s void SetDescription(const std::string &desc) Sets the description string.

¢ const StringArray &GetRefObjectNames(): Returns a StringArray containing a list of all refer-
ence objects used by the wrapper.

¢ bool SetRefObject(GmatBase *obj): Passes the a pointer to the reference object into the wrapper
so it can be assigned to the correct internal member.

e void SetupWrapper(): Takes the description string and breaks it into components for later use.

In addition, each ElementWrapper provides two abstract interfaces that can be used during command
execntion:

» Real EvaluateReal() is used to calculate the current value of the wrapped object, returning a Real
number when fired.

*A later build will detect and return NULL for Arvay or String objects, so that they can be handled when needed.

21.5. EXECUTING THE SEQUENCE 169

Table 21.1: Script Examples of Parameters Used in Commands

Type Examples Notes
Number 1, 3.1415927, 3.986004415¢5, | Integers and Reals are treated identically
6.023e23
Object Parameter | Sat.X, Burn.V, Any object parameter
Thruster.ScaleFactor
Parameters Sat.Longitude, Sat.(Q4 Any Calculated Parameter
Variables I, Var Any Variable object
Array Element A(2, 3), B(1, J), Any array entry. Array row and column indices
C(D(1, K), E(F(2, 3), L)) can be specified using any allowed type
Array A An entire array. Arrays are not yet supported
in GMAT commands. The NonlinearConstraint
command will be updated to use single column
arrays (aka vectors) in a later build.
String “Tbis is a string” A block of text treated as a single entity.

¢ bool SetReal(const Real value) takes a Real number as input, and sets the wrapped element to
that value. It returns a flag indicating success or failure of the data setting operation.

The derived wrapper classes implement these methods (and override the other methods as needed) to access
the data structures corresponding to each data type.

21.4.4 Command Scripting Support Methods

The Interpreter subsystem provides the methods needed to construct the data wrapper classes and pass the
wrappers into the commands. GmatCommand provides the following methods to support this process:

e void ClearWrappers(): Deletes all current wrappers in preparation for a new set of wrapper in-
stances.

¢ const Stringarray &GetWrappedObjectNameArray(): Returns a list of all wrapper descriptions
so that the required wrappers can be constructed.

¢ bool SetElementWrapper(ElementWrapper *wrapper): Sends the wrapper into the command.
If the wrapper is set correctly, this method returns true. If the description contained in the wrapper
does not match a description in the command, the wrapper is destroyed, and false is returned from
this method. All other error result in a thrown exception.

Note that commands own the wrappers passed in, and are responsible for managing the associated memory.

21.5 Executing the Sequence

The mission control sequence is run in a GMAT Sandbox, following a series of steps described in Section 4.2.1.
In this section, the command specific steps are described in a bit more detail.
21.5.1 Initialization

21.5.2 Execution
To be filled in

170 CHAPTER 21. MISSION CONTROL SEQUENCE COMMANDS

od: Wrappers Used by Commands J

Figure 21.4: Parameter Wrappers Used by Commands

21.5.3 Finalization
To be filled in

21.5.4 Other Details
To be filled in

Chapter 22

Specific Command Details

Darrel J. Conway
Thinking Systems, Inc.

Chapter 21 provided an introduction and description of the GMAT command classes and their usage
when building a Mission Control Sequence. In this chapter, the command classes are described on a class
by class level.

22.1 Command Classes

Figure 22.1 shows the command classes incorporated into GMAT at this writing. The base class elements
GmatCommand, BranchCommand, ConditionalBranch, and SolverBranchCommand are described in Chap-
ter 21. This chapter looks at the details of the derived classes shown in the figure, providing implementation
specifics for these commands. The following paragraphs review the role played by the command base classes
and identify pertinent utilities supplied by these bases that the derived clagses use to implement their capa-
bilities.

22.1.1 The GmatCommand Class

Every entry in the mission control sequence is implemented as a class derived from GmatCommand. This
base clasgs defines the interfaces used for the linked list structures that implement the control sequence. The
next and previous members implement the links for the list structure.

Commands are initialized in the Sandbox, as described in Section 4.2.1. THey contains three data
structures, set by the Sandbox, that are used to set pointers correctly prior to execution. These structures,
objectMap, solarSys, and publisher, are the structures managed by the Sandbox to run a misison control
sequence. The objectMap and solarSys are the local copies of the configured objects and space environment
used when running the model, and need to be accessed and used to set the pointers required in the commands
to run in the Sandbox. This setup is performed in the command’s Initialize() method. The publisher
member is a pointer to the global GMAT Publisher, used to send data to the Subscriber subsystem.

Each GmatCommand implements the Execute() method defined in GmatCommand. This method, along
with the internal supporting data structures and support methods, distinguish one command from another.
Execute() performs the actions built into the command, manipulating the configured objects to make the
model evolve in the Sandbox.

The GmatCommand class provides a generic implementation of the Interpret Action() method, used when
parsing lines of script. Derived classes that need special handling for this parsing override InterpretAction()
to implement the parsing. The GmatCommand base includes an instance of the TextParser so that derived
commands have the facilities provided for parsing.

171

172 CHAPTER 22. SPECIFIC COMMAND DETAILS
| & Command Class Hierarchy J

Figure 22.1: GMAT Command Classes.
Classes shown in vellow are base classes, green are control flow commands, blue are Solver related commmands,
and orange are the stand alone commands.

22.1.2 Branch Commands

Nesting in the mission control sequence is implemented through the BranchCommand base class. This class,
derived from GmatCommand, adds one or more branches to the main misison sequence. The core feature
os the BranchCommands is the ability to execute these branches when conditions dictate that the branch
should execute. This feature provides users with the ability to execute commands conditionally, to loop over
a set of commands, and to run routines that tune the mission to meet or optimize selected goals.

Conditional Branch Commands

Some branch commands need the ability to evaluate conditions in order to determine if a branch should
be executed. THe ConditionalBranch class provides the structures needed to identiofy and evaluate these
conditions.

Solver Commands

The Solver subsystem uses several commands designed to interoperate with the Solvers. Because of the
close linkage between these commands and the corresponding solvers, the description for these commands
is given in Section 23.7.1. The commands defined in that section are the branch commands Iterate/EndIt-
erate, Target/EndTarget, and Optimize/EndOptimize, and the GmatCommands Vary, Achieve, Minimize,
NonlinearConstraint, Gradient, and TBD commands associated with the scanners.

22.2. COMMAND DETAILS . 173

The nature of the problem encountered when running the Solvers requires that the sytates of many of the
objects defined in the Sandbox be stored at the start of the Solver execution, so that they can be reset as the
Solver iterates over the variables used to perform its tasks. The SolverBranchCommand class provides the
data structures and methods needed to maintain these states while the Solvers are performing their tasks.

22.1.3 Functions
To be filled in

22.2 Command Details

22.2.1 The Assignment Command

Assignment commands implement the methods necessary for users to pass data into and between objects,
and to create copies of objects at specific points in the model, for use in the mission control sequence.
Assignment commands are used to set one or more object properties while executing the mission control
sequence. As can be see in Table 22.1, the command has the general form

LHS = RHS (22.1)

where the LHS entry is a single object or object property, and the RHS entry is a number, object or object
property, or equation.

Table 22.1: Assignment Command

Script Syntax: GMAT Argl = Arg2;

Command Description

Argl Default: N/A . Options:|Spacecraft Parameter, Array element, Variable, or any
other single element user defined parameter]: The Argl option allows the user to
set Argl to Arg2. Units: N/A.

Arg2 Default: N/A . Options:|Spacecraft Parameter, Array element, Variable, any other
single element user defined parameter, or a combination of the aforementioned pa-
rameters using math operators|: The Arg2 option allows the user to define Argl.
Units: N/A.

Script Examples

% Setting a variable to a number

GMAT testVar = 24;

% Setting a variable to the value of a math statement
GMAT testVar = (testVar2 + 50)/2;

22.2.2 The Propagate Command

Propagation is controlled in the Mission Control Sequence using the Propagate command, which has syntax
described in Table 22.2.

B

Table 22.2: Propagate Command

174

CHAPTER 22. SPECIFIC COMMAND DETAILS

ScriptSyntax

Propagate Mode BackProp PropagatorName (SatListl,{StopCondList1})
BackPropPropagatorName (SatListN,{StopCondListN})

Option

Option Description

BackProp

Mode

PropagatorName

SatListN

StopCondListN
/Parameter

StopCondListN
/Condition

Default: None. Options: | Backwards or None |: The BackProp option allows the
user to set the flag to enable or disable backwards propagation for all spacecraft in
the the SatListN option. The Backward Propagation GUI check box field stores
all the data in BackProp. A check indicates backward propagation is enabled and
no check indicates forward propagation. In the script, BackProp can be the word
Backwards for backward propagation or blank for forward propagation. Units: N/A.

Default: None. Options: | Synchronized or None |: The Mode option allows the
user to set the propagation mode for the propagator that will affect all of the
spacecraft added to the SatListN option. For example, if synchronized is selected,
all spacecraft are propagated at the same step size. The Propagate Mode GUI field
stores all the data in Mode. In the script, Mode is left blank for the None option
and the text of the other options available is used for their respective modes. Units:
N/A.

Default: DefaultProp. Options: | Default propagator or any user-defined propaga-
tor |: The PropagatorName option allows the user to select a user defined propagator
to use in spacecraft and/or formation propagation. The Propagator GUI field stores
all the data in PropagatorName. Units: N/A.

Default: DefaultSC. Options: | Any existing spacecraft or formations, not being
propagated by another propagator in the same Propagate event. Multiple spacecraft
must be expressed in a comma delimited list format. |: The SatListN option allows
the user to enter all the satellites and/or formations they want to propagate using
the PropagatorName propagator settings. The Spacecraft List GUI field stores all
the data in SatListN. Units: N/A.

Default: DefaultSC.ElapsedSecs =. Options: | Any single element user accessi-
ble spacecraft parameter followed by an equal sign |. The StopCondListN option
allows the user to enter all the parameters used for the propagator stopping condi-
tion. See the StopCondListN/Condition Option/Field for additional details to the
StopCondListN option. Units: N/A.

Default: 8640.0. Options: | Real Number, Array element, Variable, spacecraft
parameter, or any user defined parameter . The StopCondListN option allows
the user to enter the propagator stopping condition’s value for the StopCondListN
Parameter field. Units: Dependant on the condition selected.

Script Examples

% Single spacecraft propagation with one stopping condition

22.2. COMMAND DETAILS

Table 22.2: Propagate Command . ..continued

% Syntax #1

Propagate DefaultProp(DefaultSC, {DefaultSC.ElapsedSecs = 8640.0});
% Single spacecraft propagation with one stopping condition

% Syntax #2

Propagate DefaultProp(DefaultSC) {DefaultSC.ElapsedSecs = 8640.0};

% Single spacecraft propagation by one integration step
Propagate DefaultProp(DefaultSC);

% Multiple spacecraft propagation by one integration step
Propagate DefaultProp(Sati, Sat2, Sat3);

% Single formation propagation by one integration step
Propagate DefaultProp(DefaultFormation);

% Single spacecraft backwards propagation by one integration step
Propagate Backwards DefaultProp(DefaultSC);

% Two spacecraft synchronized propagation with one stopping condition
Propagate Synchronized DefaultProp(Satl, Sat2, {DefaultSC.ElapsedSecs = 8640.0});

% Multiple spacecraft propagation with multiple stopping conditions and propagation settings
% Syntax #1

Propagate Propi(Satl,Sat2, {Satl.ElapsedSecs = 8640.0, Sat2.MA = 90})
Prop2(Sat3, {Sat3.TA = 0.0});

% Multiple spacecraft propagation with multiple stopping conditions and propagation settings
% Syntax #2

Propagate Propi(Satl,Sat2) {Satl.ElapsedSecs = 8640.0, Sat2.MA = 90} ...
Prop2(Sat3) {Sat3.TA = 0.0};

Each Propagate command identifies one or more PropSetup!, consisting of an integrator and forcemodel
defined to work together. Each PropSetup identifies one or more SpaceObject that it is responsible for
advancing through time. This propagation framework allows users to model the motion of one or more
SpaceObjects using different propagation modes, and to advance the SpaceObjects to specific points on the
SpaceObject’s trajectories.

Propagation Modes
The Propagate command provides several different modes of propagation based on the settings passed into

the command. These modes are described in the following list:

¢ Unsynchronized Propagation Unsynchronized propagation is performed by executing the PropSe-
tups assigned to a Propagate command independently, allowing each PropSetup to find its optimal
step without regard for other PropSetups assigned to the command.

'The object used in this role in GMAT is an instance of the PropSetup class. On the GUI and in GMAT scripting, the
keyword usecd for PropSetup instances is “Propagator.” In this document T’ll use the class name, PropSetup, whea referring to
these objects,

176 CHAPTER 22. SPECIFIC COMMAND DETAILS

e Synchronized Propagation Synchronized propagation steps the first PropSetup assigned to the
command using its optimal step, and then advances the remaining PropSetups by the same interval,
so that the epochs for all of the PropSetups remain synchronized during integration.

¢ Backwards Propagation GMAT usually integrates SpaceObjects so that the epoch of the SpaceOb-
ject increases. Integration can also be performed so that the epoch decreases, modeling motion back-
wards in time.

e Propagation to Specific Events Propagation can be performed in GMAT until specific events
occur along a SpaceObject’s trajectory. When the one of these specified events occurs, the Propagate
command detects that a condition requiring termination of propagation has occurred, finds the time
step required to reach the epoch for that termination, and calls the PropSetups to propagate the
SpaceObjects for that period.

¢ Single Step Propagation When no specific events are specified as stopping conditions, the Propagate
command takes a single propagation step and exits.

The Propagation Algorithm

ad: Propegation Overview [
Resumption of Time to
prevous calr? check
Propagate:.Exeate0

called

Exeaution
compidc

step
mode?

Figure 22.2: Executing the Propagate Command

The core propagation code is shown in blue. Steps taken during startup and shutdown are colored
green. Steps used when stopping propagation at specific events are shown in red; additional details
for the stopping condition algorithm are described below and shown in Figure 22.3.

Figure 22.2 shows the basic process implemented in the Propagate command. Propagation usually
consumes the bulk of the time required to run a mission in GMAT. Because of this feature, the Propagate
command was written to support execution across several steps in the Sandbox, so that the Sandbox can
poll for user interruption during propagation. There are several initialization steps required at the start

22.2. COMMAND DETAILS " 177

of propagation that should not be performed when reentering the command from a polling check in the
Sandbox. These steps are performed in the PrepareToPropagate() method identified in the figure.

Once the Propagate command is ready to perform propagation, the force models used in propagation are
initialized to the start of the step about to be taken, and then the PropSetups take a single integration step.
The resulting integrated states are passed into the relevant SpaceObjects through calls to the ForceModel’s
UpdateSpaceObject methods.

The next action depends on the propagation stopping mode: if the Propagate command is operating in
single step mode, propagation is complete and control exits the propagation loop. Otherwise, the stopping
conditions are evaluated and compared to the desired stopping events. If no stopping conditions have been
passed or met, the integrated state data is passed to GMAT’s Publisher for distribution. The command
then determines if an interrupt check is required; if so, control is returned to the Sandbox for the check,
otherwise, the propagation loop resumes with an update to the ForceModel.

If a stopping condition was triggered, it is first tested to ensure that the triggered stopping condition is
not an artifact of a previous propagation execution. This test is only performed during the first propagation
step of a new execution. If the stopping condition passes this validation, control leaves the main propagation
loop and enters the control logic implemented to terminate propagation at a specific stopping event, as
described in the next section.

Once the propagation has been terminated, any transient forces set during propagation are cleared from
the force models, command summary data is set when running with stopping conditions, and execution is
completed.

The Stopping Algorithm

Propagation performed to reach specific events is terminated at points within a fixed tolerance of those
events. The algorithm employed to take this final step is shown in Figure 22.3. Propagation used time as
the independent parameter to evolve the states of the propagated SpaceObjects, so the stopping condition
problem can be reduced to finding the time step that moves the SpaceObjects from the propagated state
immediately prior to the desired event up to that event. The steps shown in the figure are used to find that
time step, and to advance the SpaceObject states by that amount.

Stopping Condition Evaluation. The top portion of the figure shows the basic stopping condition
evaluation procedure in the command. First the force model is prepared for a propagation step. If the
stopping condition is a time based condition, the time step is estimated by subtracting the desired time from
the current time. Stopping conditions that are not time based are estimated using a cubic spline algorithm,
designed to avoid knots at the second and fourth points used when building the splines (see the description
of the not-a-knot cubic spline in [MathSpec]). The steps performed when running the cubic spline are shown
in the central portion of the figure and described below.

After the time step needed to reach the desired event has been estimated, the SpaceObjects are propagated
using that time step. The resulting values for the stopping parameters are calculated and compared to the
desired stop values. If the result is not within the stopping tolerance for the propagation, a further refinement
is made to the time step estimate using a secant based implementation of Newton’s method, described below
and illustrated in the bottom portion of the figure.

Once the final propagation step has been performed to acceptable tolerance, the resulting propagated
states are applied to the SpaceObjects. The Publisher is passed the new state data and instructed to empty
its data buffers. This completes the stopping algorithm.

Cubic Spline Details. The heart of the stop time estimation for events that are not time based is the not-
a-knot cubic spline algorithm. The problem solved using this algorithm inverts the roles of the independent
variable - the propagation time - and the dependent variable -- the parameter that is advancing to reach
some specific event - so that the desired time step can be generated based on the desired event value. Since
we already know the time step that advances the SpaceObject states from one side of the desired event to

178 CHAPTER 22. SPECIFIC COMMAND DETAILS

ogic } —
Propagste:TakeF InalStap()
caled
compiete
Propegoter:interpolateToStopQ)
coled
Herate until stop Irderpolabed stop
ol ready foruse
and bufier L
Step within Retned dep
tolerance? roady torume
No A Ves
Propagale: RefnoFinStep()
caled

Figure 22.3: Algorithm Used to Stop Propagation

The core algorithm is shown in orange, in the sequence at the top of the figure. The initial
estimate of the time step needed to reach the stop epoch is performed using a cubic spline
algorithm; this sequence is shown in purple in the center of the diagram. If further refinements
are needed, they are made using a secant algorithm, shown in the lower, green portion of the
figure.

the other, we have the time steps that bracket the stop time, and we need only refine this time using the
spline interpolator.

The spline algorithm requires five pairs of data points to estimate this time. These data points are
generating by propagating the SpaceObjects across the time interval that brackets the stop event in four
equally spaced steps, evaluating the stop parameter after each step. These values and associated times, along
with the parameter value and time at the start of the process, are used by the spline to estimate the time
step needed to reach the target event. The implementation details, as shown in the figure, are described in
the following paragraphs.

Before performing the necessary propagations, the SpaceObject states at the start of the procedure are
buffered so that they can be restored later. The SpaceObjects are then propagated for a minimum of four
steps, checking to ensure that the stop event is actually crossed. If the desired event is not crossed, additional
propagation steps — up to a maximum of four additional steps -- are allowed in order to continue searching
for the condition required for stopping. If the event is still not encountered, and exception is thrown and
execution terminates.

Once the spline buffer has been filled with values that bracket the stop event, the spline algorithm is
called to get the time step that is estimated to produce target value. This time step is stored, the buffered

22.2. COMMAND DETAILS 179

states are reset on the SpaceObjects, and the force model is reset in proparation for a final propagation step.
This completes the spline interpolation portion of the stopping condition evaluation.

Additional Refinements using a Secant Solver. For most stopping reqirements encountered in GMAT,
the not-a-knot cubic spline solution described above is sufficiently accurate. However, there are cases in wich
the propagation needs further refinement to meet mission requirements. In those cases, the cubic spline
solution is refined using a secant based root finder. The resulting algorithm, shown in the bottom portion
of Figure 22.3, is described in the following paragraphs.

The data in the force model at this point in the process is the propagated state data generated using the
time step obtained from the cubic spline. Before proceding, these data are replaced with the state data at
the start of the final step.

The next estimate, ta, for the desired time step is made using the target parameter value, vr, the
calculated parameter value, vg at the epoch to of the initial state and the value, v1, obtained after the spline
step, t1, was applied using the formula

ty = vplT0 (22.2)
V1 — Yo
This formula is evaluated in the SecantToStop method. The resulting time step is then applied to the
SpaceObjects. If the resulting parameter value is withing acceptable tolerance, the refinement algorithm
terminates. If not, the results from this new step are stored, the state data and force model are reset, and a
new time step is calculated using the equation

tn - t'n,——l

tn+1 = vr (223)

Un — VUn-1

This process repeats until either an integration step is taken that meets the propagator tolerance require-
ments, or an unacceptable number of attempts have been made and failed. The Propagate command will
make 50 such attempts before raising an exception and termminating execution.

The Startup and Shutdown Routines

There are several steps that need to be applied before and after propagation to ensuree htat propagation
uses and releases data that depends on the current state of the mission control sequence. The following
paragraphs destribe these steps.

During startup , the Propagate command updates the object pointers and data structures to match the
current state of the objects in the mission. More to come here.

Upon completion of propagation, the Propagate command resets its internal flags indicating that the
command is ready to be called at a new point in the mission and clears any transient forces that have
been set for the current propagation. If the command is not running in single step mode, the states of
the SpaceObjects are accessed and stored in the command summary buffers for display on user request.
(This operation is moderately expensive computationally, so it is not performed in single step mode.) This
completes execution of the Propagate command.

Propagate Command Attributes and Methods

The class design for the Propagate command is shown in Figure 22.4.

130

CHAPTER 22. SPECIFIC COMMAND DETAILS

cd: The Propagate Command J

#stopWhen

"

Figure 22.4: Propagate Command Details

Class Attributes Each Propagate command instance implements the following data elements:

s StringArray propName: List of the PropSetups used in this command.

» std::vector<StringArray*> satName: A vector of lists of SpaceObjects. There is a 1:1 corre-

spondence between the propName members and the satName StringArrays. In addition, each of these
StringArrays must have at least one member, and that member must be the name of a SpaceObject.

e stdustring currentPropMode: The propagation mode setting for the PropSetups. This string

tracks whether the propagation is synchronized or not?.

¢ Real direction: The propagation direction: 1.0 to propagate forwards in time, -1.0 to propagate

backwards.

s int interruptCheckFrequency: The number of steps the PropSetup will take before returning

control to the Sandbox. This setting is used to allow the Sandbox to poll for interrupts from the
user, as described in Section 4.2.1.

e std::vector<PropSetup *> prop: The PropSetups used in this instance.
e std::vector<SpaceObject *> sats: The SpaceObjects propagated by the PropSetups.

e std::vector<StopCondition *> stopWhen: The stopping conditions used to determine when

propagation should terminate. If no stopping conditions are specified, the PropSetups fire the mmini-
mum number of times allowed - one time in unsynchronized mode, and just enough times to meet the
synchronization constraint in synchronized mode. ‘

2GMAT currently supports two propagation modes, synchronized - specified by the keyword “Synchronized”, and unsyn-
chrounized, the default setting. Backwards propagation is treated separately, though the “BackProp” keyword is parsed as a
propagstion wode.

22.2. COMMAND DETAILS 181

Methods The public methods implemented in the Propagate command are itemized below:

e bool TakeAction(const std::string &action, const std::string &actionData): Performs actions
specific to propagation. The Propagate command defines three actions:

— (lear: Clears the arrays of reference objects used by the instance. Clearing can occur for two
distinct types of objects:

« Propagator: Clears the lists of PropSetups, propagated SpaceObjects, and the associated
StringArrays.

* StopCondition: Clears the lists of stopping conditions, SpaceObjects used for stoppign. and
any associated StringArrays.

— SetStopSpacecraft: Adds a named SpaceObject to the list of SpaceObjects used for stopping.

— ResetLoopData: Resets the PropSetups to their startup values so that Solvers obtain consistent
results when iterating to a solution.

e void FillFormation(SpaceObject* so, StringArray owners, StringArray elements): Fills in
the components of a formation recursively.

o GmatCommand* GetNext(): Returns the next command that should be executed. Propagate
overrides the implementation provided by GmatCommand so that interrupt polling can occur without
abnormally terminating propagation.

¢ bool InterpretAction(): The parser for the Propagate command, overridden from the default im-
plementation to handle all of the variations Propagate supports.

e void SetTransientForces(std::vector<PhysicalModel*> *tf): Tells the Propagate command
about the current list of transient forces, so taht the command can incorporate active transient forces
into the force model in the PropSetups.

 bool Initialize(): Performs initialization in the Sandbox prior to execation of the command.
e bool Execute(): Performs the propagation.

¢ void RunComplete(): Cleans up the command structures after completion of propagation.

22.2.3 The Create Command
22.2.4 The Target Command
22.2.5 The Optimize Command

182 CHAPTER 22. SPECIFIC COMMAND DETAILS

Chapter 23

Solvers

Darrel J. Conway
Thinking Systems, Inc.

23.1 Overview

GMAT implements several algorithms used to tune mission models, so that specific mission goals can be
defined and achieved from within the mission sequence. The subsystem used for this mission parameter
tuning is the Solver subsystem.

Each of the solvers in GMAT can be described as a finite state machine taking the input state of the
GMAT objects in a mission and changing the states of user specified parameters to achieve desired goals.
Each solver executes a series of GMAT commands as part of this solution finding algorithm; the differences
between the different solvers comes from the approach taken to find this solution.

23.2 Solver Class Hierarchy

Each solver takes a section of a mission sequence, and manipulates variables in that subsequence in order
to evaluate how those changes affect the modeled mission. The results of the changes are collected in the
Solver, reported to the user if desired, and possibly used to drive subsequent actions in the mission sequence.

The Solver subsystem can be decomposed into three broad categories of algorithms: scanners, targeters,
and optimizers. The distinguishing characteristics of these different algorithms can be summarized as follows:

e Scanners are used to perform studies of the behavior of the the system as the variables change, in
order to collect statistical data about how the system behaves in the neighborhood of the variables
defined for the problem. A scanner does not have an inherent set of goals; rather, the intention of a
scanner is to evaluate how changes in the system variables affect the behavior of the system over time.

e Targeters are used to find solutions that satisfy a set of goals to within some user defined set of
tolerances. In other words, a targeter is seeking an exact solution, and stops searching for that solution
when the achieved results of the targeter all fall to within a specified tolerance of those goals.

e Optimizers are used to find the configuration of the variables that best satisfies a set of user goals,
subject, optionally, to a set of constraints. Optimizers function by seeking the minimum of a user
defined function of parameters, subject to these constraints.

183

134 CHAPTER 23. SOLVERS

Solver Classes J

Figure 23.1: The Solver Subsystem

Figure 23.1' shows the class hierarchy for the GMAT solvers, including a number of planned extensions
that are not yet scheduled for implementation, identified by the «future» label. The base class, Solver, con-
tains the core elements required to implement the solver finite state machine. These elements are assembled
differently to implement different classes of solvers, as described in the following sections.

The Solver class hierarchy shown here identifies two scanners, two targeters (the DifferentialCorrector and
Broyden targeters), and three optimizers. The scanners, ParametericScanner and MonteCarlo, are planned
enhancements to GMAT that are not currently scheduled for implementation. The DifferentialCorrector is
a targeter used extensively at Goddard Space Flight Center and other locales to find solutions to targeting
goals; Broyden’s method, another targeter slated for implementation in GMAT, solves similar problems.
The SteepestDescent and QuasiNewton optimizers are planned enhancements that will be built as native
algorithms in the GMAT code base. The FminconOptimizer is an optimizer implemented in the MATLAB
Optimization Toolbox. GMAT uses the MATLAB interface to communicate with this component through
the ExternalOptimizer class.

23.3 The Solver Base Class

Core elements of the Solver class are shown in Figure 23.2. This class contains the infrastructure required
to run a solver state machine. The class provides default implementations for methods run at each state,

INote: The current implementation of the differential corrector does not yet conform to the class siructure deficed here
because the intermediate class, Targeter, is not yet huplemented.

23.3. THE SOLVER BASE CLASS 185

Solver Base Class Details)

Figure 23.2: The Solver Base Class

and abstract interfaces for the methods used by the GMAT Command classes.

23.3.1 Solver Enumerations

The Solver base class contains two public enumerations used evaluate the status of the solver objects during
arun and to control the style of the diagnostic reports generated by the solver. The SolverState enumeration
is used to represent the finite states in the solver’s state machine. It can be set to any of the following values:

o INITIALIZING: The entry state for the state machine, this state is used to set the initial data and
object pointers for the state machine.

e NOMINAL: The nominal state is used to evaluate the behavior of the solver subsequence using the
current best guess at the values of the variables.

o PERTURBING: Many solver algorithms work by applying small perturbations to the nominal values
of the variables, and collecting the resulting affects on the solver subsequence. This state is used to
perform those perturbations.

186

CHAPTER 23. SOLVERS
ITERATING: The Scanners perform a series of runs at calculated values of the variables. This state
is used to iterate over those values.

CALCULATING: The CALCULATING state is used to perform algorithm specific calculations in
preparation for the next pass through the solver subsequence.

CHECKINGRUN: This state is used to evaluate the current results of the solver run, and to deter-
mine if the solver algorithm has accomplished its goals.

RUNEXTERNAL: The state used to launch an external solver which controls the solution process.

FINISHED: This final state is used to report the results of the solver run, and to perform any final
adjustments required to use those results in the rest of the mission sequence.

UNDEFINED _STATE: A value used to indicate a fault, and as a special case for the solver text
file.

The states actually used by a solver are algorithm dependent; no given algorithm is likely to use all of the
states represented by this enumeration.

The ReportStyle enumeration is used to set the level of reporting performed while a solver is executing.
This enumeration is used to represent the following styles of reporting:

NORMAL _STYLE The default report style, set using the string “Normal”.
CONCISE _STYLE A compact report style, set using the string “Concise”.

VERBOSE _STYLE A report style generating lots of data, useful for analyzing the details of a run,
set using the string “Verbose”.

DEBUG _ STYLE A report style useful for debugging solver algorithms, set using the string “Debug?”.

Each solver has a member parameter, the “ReportStyle”, used to set the reporting style. The ReportProgress
method, described below, is used to generate the text for a report.

23.3.2 Solver Members

The Solver base class contains the following member data elements:

Class Attributes

SolverState currentState: The current state of the solver, one of the members of the SolverState
enumeration.

std::string textFileMode: The string representation for the output mode, set to one of the following:
“Compact”, “Normal”, “Verbose”, or “Debug”.

bool showProgress: A flag used to toggle the progress report on or off.

Integer progressStyle: An integer representation of the report style, taken from the ReportStyle
enumeration.

std::string debugString: A string used in the progress report when in Debug mode.
Integer variableCount: The number of variables used in the current problem.

StringArray variableNames: A string array containing the name of each variable.

23.3. THE SOLVER BASE CLASS

e std::vector<Real> variable: The array of current values for the variables used by the solver.
o Integer iterationsTaken: The number of iterations taken by the current run of the solver.

o Integer maxIterations: The maximum number of iterations through the subsequence allowed for
the solver.

All solvers must provide implementations of these five pure virtual methods:

Abstract Methods

e bool Initialize(): Used to set object pointers and validate internal data structures. GMAT initializes
all of the commands in the solver subsequence before executing this method, so all of the variable data
and result data structures have been registered when this method is called.

Integer SetSolverVariables(Real *data, const std::string &name): This is the variable regis-
tration method, used to pass in parameter data specific to variables used in the solver algorithm. This
method is used by the Vary Command during initialization to set up the solver variables for a run.
The return value from the method is the index in the solver array for the variable, or -1 if the variable
could not be registered. The parameters in the method are used to set the details for the variables:

data: An array containing the initial value for the variable. This array may also contain additional
algorithm specific variable settings; for instance, the perturbation for the variable, and the minimum
and maximum values for the variable, and the maximum allowed step for changes to the variable.

name: The string name associated with the variable.

Real GetSolverVariable(Integer id): Used to obtain the current value of a variable from the
solver. The Vary command uses this method to refresh the current value for a variable during a solver
subsequence run. The parameter, id, is the index of the requested variable in the solver’s variable
array.

Integer SetSolverResults(Real *data, const std:string &name, const std::string &type):
This is the method used to register the values returned from the solver subsequence to the solver. It
is used to pass in parameter data specific to the subsequence run outputs, so that the solver has the
data needed to initialize and track the results of an iteration through the subsequence. For targeters,
the Achieve command uses this method to set up targeter goals. Optimizers use this method to set
up the connection to the objective function and constraints. Scanners use this method to report the
products of each scanning run.

data: An array containing settings for the solver result, if applicable. An example of the type of
data in this field is the acceptable tolerance for a targeter goal.

name: The string name associated with the solver result.

type: The string name associated with the type of solver result. This field defaults to the empty
string, and is only used when a solver needs to distinguish types of resultant data.

void SetResultValue(Integer id, Real value): Used to report data calculated while running the
subsequence to the Solver. Commands specific to the different algorithms use this method to pass
data into a solver; for example, for the differential corrector, the Achieve command passes the achieved
data to the solver using this method. Optimizers use this method to send the value of the objective
function, and constraints, and, if calculated, the gradient of the objective function and Jacobian of the
constraints. Scanners use this method to receive the data that is being measured, so that meaningful
statistics can be calculated for the scanning run.

Each solver contains the following methods, which have default implementations:

188

CHAFPTER 23. SOLVERS

Methods

L]

SolverState GetState(): Retrieves the current SolverState for the solver.

SolverState AdvanceState(): Executes current state activities and then advances the state machine
to the next SolverState.

void ReportProgress(): Writes the current progress string to the GMAT message interface, which
writes the string to the log file and message window.

void SetResultValue(Integer id, std::vector<Real> values): Used to report multiple data
values in a vector, calculated while running the subsequence, to the solver. Note that this is an
overloaded method; there is also an abstract SetResultValue method which sets a single Real value. The
default implementation of this method is empty; solvers that need it should provide an implementation
tailored to their needs.

void SetDebugString(std::string str): Sets the string contents for the debug string.

void Completelnitialization(): Finalizes the initialization of the solver. This method is executed
when the state machine is in the INITTIALIZING state.

void RunNominal(): Executes a nominal run of the solver subsequence. This method is executed
when the state machine is in the NOMINAL state.

void RunPerturbation(): Executes a perturbation run of the solver subsequence. This method is
executed when the state machine is in the PERTURBING state.

void Runlteration(): Executes one run of the solver subsequence and increments the iteration
counter. This method is executed when the state machine is in the ITERATING state.

void CalculateParameters(): Performs algorithm specific calculations for the solver. This method
is executed when the state machine is in the CALCULATING state.

void CheckCompletion(): Checks to see if the solver has completed its tasks. This method is
executed when the state machine is in the CHECKINGRUN state.

void RunExternal(): Launches an external process that drives the solver. This method is executed
when the state machine is in the RUNEXTERNAL state.

void RunComplete(): Finalizes the data from the solver subsequence and sets up the corresponding
data for subsequent steps in the GMAT mission sequence. This method is executed when the state
machine is in the FINISHED state.

23.4 Scanners

TBD - This section will be completed when the first scanner is scheduled for implementation.

23.5 Targeters

Given a mapping from a set of variables to a set of results,

M(z) — R (23.1)

Targeting is the process of finding the value of a set of variables x¢, such that the mapping M (z¢) produces
a desired set of results, G:

23.5.

TARGETERS

M(zg) — G

(23.2)

The targeting problem is a search for an exact solution. Numerically, the targeting problem is met when a
set of variables x,, is found that satisfies the conditions

M(z,) — R, suchthat |G—R,|<4¢

where § is the vector of tolerances for the resulting quantities.
The targeting problem is typically formulated as a series of steps proceding from an initial guess to a
solution, as outlined here:

1.
2
3.
4
5.

6.

Generate an initial guess z; = x¢

. Evaluate M(z;) = A;

Compare A; with the goals, G. If |G — A;| < 4, go to step 6

. Using the targeter algorithm, calculate new values for the variables z; = T'(2x;_1; Ai_1).

Go to step 2

Report the results and exit.

23.5.1 Differential Correction

Ditferential Comector State Machine J

Run
complete

New Variables Goals
Calculated

TargetingComplete

Begin Teargeting

For each
perturbation

Figure 23.3: State Transitions for the Differential Corrector

Scripting a Differential Corrector

[

. I

Create Spacecraft sat;

Create ForceModel DéfaultProp_ForceModel;
GMAT DefaultProp_ForceModel.PrimaryBodies = {Earth};

(23.3)

N e o

N - TR)

w

CHAPTER 23.

Create Propagator DefaultProp;
GMAT DefaultProp.FM = DefaultProp_ForceModel;

Create ImpulsiveBurn TO0I;
GMAT TOI.Axes = VNB;
Create ImpulsiveBurn GOI;
GMAT GOI.Axes = VNB;

Create DifferentialCorrector DC;

GMAT DC.TargeterTextFile = targeter_DefaultDC.data;
GMAT DC.MaximumIterations = 25;

GMAT DC.UseCentralDifferences = false;

Create XYPlot watchTargeter;

GMAT watchTargeter.IndVar = sat.AlModJulian;
GMAT watchTargeter.Add = {sat.RMAG};

GMAT watchTargeter.Grid = On;

GMAT watchTargeter.TargetStatus = 0On;

'/,***

hmmmm e The Mission Sequence---—---—cmmmmmm
Y%k ok s ok o ks ok ok R ook ook Kok ok ok ok ok ok ok ok ok ok sk koo sk ko ok ok ok ek Kok e o
(]

% The targeting sequences below demonstrates how to use a

% differential corrector in GMAT to comstruct a Hohmann transfer
% between two circular, co-planar orbits by targeting first one
% maneuver to raise.apogee, and then a second maneuver to

% circularize.

% Start by spending some time in the initial orbit
Propagate DefaultProp(sat, {sat.ElapsedSecs = 86400});
Propagate DefaultProp(sat, {sat.Periapsis});

% Target the apogee raising maneuver
Target DC;

Vary DC(T0I.V = 0.5, {Pert = 0.0001, MaxStep = 0.2, Lower = Q, Upper

Maneuver TOI(sat);

Propagate DefaultProp(sat, {sat.Apoapsis});

Achieve DC(sat.Earth.RMAG = 42165, {Tolerance = 0.1});
EndTarget; % For targeter DC

% Propagate for 1.5 orbits on the transfer trajectory
Propagate DefaultProp(sat, {sat.Periapsis});
Propagate DefaultProp(sat, {sat.Apoapsis});

23.6. OPTIMIZERS 191

39
6o % Target the circularizing maneuver
&1 Target DC;

62 Vary DC(TOI.V = 0.5, {Pert = 0.0001, MaxStep = 0.2, Lower = 0, Upper = 3.14159});
63 Maneuver TOI(sat);

64 Propagate DefaultProp(sat, {sat.Periapsis});

65 Achieve DC(sat.Earth.SMA = 42165, {Tolerance = 0.11});

sc EndTarget; Y% For targeter DC

67

es % Propagate for an additional day

ev Propagate DefaultProp(sat, {sat.ElapsedSecs = 86400});

23.5.2 Broyden’s Method

TBD - This section will be completed when the Broyden’s method is scheduled for implementation.

23.6 Optimizers

Optimization is the process of taking a function f(z) of a set of variables z, and changing the values
of those variables to move the function to a minimum. The function f is called the objective function.
Constrained optimization adds a set of constraints that must simultaneously be satisfied. More succinctly,
the optimization problem can be written

ci(z) =0 and

o) >0 (23.4)

min f(z such that
min () {

The constraint functions, c, specify additional conditions that need to be satisfied in order for the problem
to be solved. The constraints can be broken into two categories. Constraints that need to be met exactly,
the ¢; constraints in equation 23.4, are referred to as equality constraints. Constraints that only need to
satisfy some bounding conditions, represented here by c;, are called inequality constraints.

Numerically, the optimization problem is solved when either the gradient of the objective function falls
below a specified value while the constraints are met to a given tolerance, or when the constraints are met
and the solution point z is unchanging during subsequent iterations. The optimization problem is can be
formulated as a series of steps proceeding from an initial guess to a solution, similar to a targeting problem:

1. Generate an initial guess z; = zg

2. Evaluate f(z;) and constraints

1

Evaluate the gradient of the objective function at z; and the constraint Jacobians. This step usually
involves either an analytic calculation or iterating the f(z) calculation with small perturbations.

=N

. Check to see if z; is a local minimum or unchanging, and if the constraints are met. If so, go to step 8.
. Use the optimizer algorithm to calculate a new search direction.
. Step in the search direction to a minimal value in that direction. This is the new value for z;.

. Go to step 3

[e~BENEES B = N A

. Report the results and exit.

Figure 23.4 shows the state transitions for a typical optimization algorithm that follows this procedure.

192 CHAPTER 23. SOLVERS

Optimization State Machine)]

Begin Optimization

Constraints Met

Perturbations used
to build Cradient

Optimizing
Complete

Performing line
search for
minimum

Figure 23.4: State Transitions for Optimization

23.6.1 The Optimizer Base Class

All optimizers require an objective function that changes based on the values of the variables in the problem.
In addition, when analytic gradients of the objective function can be calculated, the optimization procedure
can be streamlined to incorporate these data. Optimizers that include constraints also need data structures to
store the constraint data. Storage support for all of these values is built into the Optimizer base class, shown
in Figure 23.5. The computation of these parameters is provided in the optimization specific commands,
described later in this chapter. The members of this base class serve the following purposes:

Class Attributes

¢ std::string objectiveFnName: The name of the objective function data provider. This member
defaults to the string “Objective”, but users can override that value by setting this data member.

e Real cost: The latest value obtained for the objective function.

e Real tolerance: Optimizers have converged on a solution when the magnitude of the gradient of the
cost function is smaller that a user specified value. This parameter holds that value. Note that GMAT
can pass this parameter into external optimizers as one of the parameters in the options data member.

s bool converged: A boolean flag used to detect when the optimizer has reached an acceptable value
for the objective function and, if applicable, the constraints.

e StringArray eqConstraintNames: The names of the equality constraint variables.

¢ std::vector<Real> eqConstraintValues: The most recent values obtained for the equality con-
straints.

s StringArray ineqConstraintNames: The names of the inequality constraint variables.

o std::vector <Real> ineqConstraintValues: The most recent values obtained for the inequality
constraints.

23.6. OPTIMIZERS 193

Opiimizer Base Class Detais J

Figure 23.5: The Optimizer Base Class

e std::vector<Real> gradient: «Future» The most recently calculated gradient of the objective
function.

¢ Rmatrix eqConstraintJacobian: «Future» The most recently calculated Jacobian of the equality
constraints.

¢ Rmatrix ineqConstraintJacobian: «Future» The most recently calculated Jacobian of the inequal-
ity constraints.

Methods The methods shown in Figure 23.5 provide implementations of the methods in the Solver
base class. These methods are described below:

¢ bool Initialize(): Used to set object pointers and validate internal data structures. GMAT initializes
all of the commands in the optimizer subsequence in the Optimize::Initialize() method, called on the
command sequence during Sandbox initialization. After performing this initialization, the Optimize
command calls this method, so data structures can be prepared for all of the variable data and result
data elements registered during command subsequence initialization.

e Integer SetSolverResults(Real *data, const std::string &name, const std::string &type):
Used to register parameter data needed by the optimizer to evaluate the behavior of a subsequence
run. For optimizers, the Minimize and NonLinearConstraint commands use this method to set up the
connection to the objective function and constraints. Future releases will implement the Gradient,
EqConstraintJacobian, and IneqConstraintJacobian commands, which will also use this method.

data: An array containing settings for the output parameter.

name: The string name associated with the parameter.

194 CHAPTER 23. SOLVERS

Extemal Optimization State Diagram J

Run fmincon
Script

ptimization
Completed

Figure 23.6: GMAT state transitions when running the FminconOptimizer Optimizer

type: The string name associated with the type of resultant used in the optimizer. Valid op-
tions are “Objective”?, “EqConstraint”, “IneqConstraint”, “ObjGradient”, “EqConstraintJacobian”, and
“IneqConstraintJacobian”.

e void SetResultValue(Integer id, Real value): Used to report data, calculated while running the
subsequence, to the optimizer. The Minimize and NonLinearConstraint commands use this method to
set the current values of the objective function and constraints.

® void SetResultValue(Integer id, std::vector<Real> values): «Future» Used to report multiple
data values in a vector, calculated while running the subsequence, to the optimizer. When implemented,
the Gradient and Jacobian commands will report data to the optimizers using this method.

Each of these methods may be overridden based on the needs of the derived optimizers.

23.6.2 Internal GMAT optimizers

TBD - This section will be completed when the first internal optimizer is scheduled for implementation.

The Steepest Descent Optimizer

TBD - This section will be completed when the steepest descent optimizer is scheduled for implementation.

The Quasi-Newton Optimizer

TBD - This section will be completed when the quasi-Newton optimizer is scheduled for implementation.

23.6.3 External Optimizers

The optimizers described in Section 23.6.2 are coded directly into the system. GMAT also provides access
to the MATLAB Optimization Toolbox{opttools] through a set of interfaces designed for this purpose.
External Optimizer State Transitions

GMAT has the ability to incorporate optimizers coded outside of the system, as long at those optimizers
provide communications interfaces that can be interfaced to GMAT. These outside processes are called

2If more than one command attempts to register an objective function in the same optimizer loop, GMAT will throw an
exceplion stating that the optimization problew is ill defined because thiere is more than one objective function.

23.6. OPTIMIZERS ' 195

“external optimizers.” A typical finite state machine used to perform optimization using an external optimizer
is shown in the state transitions diagram for the fmincon optimizer from MATLAB’s Optimization Toolbox,
Figure 23.6. The state machine for fmincon will be used in what follows to provide an overvie of external
optimization; other external processes would adapt this machine to meet their needs.

The optimization process starts in an INITIALIZING state. When the AdvanceState() method is called
in this state, the object references necessary for the optimization run are set. This step includes passing the
pointer to the Optimize command at the start of the optimization loop to the GmatInterface that MATLAB
uses to communicate with GMAT. The Optimize command includes a method, ExecuteCallback(), used
when the fmincon optimizer needs to run the optimizer subsequence and gather the resulting data.

Once initialization has been performed, the state transitions to the RUNEXTERNAL state. This state
calls MATLAB with the appropriate parameters needed to run the optimizer using the FminconOptimiza-
tionDriver MATLAB function, a driver function tailored to fmincon described below. At this point, control
for the optimization process has been transferred to MATLAB. The fmincon optimizer makes calls back into
GMAT when it needs to collect data from the optimizer subsequence. These calls are passed to the Exe-
cuteCallback() method registered in the initialization process, above. ExecuteCallback() uses the Optimize
command to run the nested state transitions shown in the figure. The nested states start by setting up and
running the mission subsequence, performed in the NOMINAL state. Once the subsequence has been run,
the data gathered during the run are collected and any processing needed on the GMAT side is performed.
This data collection is performed in the CALCULATING state. This completes the iteration of the nested
state machine; the nested state is set back to NOMINAL in preparation for the next call from MATLAB.
The collected data are passed to MATLAB, and used by fmincon to determine the next action to be taken.
If finincon has not yet found an optimal solution, it calculates new values for the variables, and passes them
into GMAT for another pass through the nested state machine. This process repeats until fmincon has found
a solution or reached another terminating condition.

Once finincon has completed execution, it sends an integer flag to GMAT indicating how the optimization
process was terminated® and returns control to GMAT. This return of control results in a transition into
the FINISHED state. GMAT performs the tasks required at the end if the optimization, and then continues
running the mission sequence. Details of all of these steps are provided in the discussion discussion of fmincon
optimization below.

Class Hierarchy for the External Optimizers

External optimizers are coded using the classes shown in Figure 23.7. One set of external optimizers, the
functions in the Optimization Toolbox, is accessed using the MATLAB interface built into GMAT. Those
functions, in turn, use calls through the GmatServer code to access spacecraft specific models in GMAT.
Future extensions to GMAT may use other interfaces for external optimizers.

The ExternalOptimizer Class

All external optimizers are derived from the ExternalOptimizer class. The design illustrated in Figure 23.7
shows this class, along with one subclass, the FminconOptimizer, and the interfaces used to communicate
with MATLAB. When necessary, similar interfaces will be written for communications with other external
programs. External optimizers add the functionality needed to open the interfaces to the external programs.
Classes derived form this class implement the state transitions functions used in the external optimization
nested state machine. The ExternalOptimizer class elements are described here:

Class Attributes

3See the Optimization Toolkit documentation for the meaning of this flag’s valucs; in general, if the flag is greater than zero,
the optimization process was successful.

196 CHAPTER 23. SOLVERS

Optimization ClassesE xernal Optimizers, Current Code)

Uses

Uses

Figure 23.7: GMAT Classes Used with External Optimizers

¢ std:string sourceType: String indicating the type of external interface that is used. The only
external interface supported in the current code is a MATLAB interface, so this string is always set to
“MATLAB?” in the current GMAT code.

® bool sourceReady: A flag indicating the state of the interface; this flag is set to true if the interface
was opened successfully and the supporting structures needed by the interface were found?.

e outSource: A pointer to the Interface object that is used to make calls to the external interface.
e inSource: A pointer to the Interface object that is used to receive calls from the external interface®.

All external optimizers must provide implementations of these pure virtual methods:

Abstract Methods

1An example of the “supposting structures™ it the external interface is an FininconOptimizer, then the MATLAR system
and the Optimization 'Toolkit must both be available for use, and the MATLAB (iles that establisi the calls into GMAT must,
also be accessible from MATLAB.

“In the cutrent code, two pointers are necessary: cne to a Matlablnterface object, and a second to the GmatServer used for
calls frota MATLAB to GMA'T, Future builds may combine these interfaces,

23.6. OPTIMIZERS ‘ 197

¢ bool OpenConnection(): The method used to open the interfaces between GMAT and the external
program. This method, called during initialization, opens the interface and verifies that the external
program is ready to interact with GMAT.

s void CloseConnection(): Closes the connections to the external program.

e bool Optimize(): Calls the external optimizer, starting the optimization process. When the process
terminates, this method also terminates, returning a true value if the process reported success and a
false value if the process failed.

Note that in both of the connection configuration methods, the interface interaction preserves the interface
state as needed for other objects: for example, if the interface is already open either at the GMAT level
because of user interactions or from previous initialization, then it does not open again; the open interface
is used. Similarly, the interface is closed only if it is not in use elsewhere - either globally by GMAT, or by
another object that is still using the interface.

The FminconOptimizer Class

Fmincon is an implementation of sequential quadratic programming, implemented in MATLAB. GMAT
interfaces with fmincon using a class, the FininconOptimizer class, to coordinate the calls to MATLAB to
access the optimizer. For the purposes of this discussion, the MATLAB optimizer fmincon will be referenced
by the MATLAB function name, “fmincon”; the GMAT class that wraps that optimizer for use by GMAT
will be referenced by the class name, “FminconOptimizer.”

The class members for the FminconOptimizer are described here.

Class Attributes

¢ GmatCommand *callbackClass: A class that implements the ExecuteCallback method used by
the external process.

e StringArray fminconOptions: The table of parameters that can be set on the fmincon optimizer.
e StringArray optionValues: The current settings for the fmincon options.

Each FminconOptimizer contains the following methods, which have default implementations:

Methods

e bool Optimize(): The entry point for fmincon based optimization, this method is used to call MAT-
LAB with the settings needed for fmincon.

e bool OpenConnection(): If necessary, launches the MATLAB engine and starts the GmatServer,
and then sets the engine pointer on the FminconOptimizer.

¢ void CloseConnection(): If appropriate, closes the MATLAB engine and/or the GmatServer.

¢ SolverState AdvanceState(): This method is used to run the outer state machine. It manages 3
states: the INITIALIZING state, the RUNEXTERNAL state, and the FINISHED state.

s std::string AdvanceNestedState(std::vector<Real> vars): This method is called by the Opti-
mize command to run the nested state machine, and managed the transitions between the NOMINAL
and CALCULATING states. The input parameter here is a vector of the variable values used for the
nested state machine run. The return value for this method is the resultant data from the nested run,
serialized for transport to the external process.

198 CHAPTER 23. SOLVERS
e void Completelnitialization(): The method run in INITIALIZING state, which sets the callback
class pointer for the GmatInterface and prepares the GMAT side of the system for optimization.

e void RunExternal(): The method run in the RUNEXTERNAL state which builds the data stores
needed for the optimization loop, and then calls Optimize to hand program control to MATLAB.

s void RunNominal(): The method that sets up the data structures for a run of the optimizer sub-
sequence. The Optimize command uses AdvanceState to run this method immediately before running
the optimization subsequence.

¢ void CalculateParameters(): The method that gathers the resultant data from the subsequence
run and massages it into form for transport to MATLAB.

¢ void RunComplete(): The method that finalizes the optimization, writing resultant data to the
solver log file and releasing any temporary data structures that were used in the optimization process.

Interface Classes: Details for the FimminconOptimizer

d: Inferface Classes)

Figure 23.8: Interface Classes used by the FminconOptimizer

The current implementation of interfaces in GMAT used to communicate with MATLAB are shown in
Figure 23.8%. Details of this implementation are provided in Chapter 16. These paragraphs point out the
pertinent features used when running an external optimizer.

The Optimize command, described later, is used to control the state transitions used when running the
state machine. This command is used to advance the state machine by calling the AdvanceState method on
the optimizer. External optimizers use a state, the RUNEXTERNAL state, to pass control from GMAT to
the external process. The Qptimize command implements a method named ExecuteCallback which provides
the entry point from the external process back into the GMAT system so that spacecraft modeling commands

S here are currently two separate MATLAB interfaces, and both are used for this work. The ivterface from MATLAB to
(MAT uses code from the wxWidgets library. Because of this implementation, external optimizers runaing in MATLAB cannot
be used with the conunand line versions of GMAT.

23.6. OPTIMIZERS

Table 23.1: Options for the FroinconOptimizer Solver

| Option] Type] Values | Description

DiffMaxChange Real value > 0.0 Maximum allowed change in the
variables.

DiffMinChange Real 0.0 < value <= Minimum allowed change in the

DiffMaxChange variables.

MaxIfunEvaly Integer value > 0 Maximum number of function
evaluations before terminating.

MaxIter Integer value > 0

TolX Real value >- 0.0 Variable change tolerance required to
declare convergence.

TolFun Re value > 0.0 Gradient tolerance required to declare
convergence.

DerivativeCheck String On, Off Toggle for fmincon derivative checking.

Diagnostics String On, Off Toggle used to turn dignostics on for
fmincon.

Display String Tter, Off, Notify, Level of output generated from finincon.

Final

GradObj String On, Off Toggle to turn on gradients calculated in
GMAT.

GradConstr String On, Off 77

199

can be executed buy the external process. The GmatInterface contains members designed to manage this
callback process. These members, a pointer and several methods, are described here?:

Class Attributes

¢ GmatCommand *callbackClass: A class that implements the ExecuteCallback method used by
the external process.

Methods

s void RegisterCallbackServer(GmatCommand *cbClass): Method used to identify the com-
mand that implements ExecuteCallback.

» void ExecuteCallback(): The method called from the GMAT server to run the callback method.

» void PutCallbackData(std::string data): Method used to set the input data for the callback
function. For optimization, this method is called to pass in the variable data.

¢ char* GetCallbackResults(): Method used to retrieve the results of the callback. For optimization,
this method retrieves the value of the objective function and constraints, and other optional data when
it becomes available.

The entry point to the optimization process is the Optimize command, described below. When this
command is executed, the FminconOptimizer refreshes the data needed for optimization, and passes that
data across the interface to MATLAB. These data are stored in the FminconOptimizer’s

There are many different parameter settings available for MATLAB’s fmincon optimizer. Table 23.1 shows
the fmincon options supported by GMAT. The option table is contained in the fminconOptions StringArray.
Settings for these options are collected in the optionValues member and passed from GMAT into MATLAB
when the optimization loop starts execution.

TNote that this is not the full description of the Gmatlnterface class, That description is in Chapter 16,

200 CHAPTER 23. SOLVERS

Control Flow in the FminconOptimizer

Figures 23.9a through 23.9c show the sequence of method calls made on the GMAT objects to run the
MATLAB based fmincon optimizer. The Optimization Toolbox contains several other optimization functions
that may be incorporated into future versions of GMAT if the need arises; they will use a similar control
flow when implemented.

ed: Cslling Sequence for E xternsl Optimizers: Initislization |

5) StattE nging

I —

B R

7) .CheckStatys
'

7) Al MATLAB fles |n place

8) StatServer

Figure 23.9a: Initialization Call Sequence for MATLAB’s fmincon Optimizer

The event sequence shown in these figures consists of two pieces. Initialization (Figure 23.9a) is used to
set all of the object pointers in place that are needed for the optimization, and to prepare the optimizer’s
internal data structures for the optimization process. This step includes the initialization and validation
of the interfaces used to access the external optimizer. In the illustrated example, the input and output
interfaces GMAT uses to communicate with MATLAB are started, and the MATLAB side of the interface
validates the presence of the MATLAB scripts and functions needed to run the optimizer. This step is
performed when the GMAT Sandbox initializes the mission sequence prior to a run.

Once initialization has completed, the Sandbox starts executing the mission sequence. The mission
sequence proceeds until the Optimize command is ready to be run. Figure 23.9b picks up at that point, and
shows the steps taken to perform the optimization with fmincon from within the control sequence. These
steps include the execution of the nested state machine, described shortly. Once the sequence shown in this
figure finishes running, the optimization process has completed, and the remainder of the mission control
sequence is run.

The details of the nested state machine run, including the execution of the optimizer subsequence, are
shown in Figure 23.9c. When ExecuteCallback() is called on the Optimize command, the command queries

23.6. OPTIMIZERS

201

sd: Calling Sequence for External Optimizers: Execuliun)

l 1
2)\RegisterCallbackServer
T

3) Initializing -> B
Nominal |

5).0ptimize

1
zationDrivar

7) fmincon

[R —

9) .RunCall back

|
'
'
'
|
'
'
'
'
'
'
V
T
'
1
'
-+
'
[
'
1
[
'
'
1
1
1
1
1
1

ective

mstraints

Figure 23.9b: Execution Call Sequence for MATLAB’s fmincon Optimizer

202 CHAPTER 23. SOLVERS

sd: Calling Sequence for External Optimizers: Nested State Nachine)

: 1) .Execute Callback o 1

1
1
1
1
)
1
1
1
1
1
1
1]
1
1]
1
1
1
)
]
1
1
1
1
]
'
'
]
1
1
'
1
1
1
1
1
1
]
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
)
1
)
1
1
1
1
1
)
1]
1
1)
1
1
1
1
1
1
1
1
1
]
1
1
)
1
1
1
1]
1
)
1
1
1]
1
)
)
1
)
!
)
)
1
]
-
]

2) CetState

2) NOMINAL

3) .AdvanceNestedState

— .ResetLoopData

)

12) .AdvanceNestedState ! ' ' '

| 1 1 [

L}) '

3) .Calculat ePa'ram eters : :

‘ | '

1 1 1]

— 1 1 1

113 ‘ | '

- ' 1 1

12) CALCULATING -> NOMINAL ' | '
___________) 1 1

1) ' [['
_____ !) 1)
' ! '

Figure 23.9¢: FminconOptimizer Nested State Transition Details

23.6. OPTIMIZERS 203

the FminconOptimizer to determine the current state of the nested state machine. The returned state should
be either INITIALIZING or NOMINAL.

The action taken when the nested state is in the INITIALIZING state is not shown in the figure. When
that state is encountered, the Optimize command calls AdvanceNestedState on teh FminconOptimizer and
the FminconOptimizer executes its Completelnitialization() method. The nested state machine then tran-
sitions into the NOMINAL state. Upon return from this process, the Optimize command executes the
StoreLoopData() method, which saves the spacecraft state data at the start of the optimization loop. It
then proceeds to run the nested state machine. '

When the nested state is in the NOMINAL state, the Optimize command calls the FminconOptimizer’s
AdvanceNestedState() method, which executes the RunNominal() method to prepare the optimizer for ex-
ecution of a nominal run through the subsequence. The state of the nested state maching changes from
NOMINAL to CALCULATING. Upon the return from the AdvanceNestedState() method, the Optimize
command sets the GMAT objects up for a run of the optimization subsequence by executing the ResetLoop-
Data() method. It then begins execution of the optimization subsequence.

The execution of the optimizer subsequence depends on the order of the commands contained in the
subsequence. All GMAT commands include a method, Execute(), that fire the command. Like ann GMAT
command sequences and subsequences, the commands in the optimization subsequence are stored as a linked
list of GmatCommand objects. The Optimize command runs the subsequence by starting at the begining of
this linked list and firing the Execute() method on each command in the list. The list is navigated using the
GetNext () method on the command. The subsequence is terminated when the GetNext() method returns a
pointer to the Optimize command.

The actions shown in Figure 23.9¢ should be treated as a guideline for how the optimization specific
commands in the subsequence interact with the FminconOptimizer. Each time a Vary command is executed,
it retrieves its variable value from the FminconOptimizer using the GetSolverVariable() method and sets the
value of the associated variable. The Execute() method on the Minimize command evaluates the objective
function, and sends the resulting value to the FmminconOptimizer using the SetResultValue() method.
Similarly, when a NonLinearConstraint command is executed, the constraint is evaluated and the value is
sent to the FminconOptimizer using SetResultValue(). The order in which these actions occur is the order
in which they appear in the subsequence.

When the mission subsequence has finished execution, the Optimize command retrieves the results of the
subsequence run from the FminconOptimizer and returns these data to the GmatInterface so that they can
be passed back to MATLAB.

MATLAB Support Files

The fiincon code in MATLAB is driven from a set of three high level MATLAB function files and a fourth
lower level function. The three high level files implement these functions:

1. GmatFminconOptimizationDriver.m manages the call into the optimizer from GMAT

2. EvaluateGMATODbjective.m gathers data and executes the callback function into GMAT, obtaining
the data calculated in GMAT and returning the value of the objective function and optionally its
gradient

3. EvaluateGMAT Constraints.m accesses the values for the constraints, returned in the call to Eval-
uateGMATObjective.

These three MATLAB files are listed here. GMAT starts a fmincon run by calling the GmatFminconOp-
timizationDriver function as a MATLAB function. The actual MATLAB function syntax is encapsulated
in the FminconOptimizer; the user does not set up the function objects or the CallFunction commands.
GmatFminconOptimizationDriver takes four inputs: a vector containing the initial values of the variables
that are being optimized, an array containing the options specified by the user for the optimizer, as described

204

CHAPTER 23. SOLVERS

in Table 23.1, and two vectors defining the lower and upper bounds on the variables. The function returns
a vector to GMAT containing the optimized values of the variables. The MATLAB file® is listed here:

function [X] = GmatFminconOptimizationDriver (X0, Opt, Lower, Upper)

%
%
%
%
%
%
h
%
%
h
%
%
%
h
A
%
%
%
%
h
h
h
%
%

h

function GmatFminconOptimizationDriver (X0, Opt, Lower, Upper)

Description: This function is called from GMAT to drive the fmincon

optimizer.

Variable I/0

Variable Name I/0 Type Dimens.
X0 I array nxl1
Opt I string

Lower I array nxl
Upper I array nx1

X 1] array nxl

Description/Comments

Column vector of
initial values for
independent
variables

Name of GMAT
FminconOptimizer

object. This is the

the options structure used
by fmincon.

Lower bound on the
values of X

Upper bound on the
values of X

Column vector of
final values for
independent
variables

Notes: n is the number of independent variables in X
neq is the number of nonlinear equality comnstraints
nineq is the number of nonlinear inequality comstraints

External References: fmincon, EvaluateGMATObjective,

EvaluateGMATConstraints, CallGMATfminconSolver

Modification History

06/15/06, D. Conway, Created

8Chis file, and all of the other MATLAB files, are read in verbatim from the working files t¢ ensure accuracy ia the

&

transcription. If you arve missing auy of the required liles, they can be reproduced from the texi presented here,

23.6. OPTIMIZERS 205

% --- Declare global variables
global NonlinearEqCon NLEqComnstraintJacobian NonLinearIneqCon ..
NLIneqConstraintJacobian

X = fmincon(@EvaluateGMATObjective, X0, [1, [1, [1, [J, Lower, Upper, ..
QEvaluateGMATConstraints, Opt)

% Apply the converged variables
CallGMATfminconSolver(X, ’Converged’)

MATLAB’s fmincon optimizer uses two user supplied MATLAB functions when optimizing a problem: one
that evaluates the objective function and, optionally, its gradient, and a second that evaluates problem
constraints and the related Jacobians. For GMAT’s purposes, those two functions are defined in the other
two files listed above, EvaluateGMATObjective.m and EvaluateGMAT Constraints.m.

EvaluateGMATObjective passes the values of the variables calculated in fmincon to GMAT using the low
level CallGMATfminconSolver function, described below, and waits for GMAT to return the data calculated
off of these variables. The variables passed to GMAT are used when running the commands in the solver
subsequence. When GMAT receives the call from MATLAB and sets the current variable values in the
FminconOptimizer used for the mission. Then the mission subsequence is executed one command at a time.
Vary commands in the subsequence query the FminconOptimizer for the corresponding variable values,
and the NonLinearConstraint and Minimize, and, eventually, Gradient and Jacobian commands set their
calculated values on the FminconOptimizer as they are executed. Once the solver subsequence finishes
running, these calculated values are returned to MATLAB in the return vectors defined for the function.
Here is the MATLAB file that implements EvaluateGMATObjective:

function [F,GradF] = EvaluateGMATObjective(X)

% function [F,GradF] = EvaluateGMATObjective(X)

%

% Description: This function takes the nondimensionalized vector of

% independent variables, X, and sends it to GMAT for evaluation of the

% cost, constraints, and derivatives. If derivatives are not calculated
% in GMAT, then an empty matrix is returned.

%

% Variable I/0

Y e e e

% Variable Name 1/0 Type Dimens. Description/
% Comments

%

" X I array nxli Column vector
% of Independent
% variables

%

%“ F 0 array 1x1 Cost function
A value

%

% GradF 0 array nx 1l or [1 Gradient of
YA the cost f’n
%

% NonLinearEqCon 0 global array neq x 1 or [] Column vector
% containing

% nonlinear

it

206 CHAPTER 23. SOLVERS

% equality

h constraint

% values.

A

% JacNonLinearEqCon 0 global array n x neq or [] Jacobian of the
% nonlinear

% equality

% constraints

%

% NonLinearIneqCon 0 global array nineq x1 or [] Column vector

% containing

% nonlinear

% ' inequality

% constraint

A values.

%

% JacNonLinearIneqCon 0 global array n x ineq or [] Jacobian of the
% nonlinear

% inequality

% constraints

% Notes: n is the number of independent variables in X

% neq is the number of nonlinear equality comstraints

% nineq is the number of nonlinear inequality constraints
% External References: CallGMATfminconSolver

% Modification History

% 06/13/06, S. Hughes, Created

% --- Declare global variables

global NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqConm,
JacNonLinearEqCon

% --- Call GMAT and get values for cost, constraints, and derivatives

[F, GradF, NonLinearEqCon, JacNonLinearEqCon, NonLinearIneqCon,
JacNonLinearIneqCon] = CallGMATfminconSolver(X);

When control returns to MATLAB from GMAT, all of the data fmincon needs is available for consumption.
The value of the objective function, along with its gradient if calculated, are returned directly to fmincon.
The constraint and Jacobian data are stored in global MATLAB variables so that they can be sent to fmincon
when the optimizer requests them. The EvaluateGMATConstraints function provides the interface fmincon
needs to access these data. It is shown here:

function [NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon,
JacNonLinearEqCon] = EvaluateGMATConstraints(X)

% function [F,GradF] = EvaluateGMATConstraints(X)
%

23.6. OPTIMIZERS 207

Description: This function returns the values of the contraints and
Jacobians. Empty matrices are returned when either a constraint type
does not exist, or a Jacobian is not provided.

Variable I/0
Variable Name 1/0 Type Dimens. Description/
Comments

X I array nx1 Column vector of
Independent
variables

NonLinearEqCon 0 global array neq x 1 or [J Column vector
containing
nonlinear
equality
constraint
values.

JacNonLinearEqCon 0 global array n x neq or [J Jacobian of the
nonlinear
equality
constraints

NonLinearIneqCon 0 global array nineq x1 or [] Column vector
containing
nonlinear
inequality
constraint
values.

JacNonLinearIneqCon 0 global array n x ineq or [] Jacobian of the
nonlinear
inequality
constraints

Notes: n is the number of independent variables in X

neq is the number of nonlinear equality constraints
nineq is the number of nonlinear inequality constraints

External References: CallGMATfminconSolver
Modification History

06/13/06, S. Hughes, Created

global NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon,

JacNonLinearEqCon

208

CHAPTER 23. SOLVERS

The low level callback function, CallGMATfminconSolver, uses the MATLAB server interface in GMAT

to run the solver subsequence. This function is contained in the MATLAB file shown here:

function [F, GradF, NonLinearEqCon, JacNonLinearEqCon,
NonLinearIneqCon, JacNonLinearIneqCon] = ...
CallGMATfminconSolver (X, status)

% function [F, GradF, NonLinearEqCon, JacNonLinearEqCon,

% NonLinearIneqCon, JacNonLinearIneqCon] = CallGMATfminconSolver (X)

%

% Description: This is the callback function executed by MATLAB to drive
% the GMAT mission sequence during fmincon optimization.

%

%

Scripting the fmincon Optimizer

A sample script for the FminconOptimizer is shown here:

1

(2 S I N

x o~ o

Create Spacecraft Sat;
Create ForceModel DefaultProp_ForceModel;

Create Propagator DefaultProp;
GMAT DefaultProp.FM = DefaultProp_ForceModel;

Create ImpulsiveBurn dvil;
Create ImpulsiveBurn dv2;

Create fminconOptimizer SQPfmincon ‘
GMAT SQPfmincon.DiffMaxChange = 0.01; % Real number
GMAT SQPfmincon.DiffMinChange = 0.0001; ¥ Real number

GMAT SQPfmincon.MaxFunEvals = 1000; % Real number
GMAT SQPfmincon.MaxIter = 250; % Real number
GMAT SQPfmincon.TolX = 0.01; % Real number
GMAT SQPfmincon.TolFun = 0.0001; % Real number

GMAT SQPfmincon.DerivativeCheck = 0ff; % {On, Off}

GMAT SQPfmincon.Diagnostics = QOn; % {0n, 0ff}
GMAT SQPfmincon.Display = Iter J {Iter, Off, Notify, Final}
GMAT SQPfmincon.GradObj = 0ff; % {On, Off}
GMAT SQPfmincon.GradConstr = 0ff; % {On, Off}

'/.***

hmmmmmmm e The Mission Sequence---------c—ocommmmmmmo
Y6 kAo ok ook ok oo kKo ok ok sk ook ok sk ko ok K Kk koo Rk sk ook sk ok ekt ook ko ok ok

23.7. COMMAND INTERFACES 209

sa % The optimization sequence below demonstrates how to use an SQP
35 /4 routine in GMAT to show that the Hohmann transfer is the optimal
36 % transfer between two circular, co-planar orbits.

37 Optimize SQPfmincon

39 % Vary the initial maneuver using the optimizer, and apply the maneuver
10 Vary SQPfmincon(dvl.Elementi = 0.4, {Upper = 2.0, Lower = 0.0, cm = 1, cf = 1});
4 Maneuver dv1(Sat);

12

13 % Vary the tranfer time of flight using the SQP optimizer

14 Vary SQPfmincon(TOF = 3600);

13 Propagate DefaultProp(Sat, {Sat.ElapsedSecs = TOF});

46

a7 % Vary the second maneuver using the optimizer, and apply the maneuver
48 Vary SQPfmincon(dv2.Elementl = 0.4 , {Upper = 2.0, Lower = 0.0});

19 Maneuver dv2(Sat);

50 .

51 % Apply constraints on final orbit, and define cost function

52 NonLinearConstraint SQPfmincon(Sat.SMA = 8000);

53 NonLinearConstraint SQPfmincon(Sat.ECC = 0);

51 Minimize SQPfmincon(dvl.Elementl + dvi.Element2);

35

s¢ EndOptimize

23.7 Command Interfaces

The GMAT solvers are driven from a number of commands tailored to the solver algorithms. The solver
specific commands are shown in Figure 23.10. Each category of solver is used to drive a sequence of com-
mands that starts with the keyword associated with the solver: “Target” for the targeters, “Iterate” for the
scanners, and “Optimize” for the optimizers. The solver used for the sequence is identified on this initial
line. Each solver sequence is terminated with a corresponding end command: “EndTarget” for the targeters,
“EndIterate” for the scanners, and “EndOptimize” for the optimizers. The commands enclosed between these
keywords define the variables used in the solver, the conditions that the solver is designed to evaluate, an-
cillary conditions that need to be met (e.g. constraints for the optimizers), and the sequence of events that
the model runs when solving the scripted problem. This section describes the features of the commands that
interact directly with the Solvers to solve mission specific tasks. The general layout and methods used by
all commands are provided in Chapter 21.

23.7.1 Commands Used by All Solvers

Figure 23.10 shows the classes used by the GMAT solvers. Classes shown in blue on this figure are used by
targeters, in pink by scanners, and in yellow by optimizers. The classes shown in green are either base classes
or solver classes used by all solvers. The solver specific commands, shown in Figure 23.11, are described
in the following paragraphs. The scripting and options for the commands are presented first, followed by a
brief description of the steps take during initialization and execution of the commands.

Solver Loop Commands

Each solver defines a mission subsequence that starts with a command, identified by the keyword “Target”,
“Iterate”, or “Optimize”, followed by the name of an instantiated solver. These commands are collectively
called the “loop entry commands” in the text that follows. The commands that are evaluated when running

210 CHAPTER 23. SOLVERS

Solver Comm ands)

Figure 23.10: Command Classes used by the Solvers

the solver subsequence follow this line in the order in which they are executed. The solver subsequence is
terminated with a corresponding loop exit command, one of “EndTarget”, “EndIterate”, or “EndOptimize”,
selected to match the loop entry command line. The format for a solver loop can be written

<LoopEntryCommand> <SolverName>
<Solver Subsequence Commands>
<LoopExitCommand>

All solver subsequences must contain at least one Vary command so that the solver has a variable to use
when running its algorithm. Targeter commands also require at least one Achieve command, specifying the
goal of the targeting. Scanners require at least one Accumulate command, defining the data that is collected
during the iterative scan driven by the algorithm. Optimizers are required to define one - and only one -
objective function, using the Minimize command.

When the Solver hierarchy includes the option to drive the solution process from an external solver, the
loop entry command must also supply a method used for the external process to call back into GMAT to
run the solver subsequence. This method, ExecuteCallback(), is currently only supported by the optimizers.

The solver loop command members shown in the figure fill these roles:

Data Elements

s std::string iteratorName, targeterName, optimizerName: The name of the solver used for this
solver loop.

e Solver* iterator, targeter, optimizer: The Solver used for this solver loop.

23.7. COMMAND INTERFACES 211

«cck Solver Comm ands Needed by All SuW:rs)

Figure 23.11: Command Classes Required by All Solvers

Methods

e bool Initialize(): Sets member pointers, initializes the solver subsequence, and then initalizes the
Solver.

¢ bool Execute(): Runs the Solver state machine, and executes the solver subsequence when the state
machine requires it.

¢ bool ExecuteCallback(): For external solvers®, this method runs the nested state machine through
one iteration.

e void StoreLoopData(): Constructs objects used to store the object data at the start of a Solver
subsequence, so that the data can be reset each time the subsequence is run. These objects are
initialized to the values of the objects at the start of the execution of the Solver loop.

¢ void ResetLoopData(): Resets the subsequence data to their initial values prior to the run of the
solver subsequence.

e void FreeLoopData(): Releases the objects constructed in the StoreLoopData() method. This
method is called after a Solver has completed its work, immediately before proceeding to the next
command in the mission sequence.

Initialization During initialization, the loop entry commands use the Sandbox’s local object map to
find the solver used in the loop. That solver is cloned and the clone is stored in a local variable. The loop
entry command then walks through the list of commands in its subsequence and passes the pointer to the
solver clone into each command that needs the pointer; these commands are those shown as solver specific
in Figure 23.10. The branch command Initialize() method is then called to complete initialization of the
commands in the solver subsequence.

9Currently only applicable for Optimizers

212 CHAPTER 23. SOLVERS

Execution The loop entry commands execute by performing the following series of events:

1. If the “commandExecuting” flag is false:
Store the current states for all spacecraft and formations
Retrieve and store the entry data for the solver
Set the “commandExecuting” flag to true and the and “commandComplete” flag to false

Retrieve the current solver state

o

. If the command is currently running the solver subsequence, take the next step in that run. This
piece is required to let the user interrupt the execution of a run; when the subsequence is running, it
periodically returns control to the Sandbox so that the user interface can be polled for a user interrupt.

3. If the subsequence was not running, perform actions that the subsequence needs based on the current
solver state. These actions may be restoring spacecraft data to the entry data for the solver loop,
starting a run in the mission subsequence, preparing to exit the solver loop, other algorithm specific
actions, or taking no action at all.

4. Call AdvanceState() on the solver.
5. Write out solver report data.

. Return control to the Sandbox.

Vary

The Vary command is used by all solvers to define the variables used by the solver, along with parameters
appropriate to the variable. A typical Vary command has the format

Vary <SolverName>(<variable> = <initialValue>, {<parameter overrides>})

The <SolverName> should be the same solver object identified when the solver loop was opened. The solver
must be identified in each Vary command, so that nested solvers can assign variables to the correct solver
objects!®.

The Vary command has the following parameters that users can override:

o Pert: Defines the perturbation applied to the variable during targeting or scanning. This parameter
has no effect when using the FminconOptimizer. (TBD: the effect for other optimizers.)

Lower (Default: Unbounded): The minimum allowed value for the variable.

Upper (Default: Unbounded): The maximum allowed value for the variable.

MaxStep (Default: Unbounded): The largest allowed singel step that can be applied to the variable.

AdditiveScaleFactor (Default: 0.0): The additive factor, A, defined in equation 23.5.

MultiplicativeScaleFactor (Default: 1.0): The multiplicative factor, M, defined in equation 23.5.

Parameters are set by assigning values to these keywords. For example, when setting a perturbation on a
maneuver component Mnvr.V, using the targeter dcTarg, the scripting is

Vary dcTarg(Mavr.V = 1.5, {Pert = 0.001});

DA similar constraint is applied to all solver commands; identifying the solver removes the possibility of misassigning solver
data.

23.7. COMMAND INTERFACES 213

where the initial value for the velocity component of the maneuver is 1.5 km/s, and the targeter applies a
perturbation of 1 m/s (0.001 km/s) to the maneuver when running the targeting algorithm.

The scale factor parameters are used to rescale the variables when passing them to the solvers. Scaling
of the variables and other elements in a solver algorithm can be used to ensure that the steps taken by a
targeter or optimizer are equally sensitive to variations in all of the parameters defining the problem, and
therefore more quickly convergent. When a variable is passed to a solver, the actual value sent to the solver,

~

X, is related to the value of the variable used in the solver subsequence, X;, by the equation
. Xi+ A
X; = Ait 4
M
where A is the value set for the AdditiveScaleFactor, and M is the value of the MultiplicativeScaleFactor.
This equation is inverted when the variable is set from the solver, giving

(23.5)

X;i=MX;— A (23.6)

All solvers work with the scaled value of the variable data. When a variable value is retrieved from the Solver,
the Vary command applies equation 23.6 to the retrieved value before using it in the mission subsequence.
The Vary command members shown in the figure fill these roles:

Data Elements
o std::string solverName: The name of the solver that uses this variable.

e Solver *solver: A pointer to the Solver.

std::string variableName: The name of the variable fed by this command.

<see text> initialValue: The initial value for the variable. This can be a number, a piece of object
data, a Parameter, or an array element.

¢ Real currentValue: The current or most recent value of the variable.

Methods

» bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

» bool Initialize(): Sets the member pointers and registers the variables with the Solver.

e bool Execute(): Queries the Solver for the current variable values, and sets these values on the
corresponding objects.

¢ bool RunComplete(): Cleans up data structures used in the solver loop.

Initialization At initialization, the Vary command registers its variable with the solver by calling the
SetSolverVariable() method. The scaled initial value of the variable (normalized using equation 23.5), along
with the associated parameters, are all passed into the solver with this call. That method returns the solver’s
integer index for the variable, which is stored in a member of the Vary comnmand.

Execution When the Vary command executes, it queries the solver for the current value of the variable
using the GetSolverVariable() method. That method passes back the value of the variable that should be
used in the current run of the solver subsequence. The value is unnormalized using equation 23.6 and then
used to set the value of the variable for later use in the solver subsequence.

214 CHAPTER 23. SOLVERS

23.7.2 Commands Used by Scanners

Scanners are used to collect statistical data by iterating the scanner subsequence for a user specified number
of passes. The data collected is identified using the Accumulate command, shown in Figure 23.12 and
described here.

cd: Scanner Commands

IMigure 23.12: Command Classes Used by Scanners

TBD - This section will be completed when the first scanner is scheduled for implementation.

23.7.3 Commands Used by Targeters

Targeters are used to change the variables so that the mission reaches some user specified set of goals. These
goals are identified using the Achieve command, shown in Figure 23.13 and described here.

cd: Targeter Commands J

Figure 23.13: Command Classes Used by Targeters

23.7. COMMAND INTERFACES

Achieve

The Achieve command is used by targeters to define the goals of the targeting sequence. Achieve commands
occur inside of a targeter subsequence. They set the targeter goals using scripting with the syntax

Achieve <TargeterName>(<goalParameter> = <goalValue>, {Tolerance = ToleranceValue})

The targeter named in the command must match the targeter named in the Target command that starts
the targeter subsequence. The goalParameters is a GMAT Parameter that produces a Real value. The
GoalValue and the ToleranceValue each consist of either a number, a Parameter, or an array element, again,
producing a Real number.

The Achieve command members shown in the figure fill these roles:

Data Elements

std::string targeterName: The name of the Targeter associated with this goal.

Solver *targeter: The Targeter that is trying to meet the goal specified by this command.

std::string goalName: The name of the parameter that is evaluated for this goal.

¢ Parameter *achieveParm: The parameter that is evaluated for comparison with the goal.

Real goal: The goal of the targeting run associated with the achieveParm.

Real tolerance: The measure of how close the achieved value needs to be to the goal.

Methods

» bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

e bool Initialize(): Sets the member pointers and registers the goals with the Targeter.
e bool Execute(): Evaluates the value of the achieveParm, and sends this value to the Targeter.

Initialization During Initialization, the Achieve command sets its internal member pointers and reg-
isters with the Targeter.

Execution When the Achieve command is executed, the parameter that calculates the current value
for the targeter goal is evaluated, and that value is sent to the Targeter.

23.7.4 Commands Used by Optimizers
All optimizers require exactly one Minimize command. Optimizers may also specify other data used in

optimization; specifically, commands exist to specify nonlinear constraints, gradient data, and Jacobian
data.

Minimize
The Minimize command has the syntax

Minimize <OptimizerName>(<ObjectiveFunction>)

As in the other solver commands, the solver identified in the command, <OptimizerName>>, is the same

optimizer as was identified in the loop entry command, an Optimize command in this case. The parameter

passed inside the parentheses, identified as <ObjectiveFunction> here, returns a scalar Real value that

represents the current value of the objective function. This function is contained in a GMAT a Variable.
The Minimize command members shown in the figure fill these roles:

216 CHAPTER 23. SOLVERS

cd: Optimizer Comm ands J

Figure 23.14: Command Classes Used by Optimizers

Data Elements

std::string optimizerName: The name of the Optimizer that owns this objective.

Solver *optimizer: A pointer to the Optimizer.

std::string objectiveName: The name of the variable used to evaluate the objective function.

Variable *objective: The variable used for the objective function.

L

Real objectiveValue: The current or most recent value of the objective function.

Methods

¢ bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

e bool Initialize(): Sets the member pointers and registers the objective function with the Optimizer.

e bool Execute(): Evaluates the value of the objective function, and sends this value to the optimizer.

Initialization The Optimizer used by the Minimize command is set by the Optimize loop entry com-
mand prior to initialization of this command. When initialization is called for the Minimize command, the
Variable providing the objective function value is found in the Sandbox’s local object map and the pointer
is set accordingly. The Minimize command then registers with the Optimizer using the SetSolverResults
method. The Optimizer sets its member data structure accordingly, and throws an exception if more than
one objective attempts to register.

Execution When the Minimize command is executed, the Real value of the objective function is
evaluated by calling the Variable’s EvaluateReal method. The resulting value of the objective function is
passed to the Optimizer using the SetResultValue method.

23.7. COMMAND INTERFACES 217

NonLinearConstraint

The NonlinearConstraint command has the syntax
NonlinearConstraint <OptimizerName>(<ConstraintSpecification>)

Here the QptimizerName is the name of the Optimizer identified in the Optimize loop entry command.
The < ConstraintSpecification> has the form

<ConstraintParameter> <operator> <ConstraintValue>

< ConstraintParameter:> is a Parameter, Variable, or object property. The operator is either an equal sign
(“=") for equality constraints, or a “<=" specification for inequality constraints. The constraint value is a
Real number settig the target value of the constraint.

The NonlinearConstraint command members shown in the figure fill these roles:

Data Elements

¢ std::string optimizerName: The name of the Optimizer that owns this constraint.
e Solver *optimizer: A pointer to the Qptimizer.

e std::string constraintName: The name of the object providing the constraint value.
e Parameter *constraint: The object providing the constraint value.

e Real constraintValue: The current or most recent value of the constraint.

¢ bool isInequality: A flag indicating is the constraint is an inequality constraint.

e Real desiredValue: The desired value, or right hand side, of the constraint equation.

e Real tolerance: Cwrrently unused, this is a measure of how close the calculated value for the constraint
needs to be to the actual value for equality constraints.

Methods

e bool InterpretAction(): Parses the command string and builds the references needed during initial-
ization and execution.

e bool Initialize(): Sets the member pointers and registers the constraint with the Optimizer.

¢ bool Execute(): Evaluates the value of the constraint, and sends this value to the optimizer.

Initialization The Optimizer used by the NonlinearConstraint command is set by the Optimize loop
entry command prior to initialization of this command. When initialization is called for the NonlinearCon-
straint command, the object that is evaluated for the constraint is retrieved from the Sandbox’s local object
map. The constraint specification is parsed, setting the constraint type and data in the NonlinearConstraint
command. Finally, all of the constraint information is collected and registered with the Optimizer using the
SetSolverResults method.

Execution When the NonlinearConstraint command is executed, the Real value of the constraint is
evaluated, and the resulting value of the constraint is passed to the Optimizer using the SetResultValue
method.

218 CHAPTER 23. SOLVERS

Gradient

The Gradient command is used to send the gradient of the objective function to an optimizer. This command,
a future enhancement, will be implemented when state transition matrix calculations are incorporated into
GMAT.

NLIneqConstraintJacobian

This command is used to set the Jacobian of the nonlinear inequality constraints for an optimizer. This com-
mand, a future enhancement, will be implemented when state transition matrix calculations are incorporated
into GMAT.

NLEqConstraintJacobian

This command is used to set the Jacobian of the nonlinear equality constraints for an optimizer. This com-
mand, a future enhancement, will be implemented when state transition matrix calculations are incorporated
into GMAT.

Chapter 24

Inline Mathematics in GMAT

Darrel J. Conway
Thinking Systems, Inc.

GMAT provides a flexible mechanism that lets users place both scalar and matrix computations into
the command sequence for a mission. This mechanism is implemented in a set of classes described in this
chapter.

24.1 Scripting GMAT Mathematics

Mathematics in GMAT scripts follow the conventions established in MATLAB; an equation consists of an
object on the left side of an equals sign, with an equation on the right. Equations can be entered either in
script files, or using a panel on the graphical user interface. Parentheses are used to set the precedence of
operations when the normal precedence rules are not valid. Table 24.1 lists the operators implemented in
GMAT. The table is arranged in order of operator precedence; operators higher in the table are evaluated
before operators that appear lower in the table. Users can override this order through selective use of
parentheses.

Mathematics in GMAT are scripted using the same syntax as assignments. Three samples of the scripting
for the operations in Table 24.1 are provided here to and discussed in the design presentation to help explain
how GMAT manipulates its internal data structures to perform scripted mathematics.

Example 1: Basic Arithmetic

In this simplest example, a user needs to write script to perform the calculation of the longitude of periapsis,
OI=Q+w (24.1)

for the spacecraft named sat. The scripting for this calculation is straight forward:

Create Spacecraft sat;
Create Variable arg
GMAT arg = sat.RAAN + sat.AQOP

Example 2: More Complicated Expressions

This snippet calculates the separation between two spacecraft, using the Pythagorean theorem:

AR = (X1 — X2)? + (1 - Y2)? + (21 — Z2)? (24.2)

219

CHAPTER 24. INLINE MATHEMATICS IN GMAT

Table 24.1: Operators and Operator Precedence in GMAT

Operator or Implemented Comments Example

Function Cases

Evaluate DegToRad, Converts between DegToRad(sat. RAAN)
Conversion RadToDeg radians and degrees

Functions

Evaluate Matrix transpose and ’, mat’, det(mat)
Operations det, inv and “{-1),

norm

Evaluate Math

sin, cos, tan, asin,

Angles in the trig

sin(DegToRad(sat. TA))

Functions acos, atan, atan2, functions are in radians

log, logl0, exp,

sqrt
Exponentiation ° Powers are any real sin{radTA)"0.5

number

Muitiplication and | * / sat. RMAG / sat.SMA
Division
Addition and 4+ - sat.RAAN -+ sat.AQP
Subtraction

This is a useful example because, as we will see, it exercises the parser to ensure that operations are performed
in the correct order. The script for this example is, again, pretty simple:

Create Spacecraft satl, sat2;
Create Variable sep .
GMAT sep = sqrt((satl.X-sat2.X)"2 + (satl.Y-sat2.Y)"2 + (satl.Z-sat2.Z)"2)

Example 3: Matrix Computations

This final example is more complex, and exercises both operator ordering and matrix computations to
calculate a component of the analytic gradient of a function used in optimization. This script snippet assumes
that GMAT can calculate the State Transition Matrix and provide users with access to the corresponding
3x3 submatrices of it. The scripting for that calculation is:

% This script snippet uses the following definitions for pieces of the
% State Transition Matrix (STM):

% Sat.Phi is a 6x6 matrix that is the spacecraft STM

% Sat.PhiA is the upper left 3x3 portion of the STM

% Sat.PhiB is the upper right 3x3 portion of the STM

% Sat.PhiC is the lower left 3x3 portion of the STM

% Sat.PhiD is the lower right 3x3 portion of the STM

Create Spacecraft Satl, Sat2
Create Array Svec[3,1] Svecdot(3,1] S[1,1] dSdotdR[1,3]

For I = 1: 100
% Step the spacecraft
Propagate LowEarthProp(Satl,Sat2);

% Calculate the relative position and velocity vectors

24.2. DESIGN OVERVIEW A 221

Figure 24.1: Tree View of the Longitude of Periapsis Calculation

GMAT Svec(1,1) = Sat2.X - Sati.X;
GMAT Svec(2,1) Sat2.Y - Satl.Y;
GMAT Svec(3,1) = Sat2.Z - Satl.Z;
GMAT Svecdot(1,1) Sat2.VX - Satl1.VX;
GMAT Svecdot(2,1) = Sat2.VY - Satl.VY;
GMAT Svecdot(3,1) Sat2.VZ - Sat1.VZ;

% Calculate range
GMAT S = norm(Svec);

% Calculate the change in the range rate due to a change in the
% initial position of satl
GMAT dSdotdR = 1/S*(Svecdot’ - Svec’*Svecdot*Svec’/S~2)*(- Satl.PhiA)...
+ Svec?/S*(-Sat1.PhiC);
EndFor;

The last expression here, dsDotdR, will be used in the design discussion.

24.2 Design Overview

When GMAT encounters the last line of the first script snippet:
GMAT arg = sat.RAAN + sat.AOP

it creates an assignment command that assigns the results of a calculation to the variable named arg. The
right side of this expression - the equation - is converted into GMAT objects using an internal class in
GMAT called the MathParser. The MathParser sets up custom calculations by breaking expressions - like
the ones scripted in the preceding section - into a tree structure using a recursive descent algorithm. This
decomposition is performed during script parsing when the user is running from a script file, and during
application of user interface updates if the user is constructing the mathematics from the GMAT graphical
user interface. GMAT stores the tree representation of the mathematics in an internal object called the
MathTree. During script execution, the MathTree is populated with the objects used in the calculation
during mission initialization in the Sandbox. The equation is evaluated when the associated Assignment
command is executed by performing a depth-first traversal of the tree to obtain the desired results. The
algorithms implemented here are extensions of the approach presented in chapter 40 of |schildt].

The tree based structure of the computations enforces the operator precedence rules tabulated above. In
this section the construction and evaluation of the trees for the examples is presented, and the classes used in
this process are introduced. The sections that follow this overview present the classes in a more systematic
manner, discuss how the scripting is parsed to create the GMAT objects used in evaluation, and then tie
these picces together by discussing how the constructed objects interact as a program executes.

222 CHAPTER 24. INLINE MATHEMATICS IN GMAT

Figure 24.2: Tree View of the Satellite Separation Calculation

Figure 24.1' shows the tree generated for the longitude of periapsis calculation scripted above. This
simplest example illustrates the layout of the tree in memory that results from a simple arithmetic expression.
The GMAT MathParser class is fed the right side of the expression from the script — in this case, that is
the string "sat. RAAN + sat.AQP". This string is passed to the recursive descent code, which breaks it
into three pieces — two expressions that can be evaluated directly, and an operator that combines these
expressions. These pieces are stored in an internal class in GMAT called the MathTree. The expressions
"sat. RAAN" and Ysat.AOP" are placed into the "leaves" of the tree, while the addition operator is placed in
the top, "internal" node. The leaf nodes are all instances of a class named "MathElement", and the internal
nodes, of classes derived from a class named "MathFunction". When the assignment command containing
this construct is executed, each of the leaves of the tree is evaluated, and then combined using the code for
the addition operator.

The second example, illustrated in Figure 24.2, provides a more illustrative example of the parsing and
evaluation algorithms implemented in GMAT. This tree illustrates the equation encoded in example 2:

GMAT sep = sqrt((satl.X-sat2.X)"2 + (satl.Y-sat2.Y)"2 + (satl.Z-sat2.Z)"2)

Each node in the MathTree can be one of three types: a function node, an operator node (both of these
types are embodied in the MathFunction class), or an element node (in the MathElement class). The element
nodes are restricted to being the leaf nodes of the tree; the internal nodes are all either function nodes or
operator nodes.

Each MathElement node consists of two separate pieces; a string containing the text of the expression
represented by the node, and either a pointer to the object that embodies that expression or, for constants,

Un this figure and those that follow, the components that can be evaluated into Real numbers are drawn on elongated
octagons, and the operators are drawn in a circle or cliipse. Matrices are denoted by a three-dimensional box. Empty nodes
are denoted by black circles, aud yumbers; by orange squates with rounded corners.

24.2. DESIGN OVERVIEW 223

Figure 24.3: Tree View of the Matrix Calculation in Example 3

a local member containing the value of the expression. The pointer member is initially set to NULL when
the MathElement node is constructed during script parsing. When the script is initialized in the GMAT
Sandbox, these pointers are set to the corresponding objects in the Sandbox’s configuration. Each time
the assignment command associated with the MathTree executes, an Evaluate() method is called on the
MathTree, as described below.

The function and operator nodes consist of several pieces as well. Each of these nodes contain subnode
pointers that identify the input value or values needed for the node evaluation, and a method that performs
the actual mathematics involved in the evaluation. The mathematical operations for each of these nodes is
coded to work on either a scalar value or a matrix; the specific rules of ilnplementation are operator specific.

The Evaluate() method for the MathTree calls the Evaluate() method for the topmost node of the tree.
This method call is evaluated recursively for all of the subnodes of the tree, starting at the top node. The
method checks to see if the node is a leaf node or an internal node. If it is a leaf node, it is evaluated and
the resulting value is returned to the object that called it. If it is an internal node, it evaluates its subnodes
by calling Evaluate() first on the left node, then on the right node. Once these results are obtained, they are
combined using the mathematical algorithm coded for the node, and the resulting value is then returned to
the calling object.

Finally, the gradient component scripted in the third example:

GMAT dSdotdR = 1/S*(Svecdot’ - Svec’*Svecdot*Svec’/S~2)*(- Satl.PhiA)...
+ Svec’/S*(-Sati.PhiC);

224 CHAPTER 24. INLINE MATHEMATICS IN GMAT

GMAT Scripted Math J

Figure 24.4: Classes Used to Implement GMAT Mathematics

produces Figure 24.3. Evaluation for this tree proceeds as outlined above, with a few variations. Instead of
calling the Evaluate() method for the nodes in the tree, expressions that use matrices call the MatrixEvaluate
method. Another wrinkle introduced by the matrix nature of this example is that the internal nodes now
have an additional requirement; each node needs to determine that the dimensionality of the submodes
is consistent with the requested operations. This consistency check is performed during initialization in
the Sandbox, using the ValidateInputs() method. MatrixEvaluate may perform additional checks during
execution, so that singularities in the computation can be flagged and brought to the attention of the user.

24.3 Core Classes

Figure 24.4 shows the class hierarchy implemented to perform the operations described above, along with
some of the core members of these classes. The core classes used in GMAT to perform mathematical
operations are shown in green in this figure, while the helper classes used to setup the binary tree structure
are shown in orange. The MathTree and its nodes are all owned by instances of the Assignment command,
shown in yellow in the figure. Core GMAT classes are shaded in blue. The main features of these classes are
shown here, and discussed in the following paragraphs. At the end of this section, the principal elements of
the hase classes are collected for reference.

The MathTree class is the container for the tree describing the equation. It contains a pointer to the

24.3. CORE CLASSES 225

topmost node of the tree, along with methods used to manipulate the tree during initialization and execution.
This class is used to provide the interface between the tree and the Assignment command.

Each node in a MathTree is derived from the MathNode class. That base class provides the structures
and methods required by the MathTree to perform its functions. There are two classes derived from the
MathNode base: MathElement and MathFunction. The MathElement class is used for leaf nodes, and can
store either a numerical value, a matrix, or a GMAT object that evaluates to a floating point number
for example, a Parameter, or a real member of a core GMAT object. MathFunction instances are used to
implement mathematical operators and functions. The left and right subnodes of these nodes contain the
function or operator operands. Subnodes are evaluated before the operator is evaluated, producing results
that are used when evaluating the function.

The MathNode base class contains two members that are used to check the compatibility of operands
during initialization. The EvaluateInputs() method checks the return dimensions of the subnodes of the node,
and returns true if either the node is a MathElement or if the subnodes are compatible with the current node’s
Evaluate() and MatrixEvaluate() methods. The ReportOutputs() method is called on subnodes to obtain
the dimensions of matrices returned from calls to MatrixEvaluate(). That method provides an interface used
by the Evaluatelnputs() method to perform its evaluation.

One additional item worth mentioning in the MathNode base class is the implementation of the Matrix-
Evaluate() method. The Evaluate() method is pure virtual, and therefore not implemented in the base class.
MatrixEvaluate(), on the other hand, is implemented to apply the Evaluate() method element by element
to the matrix members. In other words, the default MatrixEvaluate() method implements the algorithm

M;; = Op(Lsj, Rij) (24.3)

where M;; is the [i,j] element of the resultant, L;; is the [i,j] element of the left operand, and R;; is the
{i,j] element of the right operand. Most classes derived from the MathFunction class will override this
implementation.

The classes implementing mathematical operations are derived from the MathFunction class. Figure 24.4
shows some (but not all) of these derived classes. Operators that have a one to one functional correspondence
with MATLAB operations are named identically to the MATLAB function. That means that operators like
the transpose operator will violate the GMAT naming conventions, at least for the string name assigned
to the class, because the MATLAB operator is lowercase, “transpose”, while the GMAT naming convention
specified that class names start with an upper case letter.

Operations that can rely on the algorithm presented in equation 24.3 do not need to implement the
MatrixEvaluate() method; for the classes shown here, that means that Add, Subtract, sin, cos, and asin
only need to implement the Evaluate() method, while Multiply, Divide, transpose, norm and Invert need to
implement both the Evaluate() and MatrixEvaluate() methods.

24.3.1 MathTree and MathNode Class Hierarchy Summary

This section describes the top level classes in the MathTree subsystem, summarizing key features and pro-
viding additional information about the class members.

MathTree

A MathTree object is a container class used to help initialize and manage the tree representing an equation.
It standardizes the interface with the Assignment command and acts as the entry point for the evaluation
of an equation. It is also instrumental in setting the object pointers on the tree during initialization in the
Sandbox. Key members of this class are described below.

Class Attributes

e topNode: A pointer to the topmost node in the MathTree.

226 CHAPTER 24. INLINE MATHEMATICS IN GMAT

Methods
¢ Evaluate(): Calls the Evaluate() method on the topNode and returns the value obtained from that
call.

¢ MatrixEvaluate(): Calls the MatrixEvaluate() method on the topNode and returns the matrix ob-
tained from that call.

¢ ReportOutputs(Integer &type, Integer &rowCount, Integer &colCount): Calls ReportQut-
puts(...) on the topNode and returns the data obtained in that call, so that the Assignment command
can validate that the returned data is compatible with the object that receives the calculated data (i.e.
the object on the left side of the equation).

o Initialize(std::map<std::string,GmatBase*> *objectMap): Initializes the data members in the
MathTree by walking through the tree and setting all of the object pointers in the MathElement nodes.

MathNode

MathNode is the base class for the nodes in a MathTree. Each MathNode supports methods used to
determine the return value from the node, either as a single Real number or as a matrix. The MathNodes
also provide methods used to test the validity of the calculation contained in the node and any subnodes
that may exist. The core MathNode members are listed below.

Class Attributes
e realValue: Used to store the most recent value calculated for the node.

e matrix: Used to store the most recent matrix data calculated for the node, when the node is used for
matrix calculations.

Methods

e Evaluate(): An abstract method that returns the value of the node. For MathElements, this method
returns the current value of the element, either by evaluating a Parameter and returning the value,
accessing and returning an object’s internal data, or returning a constant. For MathFunctions, the
Evaluate() method appies the function and returns the result. If the encoded function cannot return
a Real number, Evaluate() throws an exception.

e MatrixEvaluate(): Fills in a matrix with the requested data. For MathFunction objects, this method
performs the calculation of the operation and fills in the matrix with the results. The default imple-
mentation uses equation 24.3 to fill in the matrix element by element. Operations that do not return
matrix values, like norm and determinant, throw exceptions when this method is called. MathElements
simply return the matrix associated with the node.

e EvaluateInputs(): Checks the inputs to the node to be sure that they are compatible with the
calculation that is being performed. For MathElement nodes, this method always returns true if the
node was successfully initialized. For MathFunction nodes, this method calls its subnodes and checks
to be sure that the subnodes return compatible data for the function.

¢ ReportOutputs(Integer &type, Integer &rowCount, Integer &colCount): This method tells
the calling object the type and size of the calculation that is going to be performed by setting values
of the parameters used in the call. The first parameter, ‘type’, is set to indicate whether the return
value will be a matrix or a Real number. ‘rowCount’ and ‘colCount’ are set to the dimensions of the
matrix if the return value is a matrix, or to 0 if the return value is scalar. This method is used in the
Evaluatelnputs() method to determine the suitability of subnodes for a given calculation, and by the
MathTree class to obtain the size of the answer returned from a complete calculation.

24.3. CORE CLASSES

MathElements

The leaf nodes of a MathTree are all instances of the MathElement class. The MathElement class acts as a
wrapper for GMAT objects, using the methods defined in the GmatBase base class to set these referenced
objects up for the MathElement’s use. The GmatBase methods SetRefObject(), SetRefObjectName(), Ge-
tRefObject(), and GetRefObjectName() are overridden to set the internal data structures in the node. The
other relevant members of this class are listed below.

Class Attributes

¢ refObjectName: Holds the name of the GMAT object that is accessed by this node.

¢ refObject: A pointer to the referenced object. This pointer is set when the MathTree is initialized in

the Sandbox.
Methods

¢ SetRealValue(Real value): Sets the value of the node when it contains a constant.

MathFunctions

The internal nodes of a MathTree are all instances of classes derived from MathFunction. This class contains
pointers to subnodes in the tree which are used to walk through the tree structure during initialization and
evaluation. The relevant members ate described below.

Class Attributes

o left: A pointer to the left subnode used in the calculation. MathFunctions that only require a right
subnode leave this pointer in its default, NGLL setting.

e right: A pointer to the right subnode used in the calculation. MathFunctions that only require a left
subnode leave this pointer in its default, NULL setting.

Methods

e SetChildren(MathNode *leftChild, MathNode *rightChild): Sets the pointers for the left and
right child nodes. If a node is not going to be set, the corresponding parameter in the call is set to
NULL.

GetLeft(): Returns the pointer to the left node.

GetRight(): Returns the pointer to the right node.

Evaluate(): In derived classes, this method is overridden to perform the mathematical operation
represented by this node.

MatrixEvaluate(): In derived classes that do not use the default matrix calculations (equation 24.3),
this method is overridden to perform the mathematical operation represented by this node.

24.3.2 Helper Classes

There are two classes that help configure a MathTree: MathParser and MathFactory. In addition, the
Assignment command acts as the interface between a MathTree and other objects in GMAT, and the
Moderator provides the object interfaces used to configure the tree. This section sketches the actions taken
by these components.

228 CHAPTER 24. INLINE MATHEMATICS IN GMAT

MathParser

The Interpreter subsystem (see Section 6.5) in GMAT includes an interface that can be used to obtain a
MathParser object. This object takes the right side of an equation, obtained from either the GMAT GUI
or the ScriptInterpreter, and breaks it into a tree that, when evaluated depth first, implements the equation
represented by the equation. The MathParser uses the methods described below to perform this task.

Methods

¢ Parse(const std::string &theEquation): Breaks apart the text representation of an equation and
uses the component pieces to construct the MathTree.

e CreateNode(const std::string &genString): Uses the generating string “genString”, to create a
node for insertion into the MathTree.

e Decompose(const std::string &composite): This method is the entry point to the recursive de-
scent algorithm. It uses internal methods to take a string representing the right side of the equation
and break it into the constituent nodes in the MathTree. The method returns the topmost node of the
MathTree, configured with all of the derived subnodes.

MathFactory

The MathFactory is a GMAT factory (see Chapter 5 that is used to construct MathNodes. It has one method
of interest here:

Methods

e CreateNode(const std::string &ofType): Creates a MathNode that implements the operation
contained in the string. If no such operator exists, the MathFactory creates a MathElement node and
sets the reference object name on that node to the test of the ‘of Type’ string.

The Assignment Command and the Moderator

The Assignment command is the container for the MathTree described in this chapter. All GMAT equations
are formatted with a receiving object on the left side of an equals sign, then the equals sign, and then
the equation on the right. When the interpreter system is configuring an Assignment command, it detects
when the right side is an equation, and passes the string describing the equation into a MathParser. That
MathParser proceeds to parse the equation, making calls into the Moderator when a new MathNode is re-
quired. The Moderator accesses the MathFactories through the FactoryManager, and obtains MathNodes as
required. These nodes are not added to the Configuration Manager, but they are returned to the MathParser
for insertion into the current MathTree. Once the tree is fully populated, it is returned to the Assignment
command, completing the parsing of the expression.

When the Moderator is instructed to run a mission, it passes the configured objects into the Sandbox,
and then initializes the Sandbox. The last step in Sandbox initialization is to initialize all of the commands
in the mission sequence. When one of these commands is an Assignment command that includes a MathTree,
that command initializes the MathTree after initializing all of its other elements, and then validates that the
MathTree is compatible with the object on the left side of the equation. If an error is encountered at this
phase, the Assignment command throws an exception that describes the error and includes the text of the
command that failed initialization. If initialization succeeds, the Moderator then tells the Sandbox to run
the mission. The Sandbox starts at the first command in the mission sequence, and executes the command
stream as described in Chapter 6.

24.4. BUILDING THE MATHTREE 229

Parsing an equation)

Start End

Figure 24.5: Control Flow for Parsing an Equation

24.4 Building the MathTree

Scripted mathematics are constructed using the MathParser class, which builds the binary tree representing
the equation that is evaluated by constructing nodes for the tree and placing these nodes into the tree one
at a time. Figure 24.5 shows the high level control flow used to create the MathTree. An empty MathTree
is created, and then that tree is passed into the MathParser along with the string representation of the
equation. The Mathparser takes the MathTree and populates it with MathNodes based on the equation
string. The top node of this completed tree is then returned from the parser, and set on the assignment
command for use during execution of the mission. '

The middle step in the process outlined in Figure 24.5 encapsulates the recursive descent decomposition
of the equation. Figure 24.6 provides a more detailed view of this algorithm. The InterpretAction method of
the Assignment command determines that the right side of the assignment is an equation, and then creates
a MathTree and a MathParser to break this equation into the components needed for evaluation during
execution. The MathTree and the equation string are passed into the MathParser.

The MathParser takes the input string, and attempts to break it into three pieces: an operator, a left
element, and a right element. Any of these three pieces can be the empty string; if the operator string is
empty, only the left string contains data, denoting that the string is used to build a MathElement node, on
one of the leaves of the MathTree. '

If the operator string is not empty, the operator string is used to build a MathFunction node. Math-
Function nodes are used to perform all mathematical operations: basic math like addition, subtraction,
multiplication, division, and exponentiation, along with unary negation and mathematical functions. The
arguments of the MathFunction are contained in the left and right strings. These strings are passed into the
MathParser’s Parse method for further decomposition, and the process repeats until all of the strings have
heen decomposed into operators and the MathElement leaf nodes. If either string is empty, the corresponding
child node on the MathFunction is set to NULL.

Once a leaf node has been constructed, that node is set as the left or right node on the operator above
it. Once the left and right nodes are set on a MathFunction, that node is returned as a completed node to
the calling method, terminating that branch of the recursion. When the topmost node has its child nodes
filled in, the MathParser returns from the recursion with the completed MathTree.

24.5 Program Flow and Class Interactions

The preceding section describes the construction of the MathTree that represents an equation. The parsing
described above places the instances of the MathFunction nodes into the MathTree, along with the string
names of the MathElement nodes. The objects evaluated in the MathElement nodes are not placed into the
MathTree, because those elements depend on local objects in the GMAT Sandbox when a script is executed.
This section explains how those objects are placed into the MathTree in the Sandbox, and then evaluated
to complete a calculation for an Assignment command.

230 CHAPTER 24. INLINE MATHEMATICS IN GMAT

Recursive Equation Parsing J

1) Assignment needs NuhTr*e;
1 calls w/ equation string

<

2) .Break string into pieces

2) retumns StringArray with 3 elem ents|
[op, lefy, right]

'
3).Create node: if op =="", create lﬂllhElemen! using left,
otherwise create 3 MathFunction using op

».
Lt

v
i
'
[
'
'
'
'
'
'
1
i
il
'
:
@

4) Create node in Factol

3) retum created node

T
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
)
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

1) Required top MathNod
1 s retumed

Figure 24.6: Parser Recursion Sequence

24.5. PROGRAM FLOW AND CLASS INTERACTIONS 231

Initialization in the Sandbox J

Initialize Command
Sequence

Is RHS a

. MathTree?
Assignment? ¥ \

Has child
nodes?

(NULL?

Yes Right node
ex|sts?

Initialization Complete
Both side finished

Figure 24.7: MathTree Initialization in the Sandbox

24.5.1 Initialization

Figure 24.7 shows the process of initialization of the Command Sequence in the Sandbox, with a focus on the
MathTree initialization. Section 4.2.1 describes the general initialization process in the Sandbox. Sandbox
initialization proceeds as described there, initializing the objects and then the command sequence. When
the command in the sequence is an Assignment command containing in-line mathematics, the Assignment
command performs the details shown here to initialize the MathTree. The command first accesses the
top node of the MathTree. If that node has subnodes, those subnodes are initialized iteratively until a
MathElement node is encountered.

When a MathElement node is encountered, that node is queried for its referenced object’s name. If the
node returns a name, that object’s pointer is accessed in the local object map owned by the Sandbox and set
on the node using the SetRefObject() method. If the reference object name is empty, the node is a numerical
constant, and no further initialization is required.

When all of the subnodes of a MathFunction node have been initialized, that node validates that the
dimensionality of the operands are compatible with the mathematical operation represented by the node.
This validation is done by calling the ReportQutputs() method on the child nodes and ensuring that the
results are consistent with the requirements of the operation. If the results are consistent, local variables are

232 CHAPTER 24. INLINE MATHEMATICS IN GMAT

Execution of MathTree Assignment Com mands)

Execute Assignment Command

Has child
nodes? =~ <

\
IsRHS a <
MathTree? Y

No

Yes

&> Right

Node?

Calling node
is TopNode?

Execution Complete

Figure 24.8: Evaluation of a MathTree Assignment

used to save data so that parent nodes to the current node can obtain consistency data without recursing
through the MathTree. When the results are inconsistent with the operation, a warning message (which
indicates the inconsistency of the calculation and the text of the line that generate the MathTree) is posted
to the user, and an internal flag is set to false, indicating that the calculation cannot be performed. That
flag is returned when the EvaluateInputs() method is called on the node. This completes the initialization
of the MathFunction node, and control is returned to the node above the current node.

When the topmost node in the MathTree finishes initialization, the MathTree calls the EvaluateInputs()
method for the top node. If that call returns a false value, an exception is thrown and initialization terminates
for the Assignment command. When the call to EvaluateInputs() succeeds, the MathTree reports successful
initialization to the Assignment command, which validates that the result of the calculation is consistent
with the object that will be receiving the result, and, if so, returns a flag indicating that the calculation
initialized successfully. If the resultant of the MathTree calculation is determined to be inconsistent with
the receiving object, an exception is thrown that contains the text of the line that generated the Assignment
command, along with information about the error encountered.

24.5.2 Execution

The task of evaluating a calculation is shown in Figure 24.8. The Assignment command determines if a
MathTree calculation is being performed by determining if the right side of the assignment (denoted RHS
in the figure) is a MathTree. If it is, the Assignment command checks to see if the result of the calculation

24.5. PROGRAM FLOW AND CLASS INTERACTIONS 233

should be a scalar value or a matrix by calling ReportQutputs() on the MathTree. If the result of this call
indicates that the output is one row by one column, the output from the calculation is scalar; otherwise, it
is a matrix. The corresponding Evaluate() method is called on the MathTree.

The MathTree Evaluate() methods behave identically in control flow; the difference between Evaluate()
and MatrixEvaluate() is in the return value of the call. Similarly, the MathNode Evaluate() and MatrixE-
valuate() methods follow identical control flow, differing only in return types. When the correct Evaluate()
method is called on the MathTree, the MathTree calls the corresponding Evaluate() method on the topmost
MathNode in the tree. Evaluation is then performed recursively on the nodes of the tree, as described here.

When an Evaluate() method is called on a node, the evaluation process proceeds based on the type of
node that owns the method. If the node is a MathFunction node, then it calls the corresponding Evaluate()
method on each of its child nodes, evaluating the left node first, then the right node. If one of those nodes
is NULL that phase of the evaluation is skipped. This can occur when the mathematical operation only
requires one operand - for example, for most of the trigonometric functions, or for unitary matrix operations
like the transpose operation. When the child node evaluation is complete, the returned data from that
evaluation are used as the operands for the mathematical operation. The operation is performed, and the
resulting data are passed to the calling method.

MathElement nodes are evaluated directly when encountered, and can return either a real number or a
matrix of real numbers based on which method is called - either Evaluate() for a Real, or MatrixEvaluate()
for a matrix. The result of this evaluation is passed to the calling method. Since all of the leaf nodes on a
MathTree are MathElement nodes, these nodes terminate the iteration through the tree.

When the calculation iteration reaches the topmost node in the MathTree, the operation for that node
is performed and the resulting data are returned to the Assignment command. The Assignment command
then sets the data on the GMAT object designated on the left side of the statement, designated the LHS in
the figure. This completes the evaluation of the Assignment command.

234 CHAPTER 24. INLINE MATHEMATICS IN GMAT

Chapter 25

GMAT and MATLAB Functions

Darrel J. Conway
Thinking Systems, Inc.

GMAT has the ability to call functions both internally defined or in MATLAB.

25.1 GMAT Functions

25.1.1 Scripting Conventions
Construction

A GMAT function is created using the script line
Create GmatFunction whatFun;

By default, a GMAT function is in a file which was named to match the name of the function, with the file
extension "gmf." For instance, a GmatFunction named "myFun" will be found in the file "myFun.gmf" in
the current directory, unless a user overrides this setting. The file name and path can be overridden with
these 2 lines:

GMAT whatFun.Path = /home/gmatUser/functions
GMAT whatFun.Filename = whatFunIsHere.gmf;

Calling Conventions

A GMAT function is called using the same syntax as is used for MATLAB functions:
GMAT answer = whatFun(parmi, parm2);

The input parameters (parml and parm2) can be GMAT objects, parameters, arrays, or variables. Objects
passed into GMAT functions are treated as read-only — the function cannot change the internal data for
these objects. Thus a user can write a GMAT function that takes, for instance, two spacecraft as input
parameters, and sets the internal data of one of the spacecraft based on the data in the other, but this
change will only take effect inside of the function. Upon return from the function, the input parameters
revert to their values when the function was called.

The returned parameter ("answer" in the example) needs to be a previously defined GMAT entity. Valid
constructs include parameters on predefined GMAT objects (e.g. Spacecraft or ForceModel parameters),
variables, arrays, or entire GMAT objects. Thus, a user could set the individual parameters for a Spacecraft

235

236 CHAPTER 25. GMAT AND MATLAB FUNCTIONS

from a GMAT function, or set a Spacecraft to match a complete Spacecraft object returned from the function.
Using this feature, a Spacecraft can be updated using the Spacecraft object as both an input and output
parameter, like this:

Create Spacecraft sc;
Create GmatFunction StateUpdate;

GMAT sc = StateUpdate(sc);

25.1.2 The GmatFunction File
Function Definition

Each GMAT function file contains exactly one GMAT function. The first executable (i.e. not commented)
line in a function file must declare the function by identifying the calling and return parameters for the
function, using this syntax:

[retl, ret2] = GmatFunction whatFun(parml, parm2);

If the function returns a single value, the square brackets around the returned values are optional. If the
function has no return values, the left side should be omitted. The following are all valid GMATFunction
declarations:

% Set SolarSystem parameters:
GmatFunction SetupSS()

% Use a spacecraft’s epoch to set F10.7 values
GmatFunction SetF107(sat, forces)

% Pass in 2 spacecraft and find their separation
distance = GmatFunction Range(satl, sat2)

% Pass in 2 spacecraft and find the vector between them
rVector = GmatFunction Range(satl, sat2)

% Same as above, but with the optional brackets shown
[rVector] = GmatFunction GetSep(satl, sat2)

% Get both position and velocity as separate vectors
[rVector, vVector] = GmatFunction DelState(satl, sat2)

Function Implementation

GMAT functions look very similar to GMAT scripts. The input parameters all need to be instantiated

GMAT objects; the GMAT parser does not accept constants as input parameters at this time. Internal

data members are created as usual in GMAT scripts, using the Create command. The input objects are not

declared in the function. The objects returned from the function are also created in the body of the function.
A sample GMAT function is provided here:

% Function used to find separation between satellites
distance = GMATFunction Range(satl, sat2)

Create Variable distance; % Return variable

25.1. GMAT FUNCTIONS 237

Create Array delX(3,1); % Internal variable

GMAT delX(1) = satl1.X - sat2.X;
GMAT delX(2) satl.Y - sat2.Y;
GMAT delX(3) = satl.Z - sat2.Z;

distance = sqrt(delX(1) * delX(1) + ...
delX(2) * delX(2) + ...
delX(3) * delX(3));

Several things are worth noting:

1. The input parameters are not validated inside the function body for type. Users are expected to know
enough about the functions called that they can pass in valid parameters.!

2. Inline mathematics are defined in the scripting. The collection of mathematical operators defined will
start out as basic operators (+, -, *, /, sqrt) and grow based on user input.

3. The returned parameter is defined in the function. Users are responsible for ensuring that this param-
eter is compatible with the expected return value.

A sample script that calls this function looks like this:
% Example of a GMAT function
Create Spacecraft MMS1 MMS2 MMS3 MMS4;

% Set spacecraft to have different states

% Setup propagator prop, formation MMS, etc

Create GmatFunction Range;

Create Variable sepl2 sepl3 sepl4 sep23 sep24 sep34;
Create XYPlot seps;

GMAT seps.IndVar = MMS1.ElapsedDays;

GMAT seps.Add = {sepl2,sepl3,sepl4,sep23,sep24,sep34}

For I =1 : 5760
Propagate prop(MMS, {MMS1.ElapsedSecs = 60});

GMAT sepl2 = Range(MMS1, MMS2);

GMAT sep13 = Range(MMS1, MMS3);

GMAT sepi4 = Range(MMS1, MMS4);

GMAT sep23 = Range(MMS2, MMS3);

GMAT sep24 = Range(MMS2, MMS4);

GMAT sep34 = Range(MMS3, MMS4);
EndFor

LIf this feature proves problematic, we may add a Comnand used to validate the type of each input parameter. An example
of the proposed syntax for this validation is Validate(sat, Spacecraft); where the first argument in the name of the object being
validated, and the second is the stuing describing the type of object expected.

238 CHAPTER 25. GMAT AND MATLAB FUNCTIONS

25.2 MATLAB Functions

Chapter 26

Adding New Objects to GMAT

Darrel J. Conway
Thinking Systems, Inc.

Chapter 5 provided an introduction to the GMAT Factory subsystem. This feature of the GMAT design
provides an interface that users can use to extend GMAT without impacting the core, configuration managed,
code base. Any of the scriptable object types in the system can be extended using this feature; this set of
objects includes hardware elements, spacecraft, commands, calculated parameters, and any other named
GMAT objects. This chapter provides an introduction to that interface into the system.

26.1 Shared Libraries

26.2 Adding Classes to GMAT
26.2.1 Designing Your Class

This is a list of steps taken to construct the steepest descent solver.
o Create the class (.cpp and header, comment prologs, etc.).
« Add shells for the abstract methods.
« Fill in code for the shells.
o Add the object file to the list of objects in the (base) makefile.
e Unit test if possible.

¢ Build the code and debug what can be accessed at this point.

26.2.2 Creating the Factory
This is a list of steps taken to incorporate the steepest descent solver.
e Create the factory (in this case I edited SolverFactory).
e Add constructor call to the appropriate “Create...” method.
e Add the new object type name to the “creatables” lists in the factory constructors.
e Build and fix any compile issues.

o Test to see if the object can be created from a script.

239

240 CHAPTER 26. ADDING NEW OBJECTS TO GMAT

26.2.3 Bundling the Code
26.2.4 Registering with GMAT

26.3 An Extensive Example

Part IV

Appendices

Appendix A

Unified Modeling Language (UML)
Diagram Notation

Darrel J. Conway
Thinking Systems, Inc.

This appendix presents an overview of the Unified Modeling Language diagrams used throughout the
text, including mention of non-standard notations in the presentation. A more thorough presentation is
given in [fowler].

The presentation made here uses UML to sketch out how GMAT implements specific components of the
architecture. What that means is that the UML diagrams in the text do not necessarily present the full
implementation details for a given system component.

All of the UML diagrams in this document were drawn using Poseidon for UML, Professional edition
[poseidon]. The compressed UML files for these diagrams are configuration managed in a repository at
Thinking Systems’ home office. '

A.1 Package Diagrams

Package diagrams are used to present an overview of a collection of objects, ranging from the top level parts
of an entire system to subelements of subsystems. Figure A.1 shows an example of a package diagram. In
this figure, four primary GMAT system subsystems are shown: the Executive subsystem, the Interfaces, the
Factory subsystem, and the model elements.

Each box on the diagram represents a group of one or more classes that perform a task being discussed.
Package diagrams may include both package boxes and class boxes. The packages are represented by a box
with a tab on the upper left corner; classes are represented by boxes which may be subdivided into three
regions, as described in the Class Diagram section. Packages can be further divided into constituent elements,
either subpackages within a given package, or classes in the package. For example, in the figure, the interface
package consists of an External Interface package and a User Interface package. The User Interface package
is further broken into three classes: the Interpreter base class and the ScriptInterpreter and Guilnterpreter
derived classes.

Sometimes important interactions are included in the Package diagram. When this happens, the interac-
tion is drawn as a dashed arrow connecting two elements on the diagram, and the nature of the interaction
is labeled. In the example, the relationship between the Factory package and the Model Element package is
included: Factories are used to construct model elements.

In this document, package diagrams are used to communicate design structure. The packages shown
in the figures do not explicitly specify namespaces used in the GMAT code, even though UML does allow

243

244 APPENDIX A. UNIFIED MODELING LANGUAGE (UML) DIAGRAM NOTATION

Sam ple P ackage Diagram J

Scriptinterpreter

Construct

Figure A.1: GMAT Packaging, Showing Some Subpackaging

that use for package diagrams. When a package documented here has implications for a namespace used in
GMAT, that implication will be explicitly presented in the accompanying text.

A.2 C(Class Diagrams

Figure A.2 shows a typical class diagram for this document. This figure is an early version of the class
diagram for the solver subsystem. The classes directly used in that subsystem are colored differently from
the related base classes - in this figure, the Solver classes have a yellow background, while the base classes
are blue. Each box on the diagram denotes a separate class; in this example, the classes are GmatBase,
Solver, Optimizer, SteepestDescent, SequentialQuadratic, DifferentialCorrector, Factory, and SolverFactory.
Abstract classes are denoted by italicizing the class name; here the classes GmatBase, Solver, Optimizer,
and Factory are all abstract because they contain pure virtual methods.

The box representing the class is broken into three pieces. The top section indicates the name of the
class. The center section lists the attributes (i.e. data members) of the class, and the bottom section stores
the operations (aka methods) available for the class. Attributes and operations are prefaced by a symbol
indicating the accessibility of the class member; a ‘+’ prefix indicates that the member is publicly accessible,
‘4’ indicates protected access, and ‘-’ indicates private access. Static members of the classes are underlined,

A.3. SEQUENCE DIAGRAMS 245

| Solver Classes)

Figure A.2: Solver Classes

and singleton classes receive a <<Singleton>> designation above the class name.

The class diagrams included in this document suppress the argument list for the methods. This is done
for brevity’s sake; the model files include the argument lists, as does the code itself, of course. When a
method requires arguments, that requirement is indicated by ellipses on the diagram.

Classes are connected to one another using lines with arrows. If the arrowhead for the line is a three-sided
triangle, the line indicates inheritance, with the line pointing from the derived class to its base. For example,
in the figure, SolverFactory is derived from the Factory base class. SolverFactory is not abstract, and can
be instantiated, but Factory is an abstract class as represented in this figure (the class name is italicized),
even though the figure does not explicitly provide a reason for the class to be abstract.

Lines terminated by an open arrowhead, like the line connecting SolverFactory to the Solver base class,
indicates an association. The arrow points in the direction that the association i3 applied - in this case, the
SolverFactory creates instances of Solvers. The decorations at the ends of these lines indicates multiplicity.
An asterisk indicates 0 or more, so for this example, a SolverFactory can create 0 or more Solvers, depending
on the needs of the program during execution.

246 APPENDIX A. UNIFIED MODELING LANGUAGE (UML) DIAGRAM NOTATION

Configuring a Scripted Spacecraft)

B 4).Add object to contguration

;
B

§

Figure A.3: A Sequence Diagram

A.3 Sequence Diagrams

Sequence Diagrams are used to indicate the sequence of events followed when performing a task. The task
shown in Figure A.3 is the creation of an instance of the Spacecraft class from the ScriptInterpreter. Sequence
diagrams are used in this document to illustrate a time ordered sequence of interactions taken in the GMAT
code. In this example, the interactions between the ScriptInterpreter and the other elements of GMAT are
shown when a "Create Spacecraft..." line of script is parsed to create a Spacecraft object.

Each of the players in the illustrated action receive a separate timeline on the figure, referred to as a
“lifeline”. Time flows from top to bottom. The player is described in the label at the top of the lifeline. In
the example shown here, each player is a method call on a core GMAT object - for example, the line labeled
CreateSpacecraft:Moderator represents the Moderator::CreateSpacecraft(...) method. Sequence diagrams in
this document can also use lifelines to for larger entities — for instance, the sequence diagram that illustrates
the interaction between the ConfigManager, Moderator, and Sandbox when a mission is run, Figure 4.1.
The vertical blocks on each lifeline indicate the periods in which the lifeline is active, either because it is
being executed, or because it is waiting for a called method to return.

Blocks are nested to indicate when a function is called inside of another. In the example, the ConfigMan-
ager:AddObject(...) call is nested inside of the Moderator::CreateSpacecraft(...) call because that inner call
is performed before control returns from the Moderator function. Arrows from one lifeline to another are
used to indicate the action that is being performed - in the example, line 4 shows when the newly created
Spacecraft is handed to the Config manager. (Note that this is a bit more verbose than in the UML standard;
the standard is to just list the method that is called, while I prefer to give a bit more description of the
invoked operation.)

Iteration can be indicated on these diagrams by enclosing the iterated piece in a comment frame. Similarly,
recursion is indicated by a control line that loops back to the calling timeline. When this type of action occurs,
a note is also included on the figure to indicate how the recursion or self reference gets resolved; an example
can be seen in Figure 24.6. (These notes are called "Interaction Frames" in the UML documentation.)

A.4 Activity Diagrams
Activity Diagrams are used to illustrate the work flow for a given task, particularly when the steps taken in

the task can occur in parallel, and when the order of these steps is not necessarily fixed. An example of this
type of diagram is shown in Figure A.4. This diagram, which is a subset of the activity diagram shown in

A4 ACTIVITY DIAGRAMS 247

Evalugting a MathTree/l

Start MathTree
Evaluation

Has child
nodes?

Yes

Calling noce
is TopNode?

Finished

Figure A.4: An Activity Diagram

Figure 24.8, shows the actions that occur when an equation is evaluated in a MathTree object.

Action starts at the black circle, in this case in the upper left of the figure, and follows the arrows through
the blocks on the figure, terminating when it reaches the other circular marker, a filled circle with a concentric
circle around it. Each rounded block in the diagram represents a step in the task, referred to as an activity
in the UML documentation. These blocks include text indicating the activity to be accomplished.

Diamond shaped markers are used to indicate splits in the control flow through the diagram. There
are two types markers used for this purpose: branches, which have a single input with multiple exits,
and merges, which bring together multiple paths to a single output. Text labels are placed on the branch
markers indicating the test that is performed for the branching. Labels on each branch indicate which path is
followed based on the test. For example, in the figure, the branch point labeled “Has child nodes?” proceeds
downwards if the current node has child nodes, and to the right if the current node does not have child
nodes.

Activity diagrams also have fork nodes, which are displayed as heavy, black horizontal line segments.
Fork nodes are used to split the work flow into parallel paths that are all executed. The example in the
figure shows the evaluation of the subnodes nodes of a MathNode object. Each MathNode operator can have
a left subnode and a right subnode. These subnodes must be evaluated before the operator can execute, but

248 APPENDIX A. UNIFIED MODELING LANGUAGE (UML) DIAGRAM NOTATION

it does not matter which subnode is evaluated first, as long as the results of both are available when the
operator is applied. The diagram indicates this behavior by forking the process into parallel paths, and then
showing the process logic for each of these paths. When both lines of execution complete, the work flow
comes back together into a single execution path. This merging of the control paths is shown by a second
heavy black line segment, called a Join Node in the UML specifications.

A.5 State Diagrams

Differential Comector Stete Machine)

Run
complete
Begin Targeting nitielized 3
New Variables Goals
Calculated
Perts
Run TargetingComplete
For each
perturbation

Figure A.5: A State Diagram

State diagrams are similar in format to activity diagrams. The start and end nodes are marked the same
way as in an activity diagram, and the program flow is shown using similar transition arrows. The differences
lie in the objects represented by the diagram, and interpretation of the figure. Activity diagrams are used to
illustrate the interactions amongst various objects that collectively perform a task. State diagrams are used
to model how a specific component evolves over time.

In this model of the component being described, that component is always modeled as being in a specific
system state, and transitioning from that state to another state based on changes in the system. The Solvers
in GMAT are implemented explicitly as finite state machines, so they provide a prime example for this type
of diagram; the finite state machine for a differential corrector object is shown in Figure A.5.

Each block in a state diagram represents one of the states available for the object. These blocks are divided
into two sections. The upper portion of the block provides a label for the state. The lower portion of the block
provides information about the process executed within that block - in this case, the method called on the
object - and may also provide information about the outcome of that process. For the differential corrector
shown here, the states are Initializing, Nominal, CheckingRun, Perturbing, Calculating, and Finished. Each
of these states includes the descriptor for the function called when the state machine is executed.

The arrows connecting the blocks in this figure show the allowed state transitions. Each arrow is labeled
with the check that is made to ensure that it is time to make the corresponding transition.

Appendix B

Design Patterms Used in GMAT

Darrel J. Conway
Thinking Systems, Inc.

The GMAT design was influenced by many different sources: prior experience with Swingby, Navigator,
FreeFlyer, and Astrogator, exposure to analysis and operational systems for Indostar, Clementine, WIND,
ACE, and SOHO, and design experiences on other software projects. Part of the theoretical background for
the GMAT design comes from exposure to the object oriented design community, captured in the writings
of Scott Meyers, Herb Sutter, Bruce Eckel, Martin Fowler, and the Gang of Four|GoF].

This latter reference provides a framework for describing recurrent patterns in software systems. Patterns
that are used by reference in this document are summarized here for completeness; avid readers will also
want to read the Gang of Four text or a similar book derived from it.

B.1 The Singleton Pattern

B.1.1 Motivation

Some of the components of GMAT require implementation such that one and only one instance of the
component exist. Examples of these components are the Moderator, the ScriptInterpreter, the Publisher,
the ConfigurationManager, and the FactoryManager. These objects are implemented using the Singleton
design pattern.

cd: The Singleton Pattern J

Figure B.1: Structure of a Singleton

250 APPENDIX B. DESIGN PATTERMS USED IN GMAT

B.1.2 Implementation

Figure B.1 shows the key elements of a singleton. The class is defined so that there is only one possible
instance during the program’s execution. This instance is embodied in a private static pointer to a class
instance; in the figure, this pointer is the “theSingleton” member. This pointer is initialized to NULL, and
set the first time the singleton is accessed.

The class constructor, copy constructor, assignment operator, and destructor are all private in scope.
The copy constructor and assignment operator are often declared but not implemented, since they cannot
be used in practice for singleton objects. All access to the Singleton is made through the Instance() method.

The first time Instance() is called, the pointer to the singleton is constructed. Subsequent calls to
Instance() simply return the static pointer that was set on the first call. A sample implementation of the
Instance() method is shown here:

Singleton* Instance()

{
if (theSingleton == NULL)
theSingleton = new Singleton();
return theSingleton;
}

B.1.3 Notes

In GMAT, the Singletons are all terminal nodes in the class hierarchy. Some designs allow subclassing of
Singletons so that the final singleton type can be selected at run time. GMAT does not subclass its singletons
at this time.

B.2 The Factory Pattern
B.3 The Observer Pattern
B.4 The Adapter Pattern

GMAT uses adapters to simplify invocation of calculations on different types of objects, maling the interface
identical even though the underlying classes are quite different. One example of the use of adapters in GMAT
is the ElementWrapper classes used by the command subsystem. Many of the commands in GMAT need a
source of Real data in order to function correctly. This data can be supplied as a number, an object property,
a GMAT Parameter, an Array element, or any other source of Real data in the system. ElementWrappers
encapsulate the disparate interfaces to these objects so that the commands can use a single call to obtain
the Real data, regardless of the underlying object.

B.5 The Model-View-Controller (MVC) Pattern

RIS

Appendix C

Command Implementation: Sample
Code

Darrel J. Conway
Thinking Systems, Inc.

The wrapper classes described in Chapter 21 encapsulate the data used by commands that need informa-
tion at the single data element level, giving several disparate types a common interface used during operation
in the GMAT Sandbox. This appendix provides sample code for the usage of these wrappers, starting with
sample setup code, and proceeding through initialization, execution, and finalization. The Vary command,
used by the Solvers, is used to demonstrate these steps.

C.1 Sample Usage: The Maneuver Command

Maneuver commands are used to apply impulsive velocity changes to a spacecraft. They take the form
Maneuver burnl(satl)

where burnl is an ImpulsiveBurn object specifying the components of the velocity change and satl is the

spacecraft that receives the velocity change. The Maneuver command overrides InterpretAction using the
following code:

/%

*

Parses the command string and builds the corresponding command structures.
The Maneuver command has the following syntax:
Maneuver burni(satl);

where burnl is an ImpulsiveBurn used to perform the maneuver, and sati is the
name of the spacecraft that is maneuvered. This method breaks the script
line into the corresponding pieces, and stores the name of the ImpulsiveBurn
and the Spacecraft so they can be set to point to the correct objects during
initialization.

* X O OF * * O X X *

251

252 APPENDIX C. COMMAND IMPLEMENTATION: SAMPLE CODE

bool Maneuver::InterpretAction()
{
StringArray chunks = InterpretPreface();

// Find and set the burn object name ...
StringArray currentChunks = parser.Decompose(chunks[1], " ()", false);
SetStringParameter (burnNameID, currentChunks[0]);

// ... and the spacecraft that is maneuvered
currentChunks = parser.SeparateBrackets(currentChunks[1], "O", ", ");
SetStringParameter (satNameID, currentChunks[0]);

return true;

}

The maneuver command works with GMAT objects - specifically ImpulsiveBurn objects and Spacecraft - but
does not require the usage of the data wrapper classes. The next example, the Vary command, demonstrates
usage of the data wrapper classes to set numeric values.

C.2 Sample Usage: The Vary Command

The Vary command has a much more complicated syntax than does the Maneuver command. Vary commands
take the form

Vary myDC(Burni.V = 0.5, {Pert = 0.0001, MaxStep = 0.05, Lower = 0.0,
Upper = 3.14159, AdditiveScaleFactor = 1.5, MultiplicativeScaleFactor = 0.5);

The resulting InterpretAction method is a bit more complicated:

R
// void Vary::InterpretAction()

/= e e e e e
/%%

* Parses the command string and builds the corresponding command structures.
*

* The Vary command has the following syntax:

*

* Vary myDC(Burnl.V = 0.5, {Pert = 0.0001, MaxStep = 0.05,
* Lower = 0.0, Upper = 3.14159);

*

* where

*

* 1. myDC is a Solver used to Vary a set of variables to achieve the
* corresponding goals,

* 2. Burnl.V is the parameter that is varied, and

* 3. The settings in the braces specify features about how the variable can
* be changed.

*

* This method breaks the script line into the corresponding pieces, and stores
* the name of the Solver so it can be set to point to the correct object

C.2

SAMPLE USAGE: THE VARY COMMAND

*
*

during initializatiom.
/

bool Vary::InterpretAction()

{

// Clean out any old data
wrapper(ObjectNames.clear();
ClearWrappers() ;

StringArray chunks = InterpretPreface();

// Find and set solver object name --the only setting in Vary not in a wrapper
StringArray currentChunks = parser.Decompose(chunks[1], "()", false);
SetStringParameter (SOLVER_NAME, currentChunks[0]);

// The remaining text in the instruction is the variable definition and
// parameters, all contained in currentChunks{1]. Deal with those next.
currentChunks = parser.SeparateBrackets(currentChunks[1], "O", ", ");

// First chunk is the variable and initial value
std::string lhs, rhs;
if (!SeparateEquals(currentChunks[0]}, 1lhs, rhs))
// Variable takes default initial value
rhs = "0.0";

variableName = lhs;
variableld = -1;

variableValueString = rhs;
initialValueName = rhs;

// Now deal with the settable parameters
currentChunks = parser.SeparateBrackets(currentChunks{1], "{}", ", ");

for (StringArray::iterator i = currentChunks.begin();
i !'= currentChunks.end(); ++1i)
{
SeparateEquals(*i, lhs, rhs);
if (IsSettable(lhs))
SetStringParameter (lhs, rhs);
else
throw CommandException("Setting \"" + lhs +
"\" is missing a value required for a " + typeName +
" command.\nSee the line \"" + generatingString +"\"\n");

}

MessageInterface::ShowMessage ("InterpretAction succeeded!\n");
return true;

253

254

APPENDIX C. COMMAND IMPLEMENTATION: SAMPLE CODE

Appendix D

GMAT Software Development Tools

Darrel J. Conway
Thinking Systems, Inc.

GMAT is a cross-platform mission analysis tool under development at Goddard Space Flight Center and
Thinking Systems, Inc. The tool is being developed using open source principles, with initial implementations
provided that run on 32-bit Windows XP, Linux, and the Macintosh (OS X). This appendix describes the
build environment used by the development team on each of these platforms.

The GMAT code is written using ANSI-standard C++, with a user interface developed using the wxWin-
dows toolkit available from http://www.wxwidgets.org. Any compiler supporting these standards should
work with the GMAT code base. The purpose of this document is to describe the tools that were actually
used in the development: process.

Source code control is maintained using the Concurrent Versions System (CVS 1.11) running on a server
at Goddard. Issues, bugs, and enhancements are tracked using Bugzilla 2.20 running on a server at Goddard.

D.1 Windows Build Environment
o Compiler: gee version 3.4.2 (mingw special)
« IDE Tool: Eclipse 3.1.1, with CDT 3.0.1 plug-in
¢ wxWindows Version: wxMSW 2.6.2

On Windows, GMAT has also been built using the Dev-C++ environment.

D.2 Macintosh Build Environment

« Compiler: gee 4.0.1, XCode v. 2.2
s IDE Tool: Eclipse 3.1.2, with CDT 3.0.1 plug-in

s wxWindows Version: wxMac 2.6.2

D.3 Linux Build Environment

GMAT is regularly built on two different Linux machines at Thinking Systems, one running Mandriva Linux,
and the second running Ubuntu Linux. Both build environments are listed here.

255

256 APPENDIX D. GMAT SOFTWARE DEVELOPMENT TOOLS

On Mandriva 2006
e Compiler: gce version 4.0.1 (4.0.1-53mdk for Mandriva Linux release 2006.0)
e IDE Tool: Eclipse 3.1.1, with CDT 3.0.1 plug-in

o wxWindows Version: wxGTK 2.6.2

On Ubuntu 5.10, Breezy Badger
e Compiler: gec version 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntu9)
e IDE Tool: Eclipse 3.1.2, with CDT 3.0.2 plug-in

o wxWindows Version: wxGTK 2.6.2

Appendix E

Definitions and Acronyms

E.1 Definitions
Application The GMAT executable program
Command One step in the Mission Control Sequence

Engine The “guts” of GMAT, consisting of all of the classes, control structures, objects, and other elements
necessary to run a

Factory or Factories Components used to create pieces that users use when modeling a mission

Graphical User Interface, or GUI The graphical front end for GMAT, built using the wxWidgets toolkit.
GMAT can also be built as a console application, but most users work from the GUI

Interface The connection between GMAT and external systems, like MATLAB

Interpreter The connection point between users and the Application. GMAT uses a ScriptInterpreter when
constructing a mission from a script file, and a Guilnterpreter when configuring from the GUI

Mission All of the elements configured by the user to solve a specific problem. Every element of a GMAT
Mission is contained in the Model, but the Model may include components that are not part of a
specific Mission

Mission Control Sequence The time ordered steps taken in the model of the mission
Model All of the elements configured by a user in the Application
Moderator The central control point in the Engine

Parameter A value or other property calculated outside of a GMAT object. Parameters as used in this
context are all elements derived from the Parameter base class, as described in Chapter 17

Property A data member of a Resource or Command. Properties are the internal data associated with the
objects used in a GMAT model

Resource An element of the GMAT model that represents an object used when running the Mission Control
Sequence

Sandbox The portion of GMAT used to run a mission

Script A text file that contains all of the instructions required to configure a mission in GMAT

257

258 APPENDIX E. DEFINITIONS AND ACRONYMS

E.2 Acronyms
GMAT General Mission Analysis Tool
GSFC Goddard Space Flight Center

Bibliography

|conway| Darrel J.Conway, “The GMAT Design Philosophy”, Internal Communications between Thinking
Systems and Goddard, May 9, 2004.

|doxygen] Dimitri van Heesch, Doxygen, available from www.doxygen.org,.
[fowler] Martin Fowler, UML Distilled, 3rd Edition, Addison-Wesley, 2004.

|GoF| Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[MathSpec| Steven P. Hughes, “General Mission Analysis Tool (GMAT) Mathematical Specifications.”
[UsersGuide] Steven P. Hughes, “General Mission Analysis Tool (GMAT) User’s Guide.”

matlab] The MathWorks, Inc, “MATLAB?”, available from http://www.mathworks.com.

Jopttools] The MathWorks, Inc, “Optimization Toolbox”, available from http://www.mathworks.com.
|[poseidon| Gentleware AG, ‘Poseidon for UML, Professional Edition”, http://gentleware.com/, 2005.

[NRecipes] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes in C, 2nd Edition, Cambridge University Press, 1992.

[schildt] Herbert Schildt, C++: The Complete Reference, 4th Edition, McGraw-Hill/Osborne, 2003.
[shoan| Wendy C. Shoan and Linda O. Jun, “GMAT C++ Style Guide.”

[smart] Julian Smart, Kevin Hock and Stefan Csomor, Cross-Platform GUI Programming with
wxWidgets, Prentice Hall, 2006.

|vallado] D. Vallado, Fundamentals of Astrodynamics and Applications, 2nd Ed., Microcosm Press,
2001.

[wx] wxWidgets Cross Platform GUI Library, available from http://wxWidgets.org.

o
o
o

