
cFE/CFS

Charlie Wildermann/FSW GSFC
November 13, 2008

Why Why cFEcFE/CFS/CFS

• Requirements
– The Requirements for Command and Data Handling

(C&DH) Flight Software are very similar from Flight
Project to Fight Project

– The Requirements for Guidance Navigation and
Control (GNC) Flight Software can also be quite
similar from Flight Project to Fight Project

• So, let’s not “re-invent the wheel” each project
– cFE/CFS responds to this by allowing FSW

developers and testers to concentrate on the
uniqueness of a project

cFE HeritagecFE Heritage

IceSat GLAS
(01/03)

XTE (launched
12/95) TRMM (launched

11/97)

MAP (launched
06/01)

SWAS
(launched

12/98)

WIRE
(launched 2/99)

SMEX-
Lite

Triana
(waiting for

launch)

TRACE
(launched

3/98)

SAMPEX
(launched

8/92)

Swift BAT
(12/04)

ST-5 (5/06)

Core FSW Executive

Future Spacecraft
and Instruments

JWST
ISIM
(2011)

SDO (2007) LRO (2009)

• FSW lead for Mission X would obtain
FSW and artifacts from heritage
mission that they knew

– Branch had several different “heritage
architectures” to choose from

• Changes were made to heritage FSW
artifacts for new mission

– New flight hardware or Operating
System required changes throughout
FSW

– FSW changes were made at the
discretion of developer

– FSW test procedure changes were
made at the discretion of the tester

– Extensive documentation updates were
made

• Integrating new FSW components
required manual coordination

– Manually defined flight tables

• FSW lead for Mission X will obtain FSW
and artifacts from the CFS Re-use Library

– One CFS “product line” architecture to
choose from

– All artifacts are contained in the re-use
library

• CFS Changes required for a mission are
controlled and localized

– New hardware and Operating System
changes are localized to Operating
System Abstraction Layer (OSAL) – other
FSW not affected.

– FSW Requirements, source code and test
procedures are controlled by Re-use
Library CCB

• Integrating new FSW components
requires little manual effort

– Run-time registration

Past Future (with CFS)

Past vs. Future ComparisonPast vs. Future Comparison

Layered ArchitectureLayered Architecture

• Each layer “hides” its
implementation and technology
details.

• Internals of a layer can be changed
-- without affecting other layers’
internals and components.

• Small-footprint, light-weight
architecture and implementation
minimizes overhead.

• Enables technology infusion and
evolution.

• Doesn’t dictate a product or vendor.
• Provides Middleware, OS and HW

platform-independence.

Files, TablesFiles, Tables

• Cost advantages of using
heritage products was not
realized

• Little to no collaboration
within GSFC, NASA or
outside entities was
feasible

• On-orbit FSW
maintenance team
needed to understand
each heritage
architecture

• Effort focused on new
and unique FSW
applications

• Standard FSW interfaces
(APIs) facilitates
collaboration across
NASA

• On-orbit FSW
maintenance team needs
to understand one
product line

Past Future (with CFS)

Past vs. Future Comparison (Past vs. Future Comparison (concon’’tt))

What is the CFS?What is the CFS?

The Core Flight Software System is a mission-
independent, platform-independent, Flight
Software (FSW) environment integrating a
reusable core flight executive (cFE).

Example FSW Context DiagramExample FSW Context Diagram

Inter-task Message Router (SW Bus)

TranspondersCommands

Real-time Telemetry (UDP)
Comm Cards

File downlink
(CFDP)

Summit Chip

Mass
Storage
System

CFDP File
Transfer

File
Manager

Local
Storage

Data
Storage

Event
Services

Executive
Services

Time
Services

1553 Bus
Support

Software
Bus

Command
Ingest

Telemetry
Output

Table
Services

EDAC
Memory

Scrubber
Self
Test

Memory
Dwell

Instrument
Manager

Checksum Memory
Manager

GN&C
Applications

(4)

Mission Apps

cFE core App

CFS Applications

Stored
Commanding

Software
Scheduler

Health &
Safety

Manager

House-
keeping

Limit
Checker

• Reduce time to deploy high quality flight software
• Reduce project schedule and cost uncertainty
• Directly facilitate formalized software reuse
• Enable collaboration across organizations
• Simplify sustaining engineering (AKA. FSW maintenance)
• Scale from small instruments to System of Systems
• Platform for advanced concepts and prototyping
• Common standards and tools across the branch and

NASA wide

Build on the many successful FSW experiences and
ideas of FSW staff who worked previous Goddard

missions

CFS Goals

Supporting the GoalsSupporting the Goals

– Layered Architecture
– Standard Middleware/Bus
– Standard Application Programmer Interface

for a set of core services

– Plug and Play
– Reusable Components

– Configuration Management
– Requirements Tracking
– Development Standards
– Development Tools

All of the above to be managed in a FSW Re-use Library

} Core Flight Executive

} Component Library

Integrated Development
Environment (IDE)}

	cFE/CFS
	Why cFE/CFS
	cFE Heritage
	Slide Number 4
	Layered Architecture
	Slide Number 6
	What is the CFS?
	Example FSW Context Diagram
	Slide Number 9
	Supporting the Goals�

cFE/CFS

Charlie Wildermann/FSW GSFC

November 13, 2008

Why cFE/CFS

		Requirements

		The Requirements for Command and Data Handling (C&DH) Flight Software are very similar from Flight Project to Fight Project

		The Requirements for Guidance Navigation and Control (GNC) Flight Software can also be quite similar from Flight Project to Fight Project

		So, let’s not “re-invent the wheel” each project

		cFE/CFS responds to this by allowing FSW developers and testers to concentrate on the uniqueness of a project

cFE Heritage

SMEX-

Lite

Core FSW Executive

Future Spacecraft

and Instruments

SDO (2007)

LRO (2009)

IceSat GLAS (01/03)

XTE (launched 12/95)

TRMM (launched 11/97)

MAP (launched 06/01)

SWAS

 (launched 12/98)

WIRE

(launched 2/99)

Triana

(waiting for launch)

TRACE

(launched 3/98)

SAMPEX

(launched 8/92)

Swift BAT

(12/04)

ST-5 (5/06)

JWST ISIM (2011)

		FSW lead for Mission X would obtain FSW and artifacts from heritage mission that they knew

		Branch had several different “heritage architectures” to choose from

		Changes were made to heritage FSW artifacts for new mission

		New flight hardware or Operating System required changes throughout FSW

		FSW changes were made at the discretion of developer

		FSW test procedure changes were made at the discretion of the tester

		Extensive documentation updates were made

		Integrating new FSW components required manual coordination

		Manually defined flight tables

		FSW lead for Mission X will obtain FSW and artifacts from the CFS Re-use Library

		One CFS “product line” architecture to choose from

		All artifacts are contained in the re-use library

		CFS Changes required for a mission are controlled and localized

		New hardware and Operating System changes are localized to Operating System Abstraction Layer (OSAL) – other FSW not affected.

		FSW Requirements, source code and test procedures are controlled by Re-use Library CCB

		Integrating new FSW components requires little manual effort

		Run-time registration

Past

Future (with CFS)

Past vs. Future Comparison

Layered Architecture

		Cost advantages of using heritage products was not realized

		Little to no collaboration within GSFC, NASA or outside entities was feasible

		On-orbit FSW maintenance team needed to understand each heritage architecture

		Effort focused on new and unique FSW applications

		Standard FSW interfaces (APIs) facilitates collaboration across NASA

		On-orbit FSW maintenance team needs to understand one product line

Past

Future (with CFS)

Past vs. Future Comparison (con’t)

What is the CFS?

	The Core Flight Software System is a mission-independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE).

Example FSW Context Diagram

Inter-task Message Router (SW Bus)

Transponders

Commands

Real-time Telemetry (UDP)

Comm Cards

File downlink (CFDP)

Summit Chip

Mass

Storage

System

CFDP File

Transfer

File

Manager

Local

Storage

Data

Storage

Event

Services

Executive

Services

Time

Services

1553 Bus

Support

Software

Bus

Command

Ingest

Telemetry

Output

Table

Services

EDAC

Memory

Scrubber

Self

 Test

Memory

Dwell

Instrument

Manager

Checksum

Memory

Manager

GN&C

Applications

(4)

Mission Apps

cFE core App

CFS Applications

Stored

Commanding

Software

Scheduler

Health &

Safety

Manager

House-

keeping

Limit

Checker

 Reduce time to deploy high quality flight software

 Reduce project schedule and cost uncertainty

 Directly facilitate formalized software reuse

 Enable collaboration across organizations

 Simplify sustaining engineering (AKA. FSW maintenance)

 Scale from small instruments to System of Systems

 Platform for advanced concepts and prototyping

 Common standards and tools across the branch and NASA wide

Build on the many successful FSW experiences and ideas of FSW staff who worked previous Goddard missions

CFS Goals

Supporting the Goals

	

		Layered Architecture

		Standard Middleware/Bus

		Standard Application Programmer Interface

	for a set of core services

		Plug and Play

		Reusable Components

		Configuration Management

		Requirements Tracking

		Development Standards

		Development Tools

 All of the above to be managed in a FSW Re-use Library

}Core Flight Executive

}Component Library

Integrated Development

Environment (IDE)

}

•Each layer “hides”its

implementation and technology

details.

•Internals of a layer can be changed

--without affecting other layers ’

internals and components.

•Small-footprint, light-weight

architecture and implementation

minimizes overhead.

•Enables technology infusion and

evolution.

•Doesn’t dictate a product or vendor.

•Provides Middleware, OS and HW

platform-independence.

Files, TablesFiles, Tables

56.3

5.3

8

4

18

5.5

15.5

CFS

3.79Typical post launch activity

Over 3 years

On-orbit Sustaining

engineering

29.2 FTE

34%

savings

85.5

59Configuration & tool support

Over 5 years

CM &

Development tools

11.517Reused C&DH componentsRequirements

through Build Test

523Mission specific components

GN&C, Power, Instrument support

Requirements

through Build Test

08All componentsSystem Test (I&T)

& launch+30

19.5

Heritage

FSW engineering

& subsystem

management

Mission Phase

4

PDL, C&DH DTL, ACS DTL & TTL

Over 5 years

SavingsFSW Team Activities

56.3

5.3

8

4

18

5.5

15.5

CFS

3.79Typical post launch activity

Over 3 years

On-orbit Sustaining

engineering

29.2 FTE

34%

savings

85.5

59Configuration & tool support

Over 5 years

CM &

Development tools

11.517Reused C&DH componentsRequirements

through Build Test

523Mission specific components

GN&C, Power, Instrument support

Requirements

through Build Test

08All componentsSystem Test (I&T)

& launch+30

19.5

Heritage

FSW engineering

& subsystem

management

Mission Phase

4

PDL, C&DH DTL, ACS DTL & TTL

Over 5 years

SavingsFSW Team Activities

UNKNOWN-0.psd

UNKNOWN-1

UNKNOWN-2

UNKNOWN-3

UNKNOWN-4

UNKNOWN-5

UNKNOWN-6

UNKNOWN-7.psd

UNKNOWN-8.psd

UNKNOWN-9.bin

