

December 2008

NASA/TM-2008-215551

Guidance and Control Software Project Data
Volume 2: Development Documents

Edited by
Kelly J. Hayhurst
Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

December 2008

NASA/TM-2008-215551

Guidance and Control Software Project Data
Volume 2: Development Documents

Edited by
Kelly J. Hayhurst
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

iii

Table of Contents

1 INTRODUCTION AND BACKGROUND ON SOFTWARE ERROR STUDIES ...1

2 GUIDANCE AND CONTROL SOFTWARE APPLICATION ..3

3 SOFTWARE LIFE CYCLE PROCESSES AND DOCUMENTATION..5

4 ROLE IN TRAINING...7

5 SUMMARY..7

6 REFERENCES ..8

APPENDIX A: GUIDANCE AND CONTROL SOFTWARE DEVELOPMENT SPECIFICATION............A-1

A.1 INTRODUCTION ...A-7

A.2 LEVELS 0 AND 1 SPECIFICATION ..A-24

A.3 LEVEL 2 SPECIFICATION ..A-33

A.4 LEVEL 3 FLOW DIAGRAMS AND C-SPECS ...A-37

A.5 P-SPECS FOR LEVELS 3 AND 4 ...A-44

AECLP -- AXIAL ENGINE CONTROL LAW PROCESSING (P-SPEC 2.3.1)...A-44
ARSP -- ALTIMETER RADAR SENSOR PROCESSING (P-SPEC 2.1.2) ...A-50
ASP -- ACCELEROMETER SENSOR PROCESSING (P-SPEC 2.1.1 ..A-52
CP -- COMMUNICATIONS PROCESSING (P-SPEC 2.4)..A-56
CRCP -- CHUTE RELEASE CONTROL PROCESSING (P-SPEC 2.3.3)...A-61
GP -- GUIDANCE PROCESSING (P-SPEC 2.2) ..A-62
GSP -- GYROSCOPE SENSOR PROCESSING (P-SPEC 2.1.4) ...A-70
RECLP -- ROLL ENGINE CONTROL LAW PROCESSING (P-SPEC 2.3.2) ..A-72
TDLRSP -- TOUCH DOWN LANDING RADAR SENSOR PROCESSING (P-SPEC 2.1.3)..A-74
TDSP -- TOUCH DOWN SENSOR PROCESSING (P-SPEC 2.1.6)..A-78
TSP -- TEMPERATURE SENSOR PROCESSING (P-SPEC 2.1.5)..A-79

A.6 DATA REQUIREMENTS DICTIONARY ..A-82

PART I. DATA ELEMENT DESCRIPTIONS...A-82
PART II. CONTENTS OF DATA STORES...A-96
PART III. CONTROL SIGNALS, DATA CONDITIONS, AND GROUP FLOWS..A-100

A.7 BIBLIOGRAPHY..A-117

APPENDIX B: DESIGN DESCRIPTION FOR THE PLUTO IMPLEMENTATION OF THE

GUIDANCE AND CONTROL SOFTWARE...B-1

B.1 INTRODUCTION TO PLUTO GCS DESIGN...B-3

B.1.1 TOP-LEVEL DESCRIPTION..B-3
B.1.2 DESIGN METHODOLOGY ...B-3
B.1.3 DESIGN SYNTAX SPECIFICATIONS ...B-4

B.2 DESIGN STRUCTURE...B-4

B.2.1 HIGH-LEVEL SOFTWARE DESIGN...B-4
B.2.2 DATA AND CONTROL FLOW ..B-6
B.2.3 MODULE DESCRIPTION..B-6
B.2.4 PROCESS SCHEDULING...B-16
B.2.5 DATA DICTIONARY ...B-16
B.2.6 DERIVED REQUIREMENTS..B-16

B.3 REFERENCES...B-16

iv

B.4—TEAMWORK DESIGN ..B-17

APPENDIX C: SOURCE CODE FOR THE PLUTO IMPLEMENTATION OF THE GUIDANCE

AND CONTROL SOFTWARE ...C-1

Abstract

The Guidance and Control Software (GCS) project was the

last in a series of software reliability studies conducted at

Langley Research Center between 1977 and 1994. The technical

results of the GCS project were recorded after the experiment

was completed. Some of the support documentation produced as

part of the experiment, however, is serving an unexpected role

far beyond its original project context. Some of the software used

as part of the GCS project was developed to conform to the

RTCA/DO-178B software standard, "Software Considerations in

Airborne Systems and Equipment Certification," used in the civil

aviation industry. That standard requires extensive

documentation throughout the software development life cycle,

including plans, software requirements, design and source code,

verification cases and results, and configuration management

and quality control data. The project documentation that

includes this information is open for public scrutiny without the

legal or safety implications associated with comparable data

from an avionics manufacturer. This public availability has

afforded an opportunity to use the GCS project documents for

DO-178B training. This report provides a brief overview of the

GCS project, describes the 4-volume set of documents and the

role they are playing in training, and includes the development

documents from the GCS project.

1 Introduction and Background on Software Error Studies

As the pervasiveness of computer systems has increased, so has the desire and obligation to
establish the reliability of these systems. Reliability estimation and prediction are standard
activities in many engineering projects. For the software aspects of computer systems, however,
reliability estimation and prediction have been topics of dispute, especially for safety-critical
systems. A primary challenge is how to accurately model the failure behavior of software such
that numerical estimates of reliability have sufficient credibility for systems where the probability
of failure needs to be quite small, such as in commercial avionics systems (ref. 1). A second
challenge is how to gather sufficient data to make such estimates. Software reliability models are
not used in the civil aviation industry, for example, because “currently available methods do not
provide results in which confidence can be placed to the level required for this purpose.” (ref. 2)

In an effort to develop methods to credibly assess the reliability of software for safety-critical
avionics applications, Langley Research Center initiated a Software Error Studies program in
1977 (ref. 3). A major focus of those studies was on generating significant quantities of software
failure data through controlled experimentation to better understand software failure processes.
The intent of the Software Error Studies program was to incrementally increase complexity and
realism in a series of experiments so that the final study would have statistically valid results,
representative of actual software development processes.

The Software Error Studies program started with initial investigations by the Aerospace
Corporation to define software reliability measures and data collection requirements (ref. 4-6).

2

Next, Boeing Computer Services (BCS) and the Research Triangle Institute (RTI) conducted
several simple software experiments with aerospace applications including missile tracking,
launch interception, spline function interpolation, Earth satellite calculation, and pitch axis
control (refs. 7-11). The experiment design used in these studies generally involved a number of
programmers (denoted n) who independently generated computer code from a given specification
of the problem to produce n versions of a program. In these experiments, no particular software
development standards or life-cycle models were followed. Because the problems were relatively
small and simple, the versions were compared to a known error-free version of the program to
obtain information on software errors.

Although the initial experiments were small and simplistic compared with real-world avionics
development, they yielded some interesting results that have influenced software reliability
modeling. The BCS and RTI studies showed widely varying error rates for faults. This finding
refuted a common assumption in early software reliability growth models that faults produced
errors at equal rates. These studies also provided evidence of fault interaction where one fault
could mask potentially erroneous behavior from another fault, or where two or more faults
together cause errors when alone they would not. (ref. 12) Additional investigations with n-
version programs (ref. 13) found that points in the input space that cause an error can cluster and
form “error crystals”. Extrapolating this finding to aerospace applications, where input signals
tend to be continuous in nature, the error crystals may manifest themselves as clusters of
successive faults that could have unintended consequences. (ref. 14)

The last project in the Software Error Studies program was the Guidance and Control Software
(GCS) project. It built on the previous experiments in two ways: (1) by requiring that the software
specimens for the experiment be developed in compliance with current software development
standards, and (2) by increasing the complexity of the application problem (ref. 15). At the time
of the GCS project, the RTCA/DO-178B guidelines, "Software Considerations in Airborne
Systems and Equipment Certification," (ref. 2) were the primary standard sanctioned by the
Federal Aviation Administration (FAA) for developing software to be approved for use in
commercial aircraft equipment (ref. 16). The DO-178B document describes objectives and
design considerations to be used for the development of software as well as verification,
configuration management, and quality assurance activities to be performed throughout the
development process. The DO-178B guidelines were selected as the software development
standard to be used for the GCS specimens.

The software application selected for the GCS project, as the title indicates, is a guidance and
control function for controlling the terminal descent trajectory of a planetary lander vehicle. This
terminal descent trajectory is the same fundamental trajectory referred to as the “seven minutes of
terror” in the entry, descent, and landing phase of a planetary mission, such as the recent Phoenix
Mars Lander (ref. 17). For the GCS project, the software requirements were reverse engineered
from a simulation program used to study the probability of success of the original NASA Viking
Lander mission to Mars in the 1970s (ref. 18). It is important to emphasize that the software
requirements documented for the GCS project, while realistic, are not the actual software
requirements used for NASA’s Viking Lander or any other planetary landers.

For the GCS experiment, two1 teams of software engineers were each tasked to independently
design, code, and verify a GCS program, following the software development guidance in DO-
178B, as closely as possible. In addition to those teams, another GCS version was produced,
without the constraint of compliance with DO-178B, to aid development and verification of the
requirements and simulation environment. Once all versions were complete, data on residual

1 The original plan for the GCS project called for three independent teams. Due to funding constraints,
only two teams were able to complete the project.

3

errors was supposed to be collected by running all the versions simultaneously in a simulation
environment, and using any discrepancies among the results of the versions as possible
indications of errors.

Results of the operational simulations and data collection are described in (ref. 15). The
purpose of this report is not to repeat those results, but to disseminate some of the project
documentation that has an unanticipated utility beyond its original project context. The project
documentation of interest is the documentation developed by the teams required to comply with
the DO-178B standard. That standard requires extensive records of all of the software
development life cycle activities. For the GCS project, those records included 18 documents
consisting of life cycle plans, development products including requirements and source code,
verification cases and results, and configuration management and quality control data.
Comparable data from a commercial avionics system would not be available for public review
because of proprietary and other legal considerations. The GCS project documentation is not
subject to those considerations because it is not data from an actual operational, or even
prototype, system. But, the data has sufficient realism to provide a window into the types of
activities and data involved in the production of DO-178 compliant software, which makes the
GCS documentation desirable from a training perspective.

The remainder of this report provides a brief overview of aspects of the GCS project relevant
to using the documentation for training. This information includes a description of the GCS
application, a synopsis of the software development processes used to follow the DO-178B
guidance, and the data that was generated as a result. Because the complete set of compliance
documents is large, the documents have been divided into four sets (planning, development,
verification, and other integral process documents) contained in separate volumes of this report.
Volume 2 includes in Appendices A-C the requirements, design, and source code generated as
part of the development processes.

2 Guidance and Control Software Application

The requirements for the GCS application focus on two primary functions: (1) to provide
guidance and engine control of the lander vehicle during its terminal phase of descent onto the
planet's surface, and (2) to communicate sensory information to an orbiting platform about the
vehicle and its descent. Figure 1 shows a sketch of the lander vehicle, taken from (ref. 18), noting
the location of the terminal descent propulsion systems.

The guidance package for the lander vehicle contains sensors that obtain information about the
vehicle state and environment, a guidance and control computer, and actuators providing the
thrust necessary for maintaining a safe descent. The vehicle has three accelerometers (one for
each body axis), one Doppler radar with four beams, one altimeter radar, two temperature
sensors, three strapped-down gyroscopes, three opposed pairs of roll engines, three axial thrust
engines, one parachute release actuator, and a touch down sensor. The vehicle has a hexagonal,
box-like shape; three legs and a surface sensing rod protrude from its undersurface.

In general, the requirements for the planetary lander only concern the final descent to the
surface. Figure 2 shows a sketch of the phases of the terminal descent trajectory.

4

Terminal

descent engines

(3)

Leg 3

Leg 2

Leg 1

Propellant

tank (2)

Roll

engines (4)

Terminal

descent engines

(3)

Leg 3

Leg 2

Leg 1

Propellant

tank (2)

Roll

engines (4)

Figure 1. Lander with Terminal Descent Propulsion Systems

Figure 2. A Typical Terminal Descent Trajectory

Parachute Descent

Engines Begin Warm up

Chute Released

Phase 1

Phase 2

Phase 3

z
v

y
v

y
v

x v

x v

x v

x v

x
v

z v

z v

z
v

z v

z v

y v

y v

y
v

y
v

Drop Height

Touch Down

Phase 4

x p
y p

z p

(Terminal Descent Begins)

Phase 5

x v

5

After the lander has dropped from orbit, the software controls the engines of the vehicle to the
surface of a planet. The initialization of the GCS starts the sensing of vehicle altitude. When a
predefined engine ignition altitude is sensed by the altimeter radar, the GCS begins guidance and
control of the lander. The axial and roll engines are ignited; while the axial engines are warming
up, the parachute remains connected to the vehicle. During this engine warm-up phase, the
aerodynamics of the parachute dictate the vehicle’s trajectory. Vehicle attitude is maintained by
firing the engines in a throttled-down condition. Once the main engines become hot, the
parachute is released and the GCS performs an attitude correction maneuver and then follows a
controlled acceleration descent until a predetermined velocity-altitude contour is crossed. The
GCS then attempts to maintain the descent of the lander along this predetermined velocity-
altitude contour. The lander descends along this contour until a predefined engine shut off
altitude is reached or touchdown is sensed. After all engines are shut off, the lander free-falls to
the surface.

The software requirements for this guidance and control application are contained in a
document called the Guidance and Control Development Specification (in Volume 2). As
mentioned earlier, the initial requirements for this application were reverse engineered from a
simulation program used to study the probability of success of the original NASA Viking Lander
mission to Mars. Prior to use in the experiment, the requirements were revised to make them
suitable for use in an n-version software experiment. Each of the GCS programs for the
experiment were developed from the same requirements document.

3 Software Life Cycle Processes and Documentation

Having some of the project teams adhere to the DO-178B guidelines as they created a software
version for the experiment was a significant element of the GCS project, requiring the
development and tracking of numerous software engineering artifacts not normally associated
with a software engineering experiment. The purpose of DO-178B is to provide guidelines for
the production of software such that the completed implementation performs its intended function
with a level of confidence in safety satisfactory for airworthiness. Along with the production of
software is the generation of an extensive set of documents recording the production activities.

DO-178B defines software development activities and objectives for the development life
cycle of the software, and the evidence that is needed to show compliance. The life-cycle
processes are divided into planning, development, and integral processes. The planning process
defines and coordinates the software development processes and the integral processes. The
software development processes involve identification of software requirements, software design
and coding, and integration; that is, the development processes directly result in the software
product. Finally, the integral processes function throughout the software development processes
to ensure integrity of the software products. The integral processes include software verification,
configuration management, and quality assurance processes. Section 11 of DO-178B describes
data that should be produced as evidence of performing all of the life cycle process activities.

For the GCS project, some of this data was common for all of the teams, and other data was
intended to be specific to each team. For example, each team worked with the same plans,
standards, and requirements. Then, each individual team was responsible for independently
developing their own design, code, and corresponding verification data. To distinguish the
versions, each team was assigned a planetary name: Mercury, Venus, and Pluto2.

2 At the time the GCS experiment was conducted, Pluto had not yet been relegated to non-planet status.

6

Table 1. Life Cycle Data

Planning Process

Documents

Development Process

Documents

Integral Process

Documents

• Plan for Software Aspects of
Certification

• Software Development Plan

• Software Verification Plan

• Software Configuration
Management Plan

• Software Quality Assurance

Plan

• Software Requirements

Standards

• Software Design Standards

• Software Code Standards

• Software Requirements Data

• Design Description

• Source Code

• Executable Object Code

• Software Verification Cases
and Procedures

• Software Verification Results

• Software Life Cycle
Environment Configuration

Index

• Software Configuration
Index

• Problem Reports

• Software Configuration
Management Records

• Software Quality Assurance

Records

• Software Accomplishment

Summary

The DO-178B data associated with the development of the Pluto version of the GCS was
selected for publication. For dissemination purposes, the Pluto data was divided into the
following 4 subsets:

Volume 1: Planning Documents

• Plan for Software Aspects of Certification of the Guidance and Control Software Project

• Software Configuration Management Plan for the Guidance and Control Software Project

• Software Quality Assurance Plan for the Guidance and Control Software Project

• Software Verification Plan for the Guidance and Control Software Project

• Software Development Standards for the Guidance and Control Software Project

Volume 2: Development Documents

• Guidance and Control Software Development Specification

• Design Description for the Pluto Implementation of the Guidance and Control Software

• Source Code for the Pluto Implementation of the Guidance and Control Software

Volume 3: Verification Documents

• Software Verification Cases and Procedures for the Guidance and Control Software Project

• Software Verification Results for the Pluto Implementation of GCS

• Review Records for the Pluto Implementation of the Guidance and Control Software

• Test Results Logs for the Pluto Implementation of the Guidance and Control Software

7

Volume 4: Other Integral Processes Documents

• Software Accomplishment Summary for the Guidance and Control Software Project

• Software Configuration Index for the Guidance and Control Software Project

• Problem Reports for the Pluto Implementation of the Guidance and Control Software

• Support Documentation Change Reports for the Guidance and Control Software Project

• Configuration Management Records for the Guidance and Control Software Project

• Software Quality Assurance Records for the Guidance and Control Software Project

Appendices A-C contain the original development documents for the GCS project. The

Guidance and Control Software Development Specification, in Appendix A, contains all of the
high-level requirements for the guidance and control application, as well as instructions for
interfacing with the experiment’s simulator.. The low-level requirements and architecture are
contained in the Design Description for the Pluto Implementation of the Guidance and Control
Software in Appendix B. The design was developed using a structured analysis tool called
Teamwork from Cadre Technologies. Finally, Appendix C contains the Source Code for the
Pluto Implementation of the Guidance and Control Software with the Fortran source code for the
Pluto implementation.

The content of the documents in the appendices has not been altered from the original versions
produced during the project.

4 Role in Training

At the time of the GCS project, there was no publicly available information, such as templates,
or examples, or training courses, to help a novice developer generate the type of evidence that a
certificating authority would expect to see to demonstrate compliance with DO-178B. As
mentioned earlier, compliance data from a real avionics system is not typically available for
public review because of various legal and safety considerations. For example, an avionics
manufacturer would likely consider the design and implementation of a system to be proprietary.
Those considerations do not apply to the data from the GCS project, because neither the
requirements nor the software versions represent an actual system with safety, liability, or other
considerations.

In addition to the availability of data, the GCS requirements and DO-178B compliance data
are sufficiently realistic to serve as an example of a DO-178B project: one that is small enough in
scale to be studied in a training course. The GCS documentation provides a window into the
activities and data produced throughout the development life cycle to comply with DO-178B.
Because the Federal Aviation Administration (FAA) was aware of the GCS project, they
recognized the potential value of the documentation for training. The FAA has designed software
training to include a case study portion that addresses avionics software issues that arise from the
application of the DO-178B guidelines. The case study gives students the opportunity to use
auditing techniques to identify flaws in lifecycle data. Because the GCS data was produced by
novices, there are plenty of flaws to find.

5 Summary

From 1977-1994, NASA Langley Research Center conducted a Software Error Studies
program that generated data that provided insights into the software failure process and into
conducting software engineering experiments as well. The GCS project was the final experiment
in that program. A unique feature of the GCS project was the requirement for some of the

8

software specimens used in the experiment to conform to the RTCA/DO-178B software standard,
"Software Considerations in Airborne Systems and Equipment Certification," used in the civil
aviation industry. The project documentation produced to meet that requirement has had the
unanticipated benefit of serving as case study material in software certification training long after
the conclusion of the original experiment. Volume 2 of this report contains all of the
development artifacts from the GCS project.: requirements, design, and source code Other
volumes of this report contain the rest of the GCS compliance data including planning,
verification, and configuration management and quality assurance documents.

6 References

1. Littlewood, Bev, and Strigini, Lorenzo, Software Reliability and Dependability: a Roadmap,
22nd International Conference on Software Engineering, Future of Software Engineering
Track, June 4-11, 2000, Limerick Ireland, pp. 175 – 188.

2. Software Considerations in Airborne Systems and Equipment Certification. Doc. No.
RTCA/DO-178B, RTCA, Inc., Dec. 1, 1992.

3. Finelli, George B.: NASA Software Failure Characterization Experiments. Reliability
Engineering & System Safety, vol. 32, pp. 155–169, 1991.

4. Hecht, H.; Sturm, W. A.; and Tratlner, S.: Reliability Measurement During Software
Development. NASA CR-145205, 1977.

5. Hecht, H.: Measurement Estimation and Prediction of Software Reliability. NASA CR-
145135, 1977.

6. Maxwell, F. D.: The Determination of Measures of Software Reliability. NASA CR-158960,
1978.

7. Nagel, Phyllis M.; and Skrivan, James A.: Software Reliability: Repetitive Run
Experimentation and Modeling. NASA CR-165836, 1982.

8. Nagel, P. M.; Scholz, F. W.; and Skrivan, J. A.: Software Reliability: Additional
Investigation Into Modeling With Replicated Experiments. NASA CR-172378, 1984.

9. Dunham, Janet R.: Experiments in Software Reliability: Life-Critical Applications. IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, Jan. 1986, pp. 110–123.

10. Dunham, J. R.; and Lauterbach, L. A.: An Experiment in Software Reliability Additional
Analyses Using Data From Automated Replications. NASA CR-178395, 1987.

11. Dunham, Janet R.; and Pierce, John L.: An Empirical Study of Flight Control Software
Reliability. NASA CR-178058, 1986.

12. Dunham, Janet R.; and Finelli, George B., Real-Time Software Failure Characterization, IEE
Aerospace and Electronic Systems Magazine, pp. 38-44, November 1990.

13. Ammann, P. and Knight, J.: "Data Diversity: An Approach To Software Fault Tolerance",
Digest of Papers FTCS-17: The 17th Annual International Symposium on Fault Tolerant
Computing, Pittsburg, Pennsylvania, July 1987.

14. Finelli, George B, Results of Software Error-Data Experiments, AIAA/AHS/ASEE Aircraft
Design, Systems and Operations Conference, September 7-9, 1988, Atlanta, Georgia, AIAA-
88-4436.

9

15. Hayhurst, Kelly J., Framework for Small-Scale Experiments in Software Engineering,
Guidance and Control Software Project: Software Engineering Case Study, NASA/TM-
1998-207666, May 1998.

16. Federal Aviation Administration, Advisory Circular, 20-115B, January 11, 1993.

17. Tobin, Kate, NASA Preps for ‘7 Minutes of Terror’ on Mars, May 23, 2008,
http://www.cnn.com/2008/TECH/space/05/23/mars.lander/index.html.

18. Holmberg, Neil A.; Faust, Robert P.; and Holt, H. Milton: Viking ’75 Spacecraft Design and
Test Summary. Volume I—Lander Design. NASA RP-1027, 1980.

A-1

Appendix A: Guidance and Control Software Development

Specification

Version 2.3 with Formal Modifications 2.3-1 through 2.3-7

Authors: B. Edward Withers, Research Triangle Institute
Bernice Becher, Lockheed Engineering & Sciences Corp.

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

A-2

A. ACKNOWLEDGEMENTS

We wish to acknowledge Peter Padilla for his guidance and assistance in reviewing the
requirements for this document and in recommending revisions so that the requirements might
more accurately reflect those of an actual lander. We wish to acknowledge Earle Migneault for
his work on earlier experiments of this type and for his vision in suggesting the application to be
used in this experiment. We also wish to acknowledge Don C. Rich, Douglas S. Lowman, R. C.
Buckland, Anita M. Shagnea, and Janet R. Dunham, all of Research Triangle Institute, for their
earlier work on this project.

A-3

A. FOREWORD

This specification defines a guidance and control system for a planetary landing vehicle during
its terminal phase of descent. It is written for an experienced programmer with two or more years
of full-time industrial programming experience using a scientific programming language. The
programmer should have an adequate background, either through college courses or job training
in mathematics, physics, differential equations, and numerical integration. The specification was
written with the assumption that the implementation would be coded in FORTRAN; however,
other languages can be used.

A-4

A. CONTENTS

A.1 INTRODUCTION ...A-7

A.2 LEVELS 0 AND 1 SPECIFICATION ..A-24

LEVEL 0 SPECIFICATION...A-24
LEVEL 1 SPECIFICATION...A-30

A.3 LEVEL 2 SPECIFICATION ..A-33

A.4 LEVEL 3 FLOW DIAGRAMS AND C-SPECS ...A-37

A.5 P-SPECS FOR LEVELS 3 AND 4 ...A-44

AECLP -- AXIAL ENGINE CONTROL LAW PROCESSING (P-SPEC 2.3.1)...A-44
ARSP -- ALTIMETER RADAR SENSOR PROCESSING (P-SPEC 2.1.2) ...A-50
ASP -- ACCELEROMETER SENSOR PROCESSING (P-SPEC 2.1.1 ..A-52
CP -- COMMUNICATIONS PROCESSING (P-SPEC 2.4)..A-56
CRCP -- CHUTE RELEASE CONTROL PROCESSING (P-SPEC 2.3.3)...A-61
GP -- GUIDANCE PROCESSING (P-SPEC 2.2) ..A-62
GSP -- GYROSCOPE SENSOR PROCESSING (P-SPEC 2.1.4) ...A-70
RECLP -- ROLL ENGINE CONTROL LAW PROCESSING (P-SPEC 2.3.2) ..A-72
TDLRSP -- TOUCH DOWN LANDING RADAR SENSOR PROCESSING (P-SPEC 2.1.3)..A-74
TDSP -- TOUCH DOWN SENSOR PROCESSING (P-SPEC 2.1.6)..A-78
TSP -- TEMPERATURE SENSOR PROCESSING (P-SPEC 2.1.5)..A-79

A.6 DATA REQUIREMENTS DICTIONARY ..A-82

PART I. DATA ELEMENT DESCRIPTIONS...A-82
PART II. CONTENTS OF DATA STORES...A-96
PART III. CONTROL SIGNALS, DATA CONDITIONS, AND GROUP FLOWS..A-100

A.7 NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION ..A-103
A.8 IMPLEMENTATION NOTES ...A-105
A.9 NUMERICAL INTEGRATION INSTRUCTIONS..A-108
A.10 COMMUNICATIONS PACKET INSTRUCTIONS ..A-113

A.11 BIBLIOGRAPHY..A-117

A-5

List of Figures

A.1.1 THE LANDING VEHICLE DURING DESCENT.. A.8

A.1.2 A TYPICAL TERMINAL DESCENT TRAJECTORY .. A.9

A.1.3 ENGINEERING ILLUSTRATION OF VEHICLE ... A.14

A.2.1 STRUCTURE OF THE GCS SPECIFICATION... A.26

A.2.2 DATA CONTEXT DIAGRAM: LANDER.. A.27

A.2.3 CONTROL CONTEXT DIAGRAM: LANDER .. A.28

A.2.4 DATA FLOW DIAGRAM (DFD) 0: GCS .. A.29

A.2.5 CONTROL FLOW DIAGRAM (CFD) 0: GCS... A.30

A.3.1 DFD 2: RUN_GCS .. A.33

A.3.2 CFD 2: RUN_GCS... A.34

A.4.1 DFD 2.1: SP -- SENSOR PROCESSING ... A.36

A.4.2 CFD 2.1: SP -- SENSOR PROCESSING .. A.37

A.4.3 DFD 2.3: CLP -- CONTROL LAW PROCESSING.. A.39

A.4.4 CFD 2.3: CLP -- CONTROL LAW PROCESSING.. A.40

A.5.1 VELOCITY-ALTITUDE CONTOUR... A.64

A.5.2 GRAPH FOR DERIVING ROLL ENGINE COMMANDS.. A.71

A.5.3 DOPPLER RADAR BEAM LOCATIONS ... A.73

A.5.4 CALIBRATION OF THERMOCOUPLE PAIR.. A.78

A.7.1 GRAPHICAL SYMBOLS USED IN STRUCTURED ANALYSIS DIAGRAMS ... A.103

A.8.1 DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMENTATIONS... A.105

A-6

List of Tables

A.1.1 ROTATION OF VARIABLES.. A-21

A.2.1 CONTROL SPECIFICATION (C-SPEC) 0: GCS... A-31

A.3.1 C-Spec 2: RUN_GCS... A-35

A.4.1 C-Spec 2.1: SP -- SENSOR PROCESSING .. A-38

A.4.2 C-Spec 2.3: CLP -- CONTROL LAW PROCESSING .. A-41

A.4.3 FUNCTIONAL UNIT SCHEDULING ... A-42

A.5.1 DETERMINATION OF AXIAL ENGINE TEMPERATURE.. A-45

A.5.2 DETERMINATION OF ERROR TERMS .. A-47

A.5.3 DETERMINATION OF AXIAL ENGINE COMMANDS ... A-47

A.5.4 DETERMINATION OF ALTITUDE STATUS .. A-50

A.5.5 PACKET VARIABLES... A-57

A.5.6 SAMPLE MASK ... A-57

A.5.7 PACKET BYTE STRUCTURE... A-58

A.5.8 DIFFERENTIAL EQUATIONS.. A-61

A.5.9 DETERMINATION OF AXIAL AND ROLL ENGINE ON/OFF SWITCHES ... A-62

A.5.10 DETERMINATION OF GUIDANCE PHASE.. A-65

A.5.11 DETERMINATION OF RADAR BEAM STATES.. A-74

A.5.12 PROCESSING OF DOPPLER RADAR BEAMS IN LOCK .. A-75

A.5.13 DETERMINATION OF TOUCH DOWN SENSOR AND STATUS ... A-76

A.6.1 DATA STORE: GUIDANCE_STATE... A-94

A.6.2 DATA STORE: EXTERNAL... A-95

A.6.3 DATA STORE: SENSOR_OUTPUT ... A-95

A.6.4 DATA STORE: RUN_PARAMETERS ... A-96

A.6.5 CONTROL SIGNALS ... A-97

A.6.6 DATA CONDITIONS ... A-98

A.6.7 INITIALIZATION DATA... A-98

A.6.8 TEMP_DATA.. A-99

A.6.9 SENSOR_DATA ... A-101

A.6.10 OUTPUT_DATA... A-101

A.6.11 OUTPUT_CONTROL ... A-101

A.6.12 FRAME_DATA... A-101

A.9.1 INITIAL VALUES PROVIDED FOR USE IN INTEGRATION ... A-101

A-7

A.1 INTRODUCTION

PURPOSE OF THE GUIDANCE AND CONTROL SOFTWARE

The Guidance and Control Software (GCS) represents the Viking lander (ref. A.20) on-

board navigational software. The purpose of this software is to:

1. provide guidance and engine control of the vehicle (shown in Figure A.1.1) during its

terminal phase of descent onto a surface and

2. communicate sensory information about the vehicle and its descent to some other

receiving device.

A typical descent trajectory is shown in Figure A.1.2.

The initialization of the GCS starts the sensing of vehicle altitude. When a

predefined engine ignition altitude is sensed by the altimeter radar, the GCS begins

guidance and control of the vehicle. The axial engines are ignited; while the axial

engines are warming up, the parachute remains connected to the vehicle. During this

engine warm-up phase, the aerodynamics of the parachute dictate the trajectory followed

by the vehicle. Vehicle attitude is maintained by firing the engines in a throttled-down

condition. Once the main engines become hot, the parachute is released and the GCS

performs an attitude correction maneuver and then follows a controlled acceleration

descent until a predetermined velocity-altitude contour is crossed (see Figure A.5.1). The

GCS then attempts to maintain the descent of the vehicle along this predetermined

velocity-altitude contour. The vehicle descends along this contour until a predefined

engine shut off altitude is reached or touchdown is sensed. After all engines are shut off,

the vehicle free-falls to the surface.

VEHICLE CONFIGURATION

The vehicle to be controlled is a guidance package containing sensors which obtain

information about the vehicle state, a guidance and control computer, and actuators

providing the thrust necessary for maintaining a safe descent. The vehicle has three

accelerometers (one for each body axis), one doppler radar with four beams, one

altimeter radar, two temperature sensors, three strapped-down gyroscopes, three opposed

pairs of roll engines, three axial thrust engines, one parachute release actuator, and a

touch down sensor. The vehicle has a hexagonal, box-like shape with three legs and a

surface sensing rod protruding from its undersurface.

A-8

Figure A.1.1 THE LANDING VEHICLE DURING DESCENT

X
v

x
p

p

y
p

Z

Zv

yv

A-9

Figure A.1.2 A TYPICAL TERMINAL DESCENT TRAJECTORY

Engines are Turned on and Begin Warmup

Chute is Released

Phase 1

Phase 2

Phase 3

x v

x
v

x v

x v

Engines are turned off

Touch Down (GCS Stops) Phase 4

x p

y
p

(Terminal Descent Begins)

Phase 5

y v

y v

y v

y v

y v

y v
z v

z v

z v

z v

z v

x v

z v

Parachute Descent (GCS Starts)

Z p

x v

A-10

TERMINAL DESCENT

Prior to the terminal descent phase, the vehicle falls with a parachute attached. This

parachute is released seconds after the engines ignite, and terminal descent begins.

During terminal descent, the vehicle follows a modified gravity-turn guidance law until a

predetermined altitude is reached. The atmosphere introduces drag forces, including the

random effects of wind. Independently throttled engines slow the vehicle down. These

engines can control the vehicle's orientation, and roll engines control the vehicle's roll

rate. Roll control is necessary to keep the doppler radars in lock and insure that the

desired touch down attitude (land on two legs prior to the third) is maintained.

The velocity during descent follows the predetermined velocity-altitude contour. At

a specific altitude above the planet surface, the vehicle is maintained at a constant descent

velocity. Once the surface is sensed, all engines are shut down and the vehicle free falls

to the surface.

VEHICLE DYNAMICS

Frames of Reference

Terminal descent is described in terms of two coordinate systems:

1. the surface-oriented coordinate system, and

2. the vehicle-oriented coordinate system.

In the surface coordinate system, the

r
z p axis is viewed as normal to the surface and

points down as shown in Figure A.1.2. The

r
x p axis points north, and the

r
y p points east.

By defining a unit vector as a vector of length equal to one unit along each axis in

both the planetary and vehicular frames of reference, a relation between these two frames

of reference may be established. Any vector can then be defined as a multiple of the unit

vector along each of the axes defined in the frame of reference. Thus, the velocity of the

vehicle
r
V may be defined in the vehicle's frame of reference as: vzvyvx kVjViV

vvv

ˆˆˆ ++ , where

,ˆ ,ˆ
vv ji and vk̂ are the unit vectors in the x, y, and z directions of the vehicles coordinate

system (unit vectors are usually represented by lower case i, j, or k with a hat to show

that they are unit vectors). V x v
, Vy v

, and V zv
 represent the components of the vehicle

velocity in the given direction. At the same time, the velocity of the vehicle may be

described in the planetary coordinate system as: V x p

ˆ i p +V y p

ˆ j p +V zp

ˆ k p , where the

subscript p represents planetary rather than vehicle coordinates. Note, since the two

coordinate systems are not oriented in the same direction, the values of V x v
 will not be

equal to V x p
, but the magnitude of the total vector

r
V will be the same in both systems.

A-11

Also the difference in the magnitudes of individual components represents the difference

in relative orientation between the two coordinate systems.

The dot product

r
a ⋅

r
b () is defined as the magnitude of

r
a multiplied by the

magnitude of
r
b and then by the cosine of the angle between the vectors,

bababa
rrrr

∠=⋅ cos

The dot product is used to project
r
a onto

r
b and can be used to project a vector in

one frame of reference onto another one. Rather than calculate the needed cosines each

time a vector must be transformed from one frame of reference into another, the cosines

of the angles between each unit vector of the vehicular and planetary coordinate systems

are computed and placed into a direction cosine matrix. This matrix is then used along

with the vector's magnitude in each dimension of the original frame of reference to

compute a dot product. This product gives the vector's magnitude in each dimension of

the new frame of reference.

The transformation between the vehicle and the surface coordinate systems at time t

is specified by a matrix of direction cosines,

l1 l2 l3

m1 m2 m3

n1 n2 n3

t

=

cos θ ˆ i v ,
ˆ i p() cosθ ˆ i v ,

ˆ j p() cos θ ˆ i v ,
ˆ k p()

cos θ ˆ j v ,
ˆ i p() cosθ ˆ j v ,

ˆ j p() cos θ ˆ j v ,
ˆ k p()

cosθ ˆ k v ,
ˆ i p() cosθ ˆ k v ,

ˆ j p() cos θ ˆ k v ,
ˆ k p()

t

where θ ˆ i , ˆ j () denotes the angle between vectors î and ĵ , etc.

The change in orientation of the vehicle during descent makes the update of the

direction cosine matrix necessary at each time step. This update is specified in the

following equation:

d / dt

l1 l2 l3

m1 m2 m3

n1 n2 n3

t

=

0 rv −qv
−rv 0 pv

qv −pv 0

t

l1 l2 l3

m1 m2 m3

n1 n2 n3

t

where the matrix containing the pv , qv , and rv terms is the rate of rotation about the axes

of the vehicle which may be obtained from sensor values.

Linear Velocity

The linear components of velocity for the vehicle during terminal descent are

denoted by , , vv yx && and vz& in the vehicle coordinate system and by , , pp yx && and pz& in the

A-12

surface coordinate system, where the dot () & notation indicates derivatives with respect to

time.

Vehicle Position

Vehicle position is expressed in terms of the surface coordinate system by

transforming change in position (velocity) in the vehicle coordinate system into change in

position in the surface frame and integrating as follows:

tv

v

v

ttp

p

p

z

y

x

nml

nml

nml

z

y

x

=

&

&

&

&

&

&

333

222

111

and

t
p

p

p

tp

p

p

d

z

y

x

z

y

x

∫

=

τ
&

&

&

Angular Velocity

Roll, pitch, and yaw angular velocities are represented by the quantities pv , qv , and

rv in the vehicle frame of reference only. Roll is about the

r
x v axis, pitch is about the

r
y v

axis, and yaw is about the

r
z v axis, as shown in Figure A.1.3. A more in-depth

explanation of angular velocity naming conventions and other related material may be

found in section II, part B of Reference (ref. A.3).

Vehicle Attitude

The vehicle attitude at time t is a function of the vehicle attitude (known by

reference to celestial objects) at the start of descent at time t0 and the cumulative changes

in attitude from time t0 to time t .

Acceleration

The linear components of acceleration for the vehicle in the vehicle frame of

reference during terminal descent are denoted by , , vv yx &&&& and ,vz&& respectively.

Further Reading

The subjects of vector mathematics, transformations between frames of references,

vector calculus, and rotating coordinate systems may not be sufficiently covered here for

the user; however, such depth is not intended for this document. Chapter 4 of Classical

Mechanics (ref. A.4) contains a detailed explanation of rigid body motion and

transformation of vectors into multiple frames of reference or coordinate systems.

Chapters 15 and 16 of Engineering Mechanics (ref. A.5) contains a more basic approach

A-13

to the same ideas of multiple frames of reference and vector mechanics. Chapter 14 of

(ref. A.6) and Chapter 5 of (ref. A.7) also discuss rotational motion and multiple frames

of reference, as well as vector mechanics and calculus. Two other books of possible

interest are (ref. A.8) and (ref. A.9). Both cover the mechanics of particles and dynamics,

with strong references to particle trajectories and rocket dynamics. Also, these texts are

basic in nature and require only a rudimentary knowledge of physics, math, or

engineering.

A-14

Figure A.1.3 ENGINEERING ILLUSTRATION OF VEHICLE

Axial Engine (3)

Foot Pad (3)

Roll Engine (3)

Bottom View
(x out of page)

positive roll thrust

z
v

y
v

+p
(roll)

Side View

x
v

(z into page)

y
v

+r
(yaw)

positive
axial thrust

Side View

x
v

(y into page)

z
v

+q
(pitch)

A-15

VEHICLE GUIDANCE

Vehicle guidance is accomplished by varying the engine thrust so that the vehicle

follows a single predetermined velocity-altitude contour. This contour is made available

during GCS initialization. Applying too great a deceleration early in the descent brings

the vehicle velocity to its terminal value too high above the surface, resulting in

insufficient propellant for final descent. Applying too small a thrust lets the vehicle

impact the surface with too great a velocity. Either condition could be disastrous. As

soon as the touch down sensor touches the surface, the engines are shut off.

Approximately ninety percent of propellant or thrust is used to minimize gravity losses;

the remaining ten percent is used for steering.

A gravity-turn steering law is mechanized by rotating the vehicle in pitch and yaw

until the body's lateral axis velocities are zero (causing the thrust axis to point along the

total velocity vector). The action of gravity causes the thrust axis to rotate toward the

vertical as the total velocity is reduced. An arbitrary roll orientation is maintained with

an attitude hold mode during the descent.

ENGINES

The vehicle has three axial engines that supply the force necessary to slow the

vehicle and allow it to safely land. Roll is controlled by three pairs of roll engines on the

lander supplying rotational thrust. Figure A.1.3 shows the axial and roll engines and the

resulting thrust forces they impart to the vehicle.

Axial Engine (Thrust) Control

Three thrust engines first orient the vehicle so that their combined thrust vector

opposes the vehicle's velocity vector. Thrust (axial direction) engine control is a function

of pitch error, yaw error, thrust error, and deviation from the velocity-altitude contour. A

combination of proportional and integral control (PI) logic is applied to pitch and yaw

control. The integral portion helps to reduce the steady-state pitch and yaw error.

If no thrust error or velocity-altitude contour deviation occurs, then axial engine

response provides only pitch and yaw control via the PI control law. Use of this control

law implies that the overshoot problem for pitch-yaw control is probably small.

Thrust control is implemented by a proportional-integral-derivative (PID) control

law. The derivative control added here damps out overshoot.

Roll Engine Control

Roll control is attained by pulsing the three pairs of roll engines and is a function of

roll angle deviation and roll rate (pV) about the x axis. Roll engine specific impulse and

A-16

thrust per unit time are constant with the integrated thrust controlled by pulse rate. Angle

deviations are controlled within a very small range of 0.25 to 0.35 degrees.

GENERAL INFORMATION

NOTATION

Matrices and Arrays

It should be noted that throughout this specification, the words matrix and array are

often interchanged. No significance should be placed upon the use of one word as

opposed to use of the other.

All matrices are referenced with the row index first and the column index second. In

the cases where there is a time history (see definition of history variable below), the last

index is the time index.

When the name of an array which contains a time history is given without any index

for the time history being specified, the most recent value is implied.

Operators

Throughout this specification, matrix operations (particularly multiplication) are

required, and on some occasions, non-standard operations are used upon matrices. The

following symbols are used to denote the types of multiplication to be applied.

Dots ⋅() Small dots are used to denote scalar multiplication. For example:

3 ⋅ 4 = 12

Multiplication sign ×() This symbol is used to denote standard matrix multiplication.

This does NOT imply a cross product, nor strictly a dot product. The definition of

this type of operation is given below:

A × B = C
 where

 ∀i and ∀j , Cij = Aik ⋅Bkj

∀k
∑

Asterisks (*) Asterisks are used in conjunction with index markers to show that the

operations are to be conducted on individual elements of arrays or vectors as if they

were scalars. This is often the case when calculating sensor values or other similar

functions when multiple scalars are grouped together for convenience. For example,

the following equation is listed in ASP:

A-17

A_ ACCELERATION_ M(i)= A_ BIAS(i) + A_GAIN(i)* A_COUNTER(i)

 where i ranges from 1 to 3 and represents the three directions x, y, and z. In

this case, the first element of A_ACCELERATION_M would be calculated
as follows:

A_ ACCELERATION_ M(1) = A_ BIAS(1)+ A_GAIN(1)⋅ A_ COUNTER(1)

No Operator In those cases where variables, matrices, or scalars are located directly

beside each other with no operator between, standard multiplication is implied.

Thus two matrices collocated would be multiplied as if they had the × operator

between them, while two scalars would be multiplied as if they had the ⋅ operator

between them. Also, if a scalar and a matrix (of one or more dimensions) were

collocated, then the scalar would be multiplied by each element of the matrix and a

new matrix of equal dimensions would be generated.

DEFINITIONS

Implementation

Computer code which fulfills all of the requirements outlined in the GCS

Development Specification.

Functional Unit

Section A.5 is divided into eleven subsections, each of which describes the

requirements for a particular function to be performed by the GCS software. Throughout

this specification, the term "functional unit" will be used to refer to one of these eleven

functions. Note that there is not necessarily a one-to-one correspondence between a

"functional unit" and a distinct unit or module of software code in an implementation.

Frame

A frame is the length of time necessary to execute all scheduled functional units.

Each frame has two different time values associated with it. The first is the actual c.p.u.

time that it takes to execute the GCS software on the simulation host computer, while the

second is the allotted time for a frame on the actual lander. The global variable

DELTA_T represents the time for one frame on the actual lander and is needed in the

GCS code for the integration of the dynamic equations for the lander.

A-18

Subframe

A subframe is one of the three individual units of time which together make up a

frame. The three subframes are named the Sensor Processing subframe (subframe 1), the

Guidance Processing subframe (subframe 2), and the Control Law Processing subframe

(subframe 3). In each frame, subframe 1 is executed first, subframe 2 is executed second,

and subframe 3 is the last subframe executed.

Data Store

The definition for a data or control store given in Hatley (ref. A.13) is "A data or

control store is simply a data or control flow frozen in time. The data or control

information it contains may be used any time after that information is stored and in any

order." In this specification, all stores contain data, while some also contain data

conditions. For the purposes of this specification, the term "data store" will be used to

refer to any store which contains some combination of data and data conditions. Thus, all

four stores listed in the Data Requirements Dictionary part II will be referred to as "data

stores".

Global Data Store Variable

A global data store variable is any variable listed in any of the four global data

stores in Section A.6, namely GUIDANCE_STATE data store (Table A.6.1),

EXTERNAL data store (Table A.6.2), SENSOR_OUTPUT data store (Table A.6.3), or

RUN_PARAMETERS data store (Table A.6.4).

History Variable

Within this specification, a particular array, hereafter referred to as a "history

variable" is one which contains a time history dimension; that is, it contains values for the

current frame as well as for previous frames. The history variables are the following:

A_ACCELERATION (1:3,0:4)
A_STATUS (1:3,0:3)
AR_ALTITUDE (0:4)
AR_STATUS (0:4)
G_ROTATION (1:3,0:4)
GP_ALTITUDE (0:4)
GP_ATTITUDE (1:3,1:3,0:4)
GP_VELOCITY (1:3,0:4)
K_ALT (0:4)
K_MATRIX (1:3,1:3,0:4)
TDLR_VELOCITY (1:3,0:4)

In each case, the last dimension is the time dimension. The first subscript in a time

history dimension is always declared to be zero. The time dimension contains a set of

A-19

scalars, vectors, or arrays, depending on whether the total number of dimensions is one,

two, or three, respectively. Let the term "object" denote a scalar, vector, or array, as

appropriate for the particular variable. Each of these variables contains either four or five

objects, depending on whether the last dimension is declared to be 0:3 or 0:4 respectively.

The variable A_STATUS contains four objects, while each of the other time history

variables contains five objects.

Each of the variables listed contains a most recent object and either three or four

previous objects. The object with a time subscript of zero is the most recent object; the

object with a time subscript of one is the object which is one frame older; the object with

a time subscript of two is the object which is two frames older, etc.; the object with the

largest time subscript (three or four) is the oldest object.

CONVENTIONS

FORTRAN Convention

This specification was written with the assumption that the implementation would

be coded in FORTRAN. If the development language used is something other than

FORTRAN, the programmer must investigate the possibility of differences between

FORTRAN and the development language chosen.

REQUIREMENTS

Order of Processing

Within each functional unit in Chapter 5, the processing steps are given in a

particular order. If the implementation uses the same order as that given in the

specification, then correct results should be obtained; however, the programmer is free to

use a different order as long as the change in order does not affect the outputs.

Calls to GCS_SIM_RENDEZVOUS

There must be a call to GCS_SIM_RENDEZVOUS prior to the execution of each

subframe. See section A.2 and section A.8 for discussions regarding

GCS_SIM_RENDEZVOUS.

Control Signals

The control signals listed in Table A.6.5 in Part III of the Data Requirements

Dictionary may be implemented by the programmer in any form desired, or they may be

completely ignored and the control of the program may be conducted through other

means.

A-20

A-21

Number Representations

When variables are given in sign-magnitude or other unusual formats, conversion or

manipulation may be necessary.

Conversion of Units

It is the responsibility of the programmer to be sure that any implied conversion of

units is performed.

Global Data Store Organization

Part II of the Data Requirements Dictionary contains descriptions of four required

data stores. Each of these data stores is to be located in a separate, globally accessible

data region. The division of the global data stores into four separate regions illustrates

the fact these regions have a direct mapping to a specific implementation of GCS on

hardware components of an actual lander. (See Figure A.B.1).

If the implementation is being written in FORTRAN, four labeled common blocks

should be declared with the labels GUIDANCE_STATE, EXTERNAL,

SENSOR_OUTPUT, and RUN_PARAMETERS, respectively (See Tables 6.1, 6.2, 6.3,

and 6.4). The variables declared in each labeled common block must be in the same

order as those in the corresponding table.

Use of Variables That Are Not in the Global Data Stores

A programmer may use variables in addition to the global data store variables;

however, if the value of such a variable is dependent upon the values of any global data

store variable(s), then the programmer should only use the value of such a variable in the

same subframe of the same frame in which it was calculated.

Use of Tables

Some tables have the heading "CURRENT STATE" and "ACTIONS". If the actual

state of the variables appears under the "CURRENT STATE" section in the table, then

the actions listed in the same line are to be performed. If the actions in one line of the

table are performed, then none of the actions in any other line of the table should be

performed in the same subframe. If the actual current state is not represented in any line

under the "CURRENT STATE" section of the table, then no action is to be taken.

Rotation of History Variables

In Chapter 5, in certain functional units, an instruction is given to "rotate" specific

variables. Table A.1.1 illustrates what is meant by rotation. The table is given for a

variable with a time dimension of 0:4. For a variable with a time dimension of 0:3, the

A-22

last line of the table should be ignored. Note that after the variable has been rotated, the

new or current object is calculated and placed into the zeroth time history position.

Table A.1.1 ROTATION OF VARIABLES

TIME HISTORY
SUBSCRIPT

VALUES BEFORE
ROTATION

VALUES AFTER
ROTATION

VALUE AFTER
CALCULATIONS
FOR CURRENT

FRAME

0 On-1 X On

1 On-2 On-1 On-1

2 On-3 On-2 On-2

3 On-4 On-3 On-3

4 On-5 On-4 On-4

Note: Oi denotes object that was calculated in frame i

 n = current frame number

 X = denotes that any value is acceptable

Precision

All calculations involving floating point variables should be done with precision
equivalent to that of FORTRAN D-floating (REAL*8).
EXCEPTION HANDLING

 During the execution of a computer program, exception conditions may

sometimes occur. The implementation should anticipate or detect certain types of

exception conditions and take specific actions. The relevant exception conditions and the

actions to be taken are listed below.

Exception Conditions

 DIVIDE BY ZERO

A division is performed, but the divisor is equal to zero.

 NEGATIVE SQUARE ROOT

A square root is taken, but the argument for the square root is negative.

 UPPER OR LOWER LIMIT EXCEEDED

The current value for a data element exceeds its upper or lower limit as specified in the
range section in the Data Requirements Dictionary Part I.

A-23

Only certain data elements under certain conditions are to be checked for limits exceeded.
The criteria for which elements are to be checked, in what context they are to be checked,
and when they must be checked is as follows:

Which data elements:

A particular data element is to be checked for limits exceeded only if it is of data type
REAL*8, and is in either of the two global data stores GUIDANCE_STATE or
SENSOR_OUTPUT.

Context for check:

A data element is to be checked only when it is being used as an input. Rotation of a
data element is not considered to be a use as an input for the purposes of limit
checking. If the data element is a vector or array, then each element in the vector or
array that is being used as input must be checked, including history values. It is not
necessary for the functional unit CP to check any of its input data elements for limit
exceeded.

When data element must be checked:

When an input data element is to be used or processed in a given subframe, then it
must be checked sometime within that same subframe before it is used. If the data
element is also being updated or changed in the same subframe before it is being used
as an input, then it must be checked sometime between the time it is updated and the
time it is used.

Action to be Taken for Each Specified Exception Condition

Write the appropriate output as specified below to the FORTRAN Logical Unit

Number 6 and then continue. In the case of UPPER/LOWER LIMIT EXCEEDED, do

not modify the data element. Note that to "continue" implies that the divide will be

executed, or the square root will be taken, or the data element with exceeded limit will be

used.

Output to be Generated for Each Exception Condition

The first line of the exception message should appear as follows:
 " %EXCEPTIONAL-CONDITION-GCS-"<insert specific condition here>
 where the specific condition is one of the following:
 "DIVIDE_BY_ZERO"
 "NEGATIVE_SQUARE_ROOT"
 "LOWER_LIMIT_EXCEEDED"
 "UPPER _LIMIT_EXCEEDED"

The second line of the exception message should contain the name of the functional

unit where the exception condition occurred (i.e. AECLP, ASP, etc.), the name of the

actual subroutine where the exception condition occurred, and the current value of the

frame counter. Implementations that are coded in FORTRAN should use the following

FORTRAN format statement:

A-24

 FORMAT (x, a6, x, a32, x, i4)

A third line of the exception message containing information that is specific to the

individual error type may be required as specified below.
 Divide By Zero
 No additional output necessary.

 Negative Square Root
 Display the value of the argument to the square root operation.
 Use FORTRAN format statement FORMAT (x, e23.14).

 Lower Limit Exceeded
 Display the name of the data element in question and the value of the data element.
 Use FORTRAN format statement FORMAT (x, a32, e23.14) for type real elements.

 Upper Limit Exceeded
 Display the name of the data element in question and the value of the data element.
 Use FORTRAN format statement FORMAT (x, a32, e23.14) for type real elements.

A.2 LEVELS 0 AND 1 SPECIFICATION

LEVEL 0 SPECIFICATION

The GCS will provide an interface between the sensors (rate of descent, attitude,

etc.) and the engines (roll and axial). The purpose of the GCS is to keep the vehicle

descending along the predetermined velocity-altitude contour which has been chosen to

conserve enough fuel to effect a safe attitude and touch down.

The GCS effects this control by:

• processing the following sensor information:

- acceleration data from the three accelerometers -- one for each vehicle axis,

- range rate data from four splayed doppler radar beams,

- altitude data from one altimeter radar,

- temperature data from a solid-state temperature sensor and a thermocouple pair

temperature sensor,

- rates of rotation from three strapped-down gyroscopes -- one for each vehicle axis, and

- sensing of touch down by the touch down sensor.

A-25

• determining the appropriate commands for the axial and roll engines and the chute release

mechanism and issuing them to keep the vehicle on a predetermined velocity-altitude contour.

The GCS also transmits telemetry data and synchronizes through a rendezvous

routine (GCS_SIM_RENDEZVOUS) with GCS_SIM (ref. A.10), the simulator and

controller.

Note that implementations of the GCS developed from this specification may be

executed singly or in parallel. Consequently, only specific system services can be used in

an implementation. In particular, a rendezvous routine will be provided and should be

invoked, as specified in the implementation notes in section A.8. In addition, FORTRAN

Intrinsic Functions may be used. Other system services and library routines are explicitly

excluded from use by the programmer.

Figures 2.2 through 2.5, 3.1, 3.2, and 4.1 through 4.4, and Tables 2.1, 3.1, 4.1, and

4.2 follow Hatley's extension to Structured Analysis (see section A.7), with the following

exceptions and assumptions.

Exceptions:

1. Any data store may appear at more than one level because the processes

specified do not communicate directly but only through data stores.

2. Any unlabeled flow between a process and a data store may not necessarily

carry all the information in the data store (the actual flow content is defined

by the process specification and the Data Requirements Dictionary Part II).

Assumptions:

1. The initial value for control signals is assumed to be "FALSE".

2. In a process activation table (PAT), an empty process cell indicates the

process is deactivated.

3. In a PAT, an empty output cell indicates the control signal value remains

unchanged.

4. In a PAT, output control signals receive values before any processes are

activated and therefore may delay the activation of processes by deactivating

their parent process.

A-26

An example of assumption 4 is Table A.3.1 where setting RENDEZVOUS to

"TRUE" delays the activation of the processes of which RUN_GCS is composed until

GCS_SIM sets RENDEZVOUS to "FALSE".

A-27

Figure A.2.1 STRUCTURE OF THE GCS SPECIFICATION

GCS

 0

RUN_GCS

 2

INIT_GCS

 1

P-Spec SP
2.1

GP
2.2

CLP
 2.3

CP
2.4

ASP
2.1.1

ARSP
 2.1.2

TDLRSP
 2.1.3

GSP
2.1.4

TSP
2.1.5

TDSP
 2.1.6 P-SpecP-Spec

P-SpecP-SpecP-SpecP-SpecP-SpecP-SpecP-SpecP-Spec

AECLP
 2.3.1

RECLP
 2.3.2

CRCP
 2.3.3

Level 0

Level 1

Level 2

Level 3

Level 4 P-Spec

A-28

Figure A.2.2 DATA CONTEXT DIAGRAM: LANDER

Altimeter_
Radar

Doppler_
Radar

Gyroscopes Temperature_
Sensors

Touch_Down_
Sensor

GCS_SIM GCS

0

Axial_Engines

Roll_Engines Telemetry_
Hardware

Parachute

AE_CMD

INITIALIZATION_DATA
FRAME_DATA

PACKET RE_CMD

A_COUNTER AR_COUNTER TDLR_COUNTER G_COUNTER TEMP_DATA TD_COUNTER

Accelerometers

A-29

Figure A.2.3 CONTROL CONTEXT DIAGRAM: LANDER

Accelerometers Altimeter_

Radar
Doppler_
Radar

Gyroscopes Temperature_
Sensors

Touch_Down_
Sensor

GCS_SIM GCS

0

Axial_Engines

Roll_Engines Telemetry_
Hardware

Parachute

AE_SWITCH RE_SWITCH CHUTE_RELEASED

RENDEZVOUS

A-30

LEVEL 1 SPECIFICATION

Figure A.2.4 DATA FLOW DIAGRAM (DFD) 0: GCS

INIT_GCS

1

RUN_PARAMETERS SENSOR_OUTPUT GUIDANCE_STATE EXTERNAL

FRAME_DATA SENSOR_DATA

OUTPUT_DATA

RUN_GCS

2

INITIALIZATION_DATA

A-31

Figure A.2.5 CONTROL FLOW DIAGRAM (CFD) 0: GCS

EXTERNAL

INIT_GCS

1

RUN_PARAMETERS SENSOR_OUTPUT GUIDANCE_STATE

RUN_GCS

2

INIT_DONE

RENDEZVOUS

RUN_DONE

RENDEZVOUS

OUTPUT_CONTROL

RENDEZVOUS is only set to "TRUE" by RUN_GCS and it is only set to "FALSE"

by GCS_SIM.

A-32

Table A.2.1 CONTROL SPECIFICATION (C-SPEC) 0: GCS

 "INIT_GCS" "RUN_GCS"

~RENDEZVOUS & ~RUN_DONE 1

RENDEZVOUS & ~INIT_DONE & ~RUN_DONE 1

(RENDEZVOUS & INIT_DONE) | RUN_DONE

A-33

A.3 LEVEL 2 SPECIFICATIONPROCESS SPECIFICATION (P-Spec) 1:

INIT_GCS

PURPOSE INIT_GCS initializes the guidance and control software.

INPUT

INITIALIZATION_DATA

OUTPUT

INITIALIZATION_DATA

PROCESS INIT_GCS is actually a part of GCS_SIM_RENDEZVOUS, which will be supplied
to the programmer; thus the functions performed by INIT_GCS are listed here for information
only, but are not the responsibility of the programmer. There should be a call to
GCS_SIM_RENDEZVOUS, prior to executing each subframe. The first call to
GCS_SIM_RENDEZVOUS will cause INIT_GCS to automatically be executed. INIT_GCS will
initialize all variables in the group flow INITIALIZATION_DATA, which is defined in Table
A.6.7 in the Data Requirements Dictionary Part III. Since the variables FRAME_COUNTER and
SUBFRAME_COUNTER are part of INITIALIZATION_DATA, they will be initialized at this
time. FRAME_COUNTER will be initialized to a value representing the next frame to be
executed, while SUBFRAME_COUNTER will always be initialized to the value one, which
implies that the first subframe of the first frame to be executed will always be the sensor
processing subframe. Although a terminal descent trajectory begins with FRAME_COUNTER
initialized to the value one, the option exists for starting execution at some point other than at the
beginning of the trajectory, i.e., FRAME_COUNTER may be initialized to a value greater than
one.

A-34

Figure A.3.1 DFD 2: RUN_GCS

EXTERNAL RUN_PARAMETERS

SP

.1

SENSOR_OUTPUT

GP

.2

CP

.4

GUIDANCE_STATE

CLP

.3

A-35

Figure A.3.2 CFD 2: RUN_GCS

EXTERNAL RUN_PARAMETERS

SP

.1

SENSOR_OUTPUT

GP

.2

CP

.4

GUIDANCE_STATE

CLP

.3

SP_DONE

GP_PHASE

GP_DONE

RENDEZVOUS

RUN_DONE

CLP_DONE

CP_DONE

A-36

Table A.3.1 C-Spec 2: RUN_GCS

 "SP" "GP" "CLP" "CP" SP_DONE GP_DONE CLP_DONE CP_DONE RENDEZVOUS RUN_DONE

~SP_DONE &

~GP_DONE &

~CLP_DONE &

~CP_DONE

1

2

"TRUE"

SP_DONE &

CP_DONE

 1 2 "FALSE" "FALSE" "TRUE"

GP_DONE &

CP_DONE &

GP_PHASE ~= 5

1

2

"FALSE"

"FALSE"

"TRUE"

CLP_DONE &

CP_DONE

1 2 "FALSE" "FALSE" "TRUE"

GP_DONE &

CP_DONE &

GP_PHASE = 5

"TRUE"

A-37

A.4 LEVEL 3 FLOW DIAGRAMS AND C-SPECS

Figure A.4.1 DFD 2.1: SP -- SENSOR PROCESSING

RUN_PARAMETERS EXTERNAL

GUIDANCE_STATE SENSOR_OUTPUT

TDLRSP ARSP ASP GSP TSP TDSP

.3 .4.2 .1 .5 .6

A-38

Figure A.4.2 CFD 2.1: SP -- SENSOR PROCESSING

EXTERNAL RUN_PARAMETERS

GUIDANCE_STATE SENSOR_OUTPUT

TDLRSP

.3

ARSP

.2

ASP

.1

GSP

.4

TSP

.5

TDSP

.6

ASP_DONE

TDLRSP_DONE

ARSP_DONE

GSP_DONE

SP_DONE

TDSP_DONE

TSP_DONE

A-39

Table A.4.1 C-Spec 2.1: SP -- SENSOR PROCESSING

 "ASP

"

ARSP" "TDLRSP" “GSP” “TSP” “TDSP” ASP_

DONE

ARSP_

DONE

TDRLSP_

DONE

GSP_

DONE

TSP_

DONE

TDSP_

DONE

SP_

DONE

 ~ASP_DONE &

 ~ARSP_DONE &

~TDLRSP_DONE &

 ~GSP_DONE &

 ~TSP_DONE &

 ~TDSP_DONE &

 ~SP_DONE

2

2

2

2

1

2

 ASP_DONE &

 ARSP_DONE &

 TDLRSP_DONE &

 GSP_DONE &

 TSP_DONE &

 TDSP_DONE &

 ~SP_DONE

“FALSE”

“FALSE”

“FALSE”

“FALSE”

“FALSE”

“FALSE”

“TRUE”

A-40

Figure A.4.3 DFD 2.3: CLP -- CONTROL LAW PROCESSING

SENSOR_OUTPUT RUN_PARAMETERS GUIDANCE_STATE

AECLP RECLP CRCP

EXTERNAL

.1 .2 .3

A-41

Figure A.4.4 CFD 2.3: CLP -- CONTROL LAW PROCESSING

SENSOR_OUTPUT RUN_PARAMETERS GUIDANCE_STATE

EXTERNAL

AECLP CRCP

.1 .3

CRCP_DONE

CLP_DONE AECLP_DONE

RECLP_DONE

RECLP

.2

A-42

Table A.4.2 C-Spec 2.3: CLP -- CONTROL LAW PROCESSING

 "AECLP" "RECLP" "CRCP" AECLP_DONE RECLP_DONE CRCP_DONE CLP_DONE

~AECLP_DONE &

~RECLP_DONE &

~CRCP_DONE &

~CLP_DONE

1

1

AECLP_DONE &

~CRCP_DONE &

~CLP_DONE

1

1

AECLP_DONE &

RECLP_DONE &

CRCP_DONE &

~CLP_DONE

"FALSE"

"FALSE"

"FALSE"

"TRUE"

A-43

SCHEDULING

The execution of one frame consists of the execution of the Sensor Processing

Subframe, the Guidance Processing Subframe, and the Control Law Processing

Subframe, in that order. Within each subframe, the functional units which are to be

executed are listed in Table A.4.3. Within each of the three subframes,

GCS_SIM_RENDEZVOUS should be executed before executing any of the functional

units, and the functional unit CP should be executed last. In the first and third subframes,

there are also some sequencing constraints to be imposed upon certain functional units

due to the fact that certain data is output from one unit and input to another unit: In the

sensor processing subframe, TSP should be executed before ASP, and TSP should be

executed before GSP. In the control law processing subframe, AECLP should be

executed before CRCP. Within any given subframe, the order of execution of functional

units not specifically mentioned here is immaterial.

Each functional unit will be executed every frame in the particular subframe in

which it is included in Table A.4.3. Execution of the GCS may begin at any frame

number and should operate as if it had been running from the beginning of the trajectory

(frame number 1). On the first, and subsequent, calls to GCS_SIM_RENDEZVOUS,

FRAME_COUNTER and SUBFRAME_COUNTER will be returned to the

implementation containing the correct values for operation.

Table A.4.3 FUNCTIONAL UNIT SCHEDULING

Sensor Processing Subframe (Subframe 1)

ARSP
ASP
CP
GSP
TDLRSP
TDSP
TSP

Guidance Processing Subframe (Subframe 2)

CP
GP

Control Law Processing Subframe (Subframe 3)

AECLP

CP
CRCP
RECLP

The GCS software must meet all the requirements for a particular frame for any

specific value of the variable FRAME_COUNTER. The software must be capable of

A-44

executing continuously one frame after another until specified termination conditions are

met, at which time it must terminate itself according to specified termination procedures.

The termination conditions and procedures are: GCS should check whether to

terminate itself in each frame immediately after executing the Control Law Processing

subframe. At that time if the value of the variable GP_PHASE is equal to 5, then GCS

should terminate itself gracefully (without any exception conditions). In this case, the

implementation should terminate at the end of the present subframe, i.e., it should

execute the functional unit Communications Processing and then terminate without

calling GCS_SIM_RENDEZVOUS.

5 P-SPECS FOR LEVELS 3 and 4

AECLP -- Axial Engine Control Law Processing (P-Spec 2.3.1)

PURPOSE The AECLP functional unit computes the valve settings for each of the three main
(axial) engines. Measurements of the vehicle's velocity, acceleration, and roll rates are combined
to produce error signals for the pitch, yaw, and thrust of the vehicle. These error signals are then
mixed to produce the axial engine valve settings.

INPUT

AE_SWITCH AE_TEMP
A_ACCELERATION CHUTE_RELEASED
CL CONTOUR_CROSSED
DELTA_T ENGINES_ON_ALTITUDE
FRAME_COUNTER FRAME_ENGINES_IGNITED
FULL_UP_TIME GA
GAX GP1
GP2 GPY
GP_ALTITUDE GP_ATTITUDE
GP_ROTATION GP_VELOCITY
GQ GR
GRAVITY GV
GVE GVEI
GVI GW
GWI INTERNAL_CMD
OMEGA PE_INTEGRAL
PE_MAX PE_MIN
TE_DROP TE_INIT
TE_INTEGRAL TE_LIMIT
TE_MAX TE_MIN
VELOCITY_ERROR YE_INTEGRAL
YE_MAX YE_MIN

OUTPUT

AE_CMD AE_STATUS

AE_TEMP INTERNAL_CMD

PE_INTEGRAL TE_INTEGRAL

A-45

TE_LIMIT YE_INTEGRAL

PROCESS The reader should refer to section A.9 for notes on integration. Note that once the
correct value of AE_CMD has been determined, it will automatically be transmitted to the
engines during the next call to the GCS_SIM_RENDEZVOUS routine provided in the GCS_SIM
rendezvous package. (See section A.8. Implementation Notes). Computation of the axial engine
valve settings requires the following steps:

� PROCESSING WHEN AXIAL ENGINES ARE OFF

• IF AE_SWITCH is set to OFF, then perform the following steps:

•• Set all elements of AE_CMD to 0

•• Proceed directly to the step "SET AXIAL ENGINE STATUS TO HEALTHY."

� PROCESSING WHEN AXIAL ENGINES ARE ON

The variable CL is used here as a subscript. Explanations for the variables CL and

VELOCITY_ERROR are provided in functional unit 2.6 GP. The variables PE_INTEGRAL,

YE_INTEGRAL, and TE_INTEGRAL will be initialized by INIT_GCS.

• If AE_SWITCH is set to ON then perform the following steps:

(Note: pv , qv , and rv are the current elements of GP_ROTATION; vx& , vy& , and vz& are

the current elements of GP_VELOCITY; vx&& is the current x component of

A_ACCELERATION.)

DETERMINE ENGINE TEMPERATURE

•• Set AE_TEMP according to Table A.5.1

Table A.5.1 DETERMINATION OF AXIAL ENGINE TEMPERATURE

CURRENT STATE ACTION
AE_TEMP GP_ALTITUDE (FRAME_COUNTER−−−−

FRAME_ ENGINES_ IGNITED) ⋅⋅⋅⋅

DELTA_T

AE_TEMP

cold ≤≤≤≤ ENGINES_ON_ALTITUDE

< FULL_UP_TIME warming-up

warming-up ≤≤≤≤ ENGINES_ON_ALTITUDE

≥≥≥≥ FULL_UP_TIME hot

COMPUTE LIMITING ERRORS FOR PITCH

•• dt
x

z
LPE_INTEGRALPE_INTEGRA

t

t v

v

0
∫+=

&

&
 ,

A-46

 where t0 is the time at the beginning of this frame and t is the time at the

end of this frame.

•• INTEGRALPECLGWI
x

z
CLGWqCLGQP

v

v
v

L
e _)()()(⋅+

⋅+⋅=

&

&

•• If PE_MIN(CL)PL
e < then set Pe

L
 to PE_MIN(CL).

•• If PE_MAX(CL)PL
e > then set Pe

L
 to PE_MAX(CL).

A-47

COMPUTE LIMITING ERROR FOR YAW

•• dt
x

y
INTEGRALYEINTEGRALYE

t

t
v

v∫+=
0

__
&

&
,

 where t0 is the time at the beginning of this frame and t is the time at the

end of this frame.

•• INTEGRALYECLGVI
x

y
CLGVrCLGRY

v

v
v

L
e _)()()(⋅+

⋅+⋅−=

&

&

•• If)(_ CLMINYEY L
e < then set Ye

L
 to YE_MIN(CL).

•• If)(_ CLMAXYEY L
e > then set Ye

L
 to YE_MAX(CL).

COMPUTE LIMITING ERROR FOR THRUST

•• If CONTOUR_CROSSED is set to "contour not crossed", then proceed

directly to the step "COMPUTE PITCH, YAW, AND THRUST ERRORS."

•• If CONTOUR_CROSSED is set to "contour crossed", then perform the

following steps:

••• ∫+=
t

t
dtERRORVELOCITYINTEGRALTEINTEGRALTE

0

)_(__

 where t0 is the time at the beginning of this frame and t is the time at

the end of this frame.

••• Solve the following equation analytically in order to calculate the value

for TE_LIMIT:

INTEGRALTECLGVEIERRORVELOCITYGVE

ATTITUDEGPGRAVITYxGAX

GA

LIMITTEOMEGALIMITTE
dt

d

v

)(

))0,3,1(_(

)(

⋅+⋅

+⋅+⋅−

=
⋅+

&&

••• If)(__ CLMINTELIMITTE < then set TE_LIMIT to TE_MIN(CL).

••• If)(__ CLMAXTELIMITTE > then set TE_LIMIT to TE_MAX(CL).

A-48

COMPUTE PITCH, YAW, AND THRUST ERRORS

•• Compute pitch error (Pe), Yaw Error (Ye), and Thrust Error (Te), according

to Table A.5.2

Table A.5.2 DETERMINATION OF ERROR TERMS

CURRENT STATE

ACTIONS

AE_SWITCH CHUTE_
RELEASED

CONTOUR_
CROSSED

Pe Ye Te

1 1 1 Pe
L Ye

L TE_LIMIT

1 1 0 Pe
L Ye

L TE_DROP

1 0 0,1 GQ(CL) ⋅ qv −GR(CL)⋅ r v TE_INIT

COMPUTE AXIAL ENGINE VALVE SETTINGS

Given pitch, yaw, and thrust errors, (Pe ,Ye , Te), the valve settings (AE_CMD) for each

of the three main engines are calculated as:

INTERNAL_ CMD =

GP1 0 1

GP2 −GPY 1

GP2 GPY 1

×

Pe

Ye

Te

which will result in each element of the INTERNAL_CMD vector being a real value.

This value should be converted into an integer value between 0 and 127 and placed into

the appropriate element of the AE_CMD vector. The mapping for the conversion from

real to integer values for each of the three elements should be as follows:

Table A.5.3 DETERMINATION OF AXIAL ENGINE COMMANDS

CURRENT STATE ACTIONS

INTERNAL_CMD AE_CMD

I < 0.0 A = 0

0.0 ≤ I ≤ 1.0 0 ≤ A ≤ 127

1.0 < I A = 127
Note: "I" represents the appropriate element of the vector INTERNAL_CMD
 "A" represents the appropriate element of the vector AE_CMD

with INTERNAL_CMD between 0 and 1.0 being converted linearly to a value of

AE_CMD between 0 and 127. Each value for AE_CMD is to be rounded to the nearest

integer, where rounding is defined as follows:

A-49

 Let x represent the real value that is to be rounded

 Then, AE_CMD = the integer part of (x+0.5)

� SET AXIAL ENGINE STATUS TO HEALTHY

• Set AE_STATUS to healthy.

A-50

ARSP -- Altimeter Radar Sensor Processing (P-Spec 2.1.2)

PURPOSE The vehicle has one altimeter radar. The ARSP functional unit reads the altimeter
counter provided by this radar and converts the data into a measure of distance to the surface.

INPUT

AR_ALTITUDE AR_COUNTER

AR_FREQUENCY AR_STATUS

K_ALT

OUTPUT

AR_ALTITUDE AR_STATUS

K_ALT

PROCESS The processing of the altimeter counter data (AR_COUNTER) into

the vehicle's altitude above the planet's terrain depends on whether or not an echo is

received by the altimeter radar for the current time step. The distance covered by the

radio pulses emitted from the altimeter radar is directly proportional to the time between

transmission and reception of its echo. A digital counter (AR_COUNTER) is started as

the radar pulse is transmitted. The counter increments AR_FREQUENCY times per

second. If an echo is received, the lower order fifteen bits of AR_COUNTER contain the

pulse count, and the sign bit will contain the value zero. If an echo is not received,

AR_COUNTER will contain sixteen one bits.

� ROTATE VARIABLES

• Rotate AR_ALTITUDE, AR_STATUS, AND K_ALT.

� DETERMINE ALTITUDE

• If an echo is received, perform the following:

•• Convert the AR_COUNTER value to a distance to be returned in the variable

AR_ALTITUDE according to the following equation:

AR_ ALTITUDE =

AR_ COUNTER ⋅3 ×108 m

sec

AR_ FREQUENCY ⋅2

A-51

• If an echo is not received, compute AR_ALTITUDE as follows:

•• If all four previous values of AR_STATUS are healthy:

••• In order to smooth the estimate of altitude, fit a third-order polynomial to

the previous four values of AR_ALTITUDE.

••• Use this polynomial to extrapolate a value for AR_ALTITUDE for the

current time step.

•• If any of the previous four values of AR_STATUS is failed:

••• Set the current value of AR_ALTITUDE equal to the previous value of

AR_ALTITUDE.

� SET ALTIMETER RADAR STATUS

• Set the current values for AR_STATUS and K_ALT according to TABLE A.5.4.

Table A.5.4 DETERMINATION OF ALTITUDE STATUS

CURRENT STATE ACTIONS

ECHO RETURNED? All 4 previous
AR_STATUS values

healthy?

AR_STATUS K_ALT

yes d healthy 1

no yes failed 1

no no failed 0

Note: "d" = don't care condition

A-52

ASP -- Accelerometer Sensor Processing (P-Spec 2.1.1

PURPOSE Three accelerometers, located at the vehicle's center of gravity, are slightly

misaligned along the vehicle's

r
x v ,

r
y v , and

r
z v axes. Each accelerometer produces a 16-bit binary

value (A_COUNTER), represented as the magnitude portion of a sign magnitude number which
is a linear function of the acceleration along its axis. The sign of the counter will always be
positive, but the offset given in A_BIAS will be negative or zero. The Acceleration Sensor
Processing (ASP) functional unit provides measures of the vehicle accelerations through the
conversion and digital filtering of this raw accelerometer data.

INPUT

ALPHA_MATRIX ATMOSPHERIC_TEMP

A_ACCELERATION A_BIAS

A_COUNTER A_GAIN_0

A_SCALE A_STATUS

G1 G2

OUTPUT

A_ACCELERATION A_STATUS

PROCESS The processing of the accelerometer data (A_COUNTER) into vehicle accelerations
(A_ACCELERATION) requires the following steps:

� ROTATE VARIABLES

• Rotate A_ACCELERATION and A_STATUS.

� ADJUST GAIN FOR TEMPERATURE

The standard gain (A_GAIN_0) must be adjusted for the effects of temperature prior to the

conversion of the raw accelerometer values. The adjusted gain is a quadratic function of the

ambient temperature (ATMOSPHERIC_TEMP) and the standard gain.

• Adjust the gain for temperature as follows:

)C_TEMPATMOSPHERI (G2 +

C_TEMP)ATMOSPHERI (G1 +)A_GAIN_0(=)A_GAIN(

2⋅

⋅ii

where i ranges from 1 to 3 and represents the three directions x, y, and z, and where

A_GAIN_0 is the standard gain.

A-53

� REMOVE CHARACTERISTIC BIAS

Each accelerometer has a characteristic DC bias (A_BIAS) which must be removed from the

signal prior to conversion. The acceleration is a linear function of its A_COUNTER value

where the gain specifies the slope and the offset (A_BIAS) specifies the intercept.

• Remove the bias as follows:

A_ACCELERATION_M(i) = A_BIAS(i) + A_GAIN(i) * A_COUNTER(i)

 where i ranges from 1 to 3 and represents the three directions x, y, and z.

� CORRECT FOR MISALIGNMENT

Each accelerometer is slightly misaligned from the true vehicle axes. The multiplier matrix

(ALPHA_MATRIX) which is shown below, is based on small angle approximations and

corrects for this misalignment. It is used for transforming the measured acceleration data into

the true vehicle accelerations.

 ALPHA_MATRIX =

1 −α xz α xy

α yz 1 −α yx

−α zy αzx 1

α xy defines the angle of rotation about the vehicle's

r
y v axis between the

r
x v axis and

the misaligned

r
x v axis. The other misalignment angles are defined similarly, based

upon a right-handed coordinate system.

• Compute preliminary current value of A_ACCELERATION as follows:

A_ ACCELERATION = ALPHA_ MATRIX × A_ ACCELERATION_ M

� DETERMINE ACCELERATIONS AND ACCELEROMETER STATUS

The variable A_STATUS is a four-element array in each of the three physical dimensions,

and contains the present and previous three values of status for each accelerometer. The

variable A_ACCELERATION is a five-element array in each of the three dimensions (x, y,

and z). A_ACCELERATION contains the present and previous four values of acceleration.

• The following steps are described for the x axis but should be performed for each axis:

•• If one or more of the previous three values of A_STATUS is unhealthy, leave the

current value of A_ACCELERATION unchanged, set the current value of

A_STATUS to healthy, and do no further processing for this axis.

•• If all three of the previous values of A_STATUS are healthy and all three of the

previous values of A_ACCELERATION are equal to each other, leave the current

A-54

value of A_ACCELERATION unchanged, set the current value of A_STATUS to

healthy, and do no further processing for this axis.

•• If all three of the previous values of A_STATUS are healthy, and it is not true that

all three of the previous values of A_ACCELERATION are equal to each other,

check for extreme values and set A_STATUS and A_ACCELERATION according

to the method described below. The accelerometer processing includes filtering of

the calculated accelerations along each axis (i.e. filtering of ()
tvvv zyx &&&&&& , ,), and

ignoring or eliminating calculated accelerations which are out of range. To effect

this filtering, the means and standard deviations for each component of acceleration

are to be computed using the calculated accelerations from the previous three time

steps. That is, for the current time step t and the measurement of acceleration along

the x axis:

••• Calculate

∑
−

−=

=
1

3

)(

3
ˆ

t

ti

ivx&&µ

which is the current sample mean

••• Calculate

()

3

ˆ

ˆ

1

3

2
)(∑

−

−=

−

=

t

ti

ivx µ

σ

&&

 which is the current sample standard deviation.

••• If σµ ˆA_SCALE)(ˆ ⋅>− txv&&

 set µ̂ to(t)xv&&

 set A_STATUS to unhealthy

where)(txv&& is the acceleration along the x axis for the current time

step. Similar equations hold for eliminating outliers in the measures of

acceleration along the y and z axes.

 otherwise

set A_STATUS to healthy

In summary, if the calculated acceleration for the current time step for any

component differs from the mean by more than A_SCALE times the standard

A-55

deviation, then that component of acceleration should be replaced by its current

mean and A_STATUS should be set to unhealthy.

If the calculated acceleration for any component is within the specified range of

the mean, then the preliminary value of A_ACCELERATION should remain

unchanged and A_STATUS should be set to healthy.

A-56

CP -- Communications Processing (P-Spec 2.4)

PURPOSE Data from the vehicle sensors and guidance processor is relayed back to the
orbiting platform for later analysis. The CP functional unit converts the sensed data into a data
packet appropriate for radio transmission.

INPUT

AE_CMD AE_STATUS

AE_TEMP AR_ALTITUDE

AR_STATUS ATMOSPHERIC_TEMP

A_ACCELERATION A_STATUS

CHUTE_RELEASED COMM_SYNC_PATTERN

CONTOUR_CROSSED C_STATUS

FRAME_COUNTER GP_ALTITUDE

GP_ATTITUDE GP_PHASE

GP_ROTATION GP_VELOCITY

G_ROTATION G_STATUS

K_ALT K_MATRIX

PE_INTEGRAL RE_CMD

RE_STATUS SUBFRAME_COUNTER

TDLR_STATE TDLR_STATUS

TDLR_VELOCITY TDS_STATUS

TD_SENSED TE_INTEGRAL

TS_STATUS VELOCITY_ERROR

YE_INTEGRAL

OUTPUT

C_STATUS PACKET

PROCESS The data packet (PACKET) prepared for transmission is organized to sequentially
contain a message and a checksum. The message consists of the synchronization pattern,
sequence number, sample mask, and data section. The data packet created will automatically be
transmitted during the next call to GCS_SIM_RENDEZVOUS.

� SET COMMUNICATOR STATUS TO HEALTHY

• Set C_STATUS to healthy.

The construction of the packet requires the following steps:

� CONSTRUCT PACKET:

• GET SYNCHRONIZATION PATTERN

A-57

The synchronization pattern is provided in the variable COMM_SYNC_PATTERN. It is

a 16-bit pattern dictated by the design of the receiving communications equipment.

• DETERMINE SEQUENCE NUMBER

The sequence number identifies the packet of data that is being sent. It is a byte value in

the range 0..255. The sequence number will be 0 during the first subframe of frame

number 1. Sequence numbers increase by one every subframe, except that the values

repeat after the 256th packet. The sequence number can be calculated based on the

values of the variables FRAME_COUNTER and SUBFRAME_COUNTER.

• PREPARE SAMPLE MASK

The sample mask is a Boolean vector where "ones" represent variables that have been

sampled since the previous transmission. Any variables listed in Table A.5.5 that may

have changed during the present subframe should be marked in the mask and transmitted,

with one exception. The variable TE_INTEGRAL may be changed by GP in the second

subframe and by AECLP in the third subframe; however, TE_INTEGRAL should be

transmitted by CP only during the third subframe, and not during the second subframe.

In the case of any "history variable", that is, one which contains a time dimension, only

the object (scalar, vector, or array) with a time subscript of zero should be transmitted.

Each bit position in the mask represents a particular variable listed in Table A.5.5. The

leftmost bit of the mask corresponds to AE_CMD, and moving across the mask from left

to right, the next mask bit corresponds to the next variable in Table A.5.5 (in row order).

• PREPARE DATA SECTION

The data section of the packet contains the sixteen bit values for the elements of the

variables in Table A.5.5 that may have new samples available. Once it has been

determined which variables should be transmitted for this particular subframe, those

variables should be packed into the data section. Although the length of the variable

PACKET is fixed, the number of bytes of PACKET which contain actual variables to be

transmitted will vary depending on the values of FRAME_COUNTER and

SUBFRAME_COUNTER. The variables to be transmitted should be concatenated so

that there are no unused bytes between the data to be transmitted. There may however be

unused bytes following the checksum. The data are concatenated in the order given by

the sample mask, starting with the most significant bit (i.e. left most bit). Variables

should be packed to the nearest byte boundary; thus, a single element of PACKET could

contain a logical*1 and the first byte of the variable that follows it. Arrays should be sent

with the first index changing most rapidly. It should be noted that some arrays have

A-58

terms that are constant (e.g. the off-diagonal terms of K_MATRIX and the diagonal

terms of GP_ROTATION) and since these terms can never have "new" values, they

should not be transmitted. The values in Table A.5.5 should be sent in row order, starting

at the top of the table. The first value in alphabetical order goes next to the mask in the

packet.

• CALCULATE CHECKSUM

The checksum is calculated for the message using the standard CRC-16 polynomial as

defined in (ref. A.11). Table A.5.7 illustrates the byte structure of the packet. The

unused part of PACKET should be ignored in the calculation of the checksum. The

checksum should be placed in the two bytes immediately following the message for this

subframe. Refer to Appendix D for a detailed description of the packet and for specific

instructions on the checksum calculation.

Table A.5.5 PACKET VARIABLES

AE_CMD AE_STATUS AE_TEMP

AR_ALTITUDE AR_STATUS ATMOSPHERIC_TEMP

A_ACCELERATION A_STATUS CHUTE_RELEASED

CONTOUR_CROSSED C_STATUS GP_ALTITUDE

GP_ATTITUDE GP_PHASE GP_ROTATION

GP_VELOCITY G_ROTATION G_STATUS

K_ALT K_MATRIX PE_INTEGRAL

RE_CMD RE_STATUS TDLR_STATE

TDLR_STATUS TDLR_VELOCITY TDS_STATUS

TD_SENSED TE_INTEGRAL TS_STATUS

VELOCITY_ERROR YE_INTEGRAL

Note: when read by rows, this table represents the alphabetical listing of variables

that are to appear in the data section of the packet.

Table A.5.6 SAMPLE MASK

INFORMATION SENT A B C ... Z

EXAMPLE MASK 1 1 0 ... 1

A-59

Note: this table gives information only on the order of the packet. The packet

should be packed to a byte-boundary limit into integer*2 elements.

A-60

Table A.5.7 PACKET BYTE STRUCTURE

Subframe 1
Byte

Positions

Subframe 2
Byte

Positions

Subframe 3
Byte

Positions

CONTENTS
(Cells in bold italics with

double-line border constitute the
message) 1

2
1
2

1
2

SYNCHRONIZATION

PATTERN
3 3 3 SEQUENCE NUMBER

4
5
6
7

4
5
6
7

4
5
6
7

SAMPLE MASK

8
.
.
.

129

8
.
.
.

173

8
.
.
.

45

DATA SECTION

130
131

174
175

46
47

CHECKSUM

132
.
.

512

176
.
.

512

48
.
.

512

NOT USED

Note: The variables inserted into PACKET are inserted in the VAX standard byte

order.

A-61

CRCP -- Chute Release Control Processing (P-Spec 2.3.3)

PURPOSE The CRCP functional unit implements the release of the parachute which is attached
prior to the beginning of the terminal descent phase.

INPUT

AE_TEMP CHUTE_RELEASED

OUTPUT

CHUTE_RELEASED

PROCESS If the chute has been released, leave CHUTE_RELEASED unchanged and this
signal will be automatically transmitted to the chute release mechanism during the next call to
GCS_SIM_RENDEZVOUS. If the chute has not been released, the engine temperature will
determine whether or not to release the chute. If the chute has not been released and the engines
are hot (i.e. AE_TEMP is HOT), then release the chute by setting CHUTE_RELEASED to "chute
released."

A-62

GP -- Guidance Processing (P-Spec 2.2)

PURPOSE GP uses the information available from ASP, ARSP, CRCP, GSP, TDLRSP, and
TDSP and the results of its previous computations to control the vehicle's state during terminal
descent.

INPUT

AE_SWITCH AE_TEMP

AR_ALTITUDE A_ACCELERATION

CHUTE_RELEASED CL

CONTOUR_ALTITUDE CONTOUR_CROSSED

CONTOUR_VELOCITY DELTA_T

DROP_HEIGHT DROP_SPEED

ENGINES_ON_ALTITUDE FRAME_COUNTER

GP_ALTITUDE GP_ATTITUDE

GP_PHASE GP_VELOCITY

GRAVITY G_ROTATION

K_ALT K_MATRIX

MAX_NORMAL_VELOCITY RE_SWITCH

TDLR_VELOCITY TDS_STATUS

TD_SENSED

OUTPUT

AE_SWITCH CL

CONTOUR_CROSSED FRAME_ENGINES_IGNITED

GP_ALTITUDE GP_ATTITUDE

GP_PHASE GP_ROTATION

GP_VELOCITY RE_SWITCH

TE_INTEGRAL VELOCITY_ERROR

ARRAYS The variables GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY are five
element arrays in each of their history dimensions and contain enough previous values to provide
the required history for integration in updating the vehicle and guidance states.

PROCESS The Guidance Processor computes the velocity, altitude, and attitude to be used in
controlling the engines.

� ROTATE VARIABLES

• Rotate GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY.

� SET UP THE GP_ROTATION MATRIX

G_ROTATION contains three values: p, q, and r, in that order. These values must be placed

into a 3 x 3 matrix (GP_ROTATION) in the correct positions for later calculations. Note

that GP_ROTATION does not include any time histories; thus it may be convenient to use a

temporary variable during calculation to hold the time histories of GP_ROTATION or to use

A-63

elements directly from G_ROTATION; however, GP_ROTATION does describe the correct

matrix orientation for operations and upon exiting from GP should contain the correct values

for the present time step.

• Place the values from G_ROTATION into GP_ROTATION as shown:

GP_ ROTATION =

0 rv −qv
−r v 0 pv

qv −pv 0

� CALCULATE NEW VALUES OF ATTITUDE, VELOCITY, AND ALTITUDE

The attitude, velocity, and altitude are each calculated by:

1. finding a rate of change from known values, and then
2. integrating this rate of change through one time step by some method of integration

providing the accuracy specified. That is:

∫−− +=
t

t
tt dtXXX

1
1

&

where X& represents the rate of change of attitude, velocity, or altitude.

Table A.5.8 gives the equations for the rates of change for each of the variables

GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE.

• Solve for the current values of GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE

using the equation for tX given above, Table A.5.8, and an appropriate integration

method (see section A.9 Numerical Integration Instructions).

Table A.5.8 DIFFERENTIAL EQUATIONS

d (GP_ ATTITUDE)

dt
= GP_ ROTATION × GP_ ATTITUDE

d (GP_VELOCITY)

dt
= GP_ ROTATION × GP_VELOCITY

+ GP_ ATTITUDE ×

0

0

GRAVITY

 + A_ ACCELERATION + K_ MATRIX × TDLR_VELOCITY − GP_VELOCITY()

d (GP_ ALTITUDE)

dt
= − GP_ ATTITUDE ×

0

0

1

T

× GP_VELOCITY + K_ ALT ⋅ (AR_ ALTITUDE − GP_ ALTITUDE)

� DETERMINE IF ENGINES SHOULD BE ON OR OFF

A-64

Note that RE_SWITCH is initialized to on, while AE_SWITCH is initialized to off, and

FRAME_ENGINES_IGNITED is initialized by INIT_GCS. Use Table A.5.9 to determine

whether to turn axial engines on (set AE_SWITCH to on and set

FRAME_ENGINES_IGNITED) or whether to turn axial and roll engines off (set

AE_SWITCH and RE_SWITCH to off).

TABLE A.5.9 DETERMINATION OF AXIAL AND ROLL ENGINE ON/OFF SWITCHES

CURRENT STATE

ACTIONS

 AE_

SWITCH

GP_

ALTITUDE

VELOCITYNORMALMAX

VELOCITYGPofcomponentx

pressionvelocity

__

)_

1
_(

≤

+ex

?

Have engines

been turned
off in any

prior frame?

TD_

SENSED

FRAME_

ENGINES_

IGNITED

AE_

SWITCH

RE_

SWITCH

off ≤≤≤≤
ENGINES_ON_

ALTITUDE

d no not sensed current
FRAME_

COUNTER

on

on ≤≤≤≤ DROP_

HEIGHT

yes d not sensed off off

on d d d sensed off off

1
velocity_ expression = 2 ⋅GRAVITY ⋅ maximum(GP_ ALTITUDE,0)

Note: A blank box under "ACTIONS" indicates no action is to be taken

 "d" = don't care condition

� DETERMINE VELOCITY ERROR

The velocity-altitude contour consists of a set of points of which one coordinate is the altitude

of the craft and the other coordinate is the optimal x component of velocity at the altitude

given by the first coordinate. The altitude and optimal velocity coordinates are held in the

CONTOUR_ALTITUDE and CONTOUR_VELOCITY arrays respectively. The altitude

coordinates are in the CONTOUR_ALTITUDE array contiguous to each other, in ascending

numerical order, beginning with the first element of the array. Any unused elements of the

array have been filled with zeroes (the value of zero will not be used as an actual value for

altitude). There are at least two valid non-zero altitude values in the table. The two arrays are

related such that for a given value of altitude in CONTOUR_ALTITUDE, the corresponding

value in CONTOUR_VELOCITY is the optimal velocity x component at that altitude. For

any altitude that is not explicitly listed in CONTOUR_ALTITUDE, the value for optimal

velocity can be found by linear interpolation (or extrapolation if the value is outside the range

of the altitude array). The velocity error (VELOCITY_ERROR) is the difference between

A-65

the actual x component of the velocity of the craft (GP_VELOCITY) and the optimal velocity

x component at the vehicle altitude. Figure A.5.1 illustrates the velocity-altitude contour.

• The optimal velocity should be calculated by finding the present altitude in

CONTOUR_ALTITUDE and then locating the corresponding velocity in

CONTOUR_VELOCITY, using interpolation or extrapolation if necessary. Let

optimal_velocity represent the value obtained from the contour arrays, whether extracted,

interpolated, or extrapolated.

• Calculate VELOCITY_ERROR as follows:

 VELOCITY_ERROR = x component of GP_VELOCITY - optimal_velocity

� DETERMINE IF CONTOUR HAS BEEN CROSSED

• If GP_ALTITUDE ≤≤≤≤ ENGINES_ON_ALTITUDE, then check whether the contour has

been crossed as follows:

 •• If CONTOUR_CROSSED = "contour not crossed" and VELOCITY_ERROR ≥≥≥≥ 0, then

set CONTOUR_CROSSED to "contour crossed". Otherwise CONTOUR_CROSSED

should remain unchanged.

Figure A.5.1 shows two possible trajectories, with the point along each where the

contour is first sensed and also an example of VELOCITY_ERROR. Note: the altitude

where the engines are turned on should be the earliest point to check crossing the contour,

even though the trajectory may have crossed the contour at some greater altitude.

A-66

Figure A.5.1 VELOCITY-ALTITUDE CONTOUR

Velocity

Error
Velocity
Error

Contour

Crossed

ALTITUDE

ENGINES_ON_ALTITUDE

X COMPONENT OF VELOCITY

Constant-velocity part of contour

Trajectory 1 Trajectory 2

Contour

� DETERMINE GUIDANCE PHASE

• The guidance phase (GP_PHASE) is determined according to the events in Table A.5.10.

These phases are based upon information that may be provided by processes other than

the guidance processor.

The current phase (GP_PHASE) and the event are to be used where appropriate to reset

GP_PHASE to the next phase. If there is no combination of current phase and event

from the table that is true, then GP_PHASE should not be changed. Note that the two

columns labeled "CURRENT STATE DESCRIPTION" and "NEXT STATE

DESCRIPTION" are for informational purposes only, and are not used in the setting of

GP_PHASE.

A-67

Table A.5.10 DETERMINATION OF GUIDANCE PHASE

CURRENT STATE NEXT STATE

 ACTION
GP_

PHASE
CURRENT STATE

DESCRIPTION
EVENT GP_

PHASE
NEXT STATE
DESCRIPTION

1 Chute attached
Engines off
Touch Down not sensed

Altitude for turning engines on is
sensed

2 Chute attached
Engines on
Touch down not sensed

2 Chute attached
Engines on
Touch down not sensed

Axial Engines become hot and
the chute is released

3 Chute released
Axial Engines Hot
Touch down not sensed

2 Chute attached
Engines on
Touch down not sensed

Touched down is sensed 5 Chute attached
Engines off
Touch down sensed

3 Chute released
Axial Engines Hot
Touch down not sensed

Altitude ≤ DROP_HEIGHT and
TDS_STATUS = healthy and
Touch down not sensed and

_VELOCITYMAX_NORMAL

Y)GP_VELOCITofcomponentx

1xpressionvelocity_e(

≤

+

4 Chute released
Engines off
Touch down not sensed

3 Chute released

Axial Engines Hot

Touch down not sensed

Altitude ≤
DROP_HEIGHT and

TDS_STATUS = failed

5 Chute released

Engines off

Touch down not sensed

3 Chute released
Axial Engines Hot
Touch down not sensed

Touch down is sensed 5 Chute released
Engines off
Touch down sensed

4 Chute released
Engines off
Touch down not sensed

Touch down is sensed 5 Chute released
Engines off
Touch down sensed

4 Chute released
Engines off
Touch down not sensed

TDS_STATUS = failed 5 Chute released
Engines off
Touch down not sensed

1
velocity_ expression = 2 ⋅GRAVITY ⋅ maximum(GP_ ALTITUDE,0)

• PHASE 1: If the altitude provided by the guidance processor is less than or equal to the

ENGINES_ON_ALTITUDE, set GP_PHASE = 2.

• PHASE 2: If the axial engines have become hot and the parachute has been released, set

GP_PHASE = 3. If touch down is sensed, set GP_PHASE = 5.

• PHASE 3: If touch down has not been sensed and DROP_HEIGHT has not been

reached, then control the axial and roll engines to cause the lander to follow a gravity-

turn steering descent. If DROP_HEIGHT is reached and touch down is not sensed and

A-68

2 ⋅ GRAVITY ⋅ maximum(GP_ ALTITUDE,0) + x component of GP_VELOCITY

 ≤ MAX_ NORMAL_ VELOCITY

and TDS_STATUS = healthy, then set GP_PHASE = 4. If DROP_HEIGHT is reached,

and TDS_STATUS = failed, then set GP_PHASE = 5. If touch down is sensed, then set

GP_PHASE = 5.

• PHASE 4: If touch down has not been sensed and TDS_STATUS is healthy, then take no

action. If TDS_STATUS is failed, then set GP_PHASE to 5. If touch down has been

sensed, set GP_PHASE to 5.

� DETERMINE WHICH SET OF CONTROL LAW PARAMETERS TO USE

The "Control Law Parameters" are a subset of the variables in the global data store named

"RUN_PARAMETERS." This subset consists of the following variables: GVEI, GV, GVI,

GR, GW, GWI, GQ, PE_MIN, PE_MAX, TE_MIN, TE_MAX, YE_MIN, and YE_MAX.

Note that each one of these variables is an array of two elements. The elements with a

subscript of one will be referred to as the "first" set of Control Law Parameters, while the

elements with a subscript of two will be referred to as the "second" set of Control Law

Parameters.

The variable CL is used to control which set of Control Law Parameters is used in the control

laws at any given time by the functional unit AECLP. The functional unit GP must determine

the value of CL for use by AECLP. The variable CL has two valid values, namely "first"

which means that the first set of Control Law Parameters should be used by AECLP, and

"second" which means that the second set of Control Law Parameters should be used by

AECLP in the equations for eP , eY , Pe
L
 , Ye

L
, and TE_LIMIT. See the Data Requirements

Dictionary for the actual numeric values for CL which correspond to "first" and "second."

The variable CL is initialized to the value "first" by INIT_GCS, and thus the first set of

parameters will be used by AECLP until CL is changed. The second set of Control Law

Parameters should be used by AECLP at the first point where the lander crosses the constant-

velocity part of the Velocity-Altitude contour. The constant-velocity part of the contour

consists of the four sets of coordinates with the smallest altitudes and for which the

CONTOUR_VELOCITY elements are exactly equal to the value DROP_SPEED. The

GUIDANCE PROCESSOR (GP) must determine when to begin using the second set of

Control Law Parameters, as follows:

A-69

• If the following conditions are true:

 CL = first, and

 optimal_velocity = DROP_SPEED, and

 x component of GP_VELOCITY < DROP_SPEED

Then

 Set CL = second

 Set TE_INTEGRAL = 0.0

A-70

GSP -- Gyroscope Sensor Processing (P-Spec 2.1.4)

PURPOSE Three fiber-optic ring gyroscopes are located on the lander, one for each of the x,
y, and z axes. The Gyroscope Sensor Processing (GSP) functional unit provides a measure of the
vehicle's rotation rates through the conversion and filtering of the raw gyroscope data.

INPUT

ATMOSPHERIC_TEMP G3

G4 G_COUNTER

G_GAIN_0 G_OFFSET

G_ROTATION

OUTPUT

G_ROTATION G_STATUS

PROCESS The output from each of the gyroscopes is a 16-bit quantity (G_COUNTER) divided
into 2 parts: the lower 14 bits represent the vehicle's rate of rotation about that axis and the high-
order bit represents the direction of this rotation. This is a sign-magnitude representation of the
counter value that only uses the lower 14 bits of the magnitude portion of the number. Following
is a map of G_COUNTER:

15 14 13 12 11 ... 0

D X MAGNITUDE

where D = direction, and X = unused. The high bit set to 1 indicates a negative rotation
consistent with a right-handed coordinate system.

� ROTATE VARIABLES

• Rotate G_ROTATION.

� ADJUST GAIN

The standard gain (G_GAIN_0) must be adjusted for the effects of temperature prior to the

conversion of the raw gyroscope values. The adjusted gain is a quadratic function of the

ambient temperature (ATMOSPHERIC_TEMP) and the standard gain.

That is,

G_ GAIN(i) = G_ GAIN_ 0(i) + (G3 ⋅ ATMOSPHERIC_ TEMP)

 + (G4 ⋅ ATMOSPHERIC_ TEMP2)

where i ranges from 1 to 3 and represents the three directions x, y, and z.

A-71

� CONVERT G_COUNTER

The rotation rate is linear with respect to the unprocessed gyroscope values, i.e. the lower 14

bits must be converted. G_GAIN is the multiplier for this conversion and G_OFFSET is the

constant offset. The equation for converting counter to rotation then becomes:

G_ROTATION(i) = G_OFFSET(i) + G_GAIN(i) * (G_COUNTER(i))

where i ranges from 1 to 3 and represents the three directions x, y, and z.

� SET GYROSCOPE STATUS TO HEALTHY.

• Set G_STATUS to healthy.

A-72

RECLP -- Roll Engine Control Law Processing (P-Spec 2.3.2)

PURPOSE RECLP generates the roll engine command which controls the firing pulse and
direction of the roll engines.

INPUT

DELTA_T G_ROTATION

P1 P2

P3 P4

RE_SWITCH THETA

THETA1 THETA2

OUTPUT

RE_CMD RE_STATUS

THETA

PROCESS Roll control of the lander is achieved by generating the roll commands as functions
of the differences between the actual and desirable values for the roll angle and rate. These
differences are limited, and the control commands are proportional to them. Note that once the
roll command (RE_CMD) has been set with the correct value, it will automatically be sent to the
engines during the next call to GCS_SIM_RENDEZVOUS. The steps to be performed are as
follows:

� DETERMINE IF ENGINES ARE ON

• If RE_SWITCH is off, then set RE_CMD to 1, and proceed directly to the step "SET

ROLL ENGINE STATUS TO HEALTHY."

� DETERMINE PULSE INTENSITY AND DIRECTION

• The pulse intensity and direction are derived from the graph shown in Figure A.5.2 using

pv()t . For each region of the graph, the intensity is given, followed by the direction

inside parentheses. Note that the x axis represents the integral of the roll rate. This is

really the present angle of roll. This integral should be calculated by Euler's method (see

section A.9). As an example, THETA = THETA + (integral of roll rate for this frame).

The variable THETA will be initialized by INIT_GCS. Note that when the vehicle status

is located on a boundary between two or more roll command regions, the lowest intensity

signal should be used to avoid over-commanding the engines. One should refer to the

Data Requirements Dictionary under RE_CMD for the actual values for intensity and

direction.

A-73

� DETERMINE ROLL ENGINE COMMAND

• The pulse intensity and direction are packed into the lowest three lower-order bits of the

actual roll engine command (RE_CMD) as shown:

15 14 13 K 3 2 1 0

X X X K X I I D

where X = unused, I = intensity, and D = direction. The bits marked "X = unused" in

RE_CMD must be left at 0.

� SET ROLL ENGINE STATUS TO HEALTHY

• Set RE_STATUS to healthy.

Figure A.5.2 GRAPH FOR DERIVING ROLL ENGINE

COMMANDS

P
4

P
3

P
2

P
1

Intermediate (CW)

Minimum
(CW)

Minimum

(CCW)

Intermediate (CCW)

-P
1

-P
2

-P
3

-P
4

θ1 θ
2

−θ2 −θ1

p

Maximum (CW)

Maximum (CW)

Maximum (CCW) Off (CW)

Maximum (CW)

THETA

Off (CW)

Maximum (CCW)

Maximum (CCW)

Note: " Off", "Minimum", "Intermediate", and "Maximum" are
 Intensities.

 "CW" and "CCW" are Directions, as viewed from
 below the craft..
 "CW" = Clockwise; "CCW" = Counterclockwise

Off (CW)

Off (CW)

- +

CW CCW

Note: P1 < P2 < P3 < P4 and θ1 < θ2

A-74

TDLRSP -- Touch Down Landing Radar Sensor Processing (P-Spec 2.1.3)

PURPOSE A single touch down landing radar (TDLR) gauges the velocity of the vehicle during
terminal descent. This radar is a doppler radar with four radar beams, each of which emanates
from the vehicle's center of gravity with a slight offset from the vehicle's

r
x v axis. The radar

beams form the edges of the pyramid as shown in Figure A.5.3.

The Touch Down Landing Radar Sensor Processing (TDLRSP) functional unit

converts measurements of the frequency shift of each beams reflection into vehicle

velocities; however, the receivers associated with each beam may not find a usable

reflection. If no usable reflection is found, the receiver returns a status of beam in search

mode (unlocked).

INPUT

DELTA_T FRAME_BEAM_UNLOCKED

FRAME_COUNTER K_MATRIX

TDLR_ANGLES TDLR_COUNTER

TDLR_GAIN TDLR_LOCK_TIME

TDLR_OFFSET TDLR_STATE

TDLR_VELOCITY

OUTPUT

FRAME_BEAM_UNLOCKED K_MATRIX

TDLR_STATE TDLR_STATUS

TDLR_VELOCITY

PROCESS The value returned by each beam (TDLR_COUNTER) is proportional

to the beam frequency shift down that beam, which is, in turn, proportional to the velocity

down that beam. The processing of the TDLR_COUNTER data into the component

velocities along the vehicle's
r
x ,

r
y , and

r
z axes requires the following steps:

� ROTATE VARIABLES

• Rotate TDLR_VELOCITY and K_MATRIX.

A-75

Figure A.5.3 DOPPLER RADAR BEAM LOCATIONS

Ζ

B
2

B
3

x

B
1

B
4

y

→

→

→

� DETERMINE RADAR BEAM STATES

The processing of the four radar beams depends on the current state of the radar, i.e. whether

or not each of the four beams is searching or in lock, and also upon the previous states of the

beams. Note that at the beginning of each trajectory, FRAME_BEAM_UNLOCKED will be

set to zero, thus meaning that the beam has never been unlocked. If the receiver for a beam

does not sense an echo (i.e. the beam is in search mode), the corresponding

TDLR_COUNTER value will be zero. Note that a beam which becomes unlocked will be

ignored for TDLR_LOCK_TIME seconds.

• Use Table A.5.11 to determine the state (TDLR_STATE and

FRAME_BEAM_UNLOCKED) for each of the four beams.

A-76

Table A.5.11 DETERMINATION OF RADAR BEAM STATES

CURRENT STATE ACTIONS
TDLR_
STATE

TDLR_
COUNTER

?__

)___(

_

TIMELOCKTDLR

UNLOCKEDBEAMFRAMECOUNTERFRAME

TDELTA

≥

−⋅

TDLR_
STATE

FRAME_BEAM_
UNLOCKED

locked 0 d unlocked
current

FRAME_COUNTER

unlocked ≠ 0 yes locked

unlocked 0 yes
current

FRAME_COUNTER

Note: A blank box under "ACTIONS" indicates no action is to be taken
 "d" = don't care condition

� DETERMINE BEAM VELOCITIES

A beam velocity is a linear function of its TDLR_COUNTER value where the gain

(TDLR_GAIN) specifies the slope and the offset (TDLR_OFFSET) specifies the intercept.

• Calculate the beam velocities as follows:

B(i) = TDLR_OFFSET + TDLR_GAIN * (TDLR_COUNTER(i))

where i ranges from 1 to 4 and represents the four radar beams.

� PROCESS THE BEAM VELOCITIES

• Use Table A.5.12 to calculate values for xB̂ , ˆ B y , and zB̂ , which are the processed beam

velocities. Note that in Table A.5.12, Bi is shorthand for B(i), where i ranges from 1 to

4. Note also that the knowledge of which beams are in lock is used to determine which

line of the table to use in order to calculate xB̂ , ˆ B y , and zB̂ .

� CONVERT TO BODY VELOCITIES

• In order to convert the processed beam velocities to body velocities

(TDLR_VELOCITY), use the following equations, which make use of the angles α, β

and γ (TDLR_ANGLES) which are the offsets of the beams from the body axes:

αcos

ˆ
)1(_ XBVELOCITYTDLR =

βcos

ˆ
)2(_

yB
VELOCITYTDLR =

γcos

ˆ
)3(_ zBVELOCITYTDLR =

A-77

� SET VALUES IN K_MATRIX

When calculating the vehicle velocity, the Guidance Processor must know which components

of the body velocities are usable. A value of one in the diagonal element of the K_MATRIX

indicates that the corresponding velocity should be used, while a value of zero indicates that it

should not.

• Use Table A.5.12 to set the values for K
x
, K

y
, and K

z
 in K_MATRIX, (again on the

basis of which beams are in lock), as follows:

K_ MATRIX =

Kx 0 0

0 K y 0

0 0 Kz

The off-diagonal elements of K_MATRIX should not be updated.

� SET TDLR_STATUS

• Set all elements of TDLR_STATUS to healthy.

Table A.5.12 PROCESSING OF DOPPLER RADAR BEAMS IN LOCK

CURRENT STATE A C T I O N S

BEAMS
IN LOCK

ˆ B X Kx

ˆ B y Ky

ˆ B z Kz

none 0 0 0 0 0 0

B1 0 0 0 0 0 0

B2 0 0 0 0 0 0

B3 0 0 0 0 0 0

B4 0 0 0 0 0 0

B1, B2 0 0 B1 − B2() 2 1 0 0

B1, B3 B1 + B3() 2 1 0 0 0 0

B1, B4 0 0 0 0 B1 − B4() 2 1

B2, B3 0 0 0 0 B2 − B3() 2 1

B2, B4 B2 + B4() 2 1 0 0 0 0

B3, B4 0 0 B4 − B3() 2 1 0 0

B1, B2, B3 B1 + B3() 2 1 B1 − B2() 2 1 B2 − B3() 2 1

B1, B2, B4 B2 + B4() 2 1 B1 − B2() 2 1 B1 − B4() 2 1

B1, B3, B4 B1 + B3() 2 1 B4 − B3() 2 1 B1 − B4() 2 1

B2, B3, B4 B2 + B4() 2 1 B4 − B3() 2 1 B2 − B3() 2 1

B1, B2, B3, B4 B1 + B2 + B3 + B4() 4 1 B1 − B2 − B3 + B4() 4 1 B1 + B2 − B3 − B4() 4 1

A-78

TDSP -- Touch Down Sensor Processing (P-Spec 2.1.6)

PURPOSE The touch down sensor is attached to the end of a rod which is attached to the
bottom of the vehicle. Its purpose is to trigger engine shutdown when the vehicle is at the correct
distance from the surface. This shutdown is necessary to:

• avoid the stirring up of dust and debris and

• avoid scorching immediate area of the experiment site.

INPUT

TDS_STATUS TD_COUNTER

OUTPUT

TDS_STATUS TD_SENSED

PROCESS The touch down sensor is a simple switch at the end of a pole on the underside of the lander.

If the sensor is functioning properly, then TD_COUNTER will contain one of only two 16-bit values,

namely sixteen "ones", which means that touch down has been sensed, or sixteen "zeroes", which means

that touch down has not been sensed. If the sensor has failed due to electrical noise, TD_COUNTER will

contain some combination of "ones" and "zeroes" other than all "ones" or all "zeroes".

� DETERMINE STATUS OF TOUCH DOWN SENSOR AND WHETHER TOUCH

DOWN HAS BEEN SENSED:

• Use Table A.5.13 to determine whether the touch down sensor is functioning properly

(set TDS_STATUS), and whether touch down has been sensed (set TD_SENSED). Note

that if the sensor fails, the guidance processor will decide when the vehicle has touched

down.

Table A.5.13 DETERMINATION OF TOUCH DOWN SENSOR AND STATUS

CURRENT STATE ACTIONS

TDS_STATUS TD_COUNTER TD_SENSED TDS_STATUS

healthy all zeroes not sensed

healthy all ones sensed

healthy mixture of ones &
zeroes

not sensed failed

Note: A blank block under "ACTIONS" indicates no action is to be taken

A-79

TSP -- Temperature Sensor Processing (P-Spec 2.1.5)

PURPOSE A temperature gauge on the vehicle is used to adjust the response of the
accelerometers and gyroscopes. The gauge contains two temperature sensing devices, namely a
solid-state sensor and a matched pair of thermocouples. The Temperature Sensor Processing
(TSP) functional unit determines the ambient temperature, using either the solid-state sensor or
the thermocouple pair in a manner maximizing the accuracy of the measurement.

INPUT

M1 M2

M3 M4

SS_TEMP T1

T2 T3

T4 THERMO_TEMP

OUTPUT

ATMOSPHERIC_TEMP TS_STATUS

PROCESS The temperature values from the solid-state sensor are highly quantized. The
processing of raw temperature data from the solid-state sensor and thermocouple pair, SS_TEMP
and THERMO_TEMP, is based on the solid-state sensor being less accurate than the
thermocouple pair, but having a greater usable operating range.

The ambient temperature (ATMOSPHERIC_TEMP) is to be calculated using either the solid state

sensor value (SS_TEMP) or the thermocouple sensor value (THERMO_TEMP). Since the thermocouple

sensor is more accurate, it should be used whenever possible; the solid state sensor should be used only if

the temperature does not lie within the usable range of the thermocouple pair.

The response of the solid-state temperature sensor is linear with respect to the

ambient temperature and is computed using the two calibration points (M1, T1) and (M2,

T2) which characterize the line.

The response of the thermocouple pair is calibrated differently depending on the

region (linear or parabolic) where the measurement lies (see Figure A.5.4):

Thermocouple linear region - The linear region is bounded by the calibration points used by the

thermocouple sensor (i.e., [M3, T3] and [M4, T4] inclusive). Temperatures measured within

this region are calibrated accordingly.

A-80

Figure A.5.4 CALIBRATION OF THERMOCOUPLE PAIR

 Temperature

T
4

T
3

M
3

M
4

L

0 .15L 0 .15L

Upper Parabolic Region

Lower Parabolic Region

Measurement

Linear Region

 Note: M3 < M4 and T3 < T4

A-81

Thermocouple parabolic regions - The upper and lower parabolic regions extend plus or

minus 15 percent of the difference between the measured calibration points, M4 and M3,

respectively. These parabolic regions each intersect the line at the calibration points.

The rate of change in temperature, with respect to the thermocouple measurements, is

continuous at these intersections. The upper (and lower) parabolas are defined so that the

temperature goes up (or down) as the square of the measurement value

(THERMO_TEMP). The parabolas are offset along both the temperature and

measurement axes. By using the values of T3, T4, M3, and M4, and the fact that the

function is continuous at the endpoints, the offsets for the parabolas may be determined,

and the equations for the parabolas may be generated. Note that the line in the linear

region in Figure A.5.4 is tangent to both parabolas.

The processing of the values SS_TEMP and THERMO_TEMP into an accurate

measure of ambient temperature (ATMOSPHERIC_TEMP) requires several steps, as

follows:

� CALCULATE THE SOLID STATE TEMPERATURE

• Use the value of SS_TEMP and the equation appropriate to the solid-state linear region to

compute the temperature.

� DETERMINE WHETHER TO USE SOLID STATE OR THERMOCOUPLE

TEMPERATURE

• If the temperature derived from SS_TEMP in the previous step does not fall within the

accurate temperature response zone of the thermocouple pair (the linear as well as

parabolic regions), then set ATMOSPHERIC_TEMP to the temperature derived from

SS_TEMP and proceed directly to the step labeled "SET STATUS TO HEALTHY";

otherwise, proceed to the step "CALCULATE THE THERMOCOUPLE

TEMPERATURE".

� CALCULATE THE THERMOCOUPLE TEMPERATURE

• Use the value of THERMO_TEMP to determine whether the temperature lies in the

thermocouple linear or the upper parabolic or the lower parabolic region.

• Use the value of THERMO_TEMP and the equation appropriate to the particular

thermocouple region (as determined above) to calculate ATMOSPHERIC_TEMP.

� SET STATUS TO HEALTHY

• Set the values of both elements of TS_STATUS to healthy.

A-82

A.6 DATA REQUIREMENTS DICTIONARY

PART I. DATA ELEMENT DESCRIPTIONS

The following template has been constructed for defining the data elements in the

four required global data stores and the optional variables shown in Table A.6.5:

NAME:
DESCRIPTION:
USED IN:
UNITS:
RANGE:
DATA TYPE:
ATTRIBUTE:
DATA STORE LOCATION:
ACCURACY:

NAME This field gives the name of the variable used in the specification. The variable name used during

coding must be the same as specified.

DESCRIPTION This field gives a brief description of the variable.

USED IN This field provides a reference to the functional units using this variable.

UNITS This field indicates the unit of measure for the data contained in the variable being defined.

RANGE This field specifies the acceptable range of data values for the variable.

DATA TYPE The data type field specifies the data type to be used when declaring the variable during

coding.

ATTRIBUTE This field indicates whether or not the variable contains data, control information, or a data

condition.

DATA STORE LOCATION This field references the common region where the variable must be stored.

ACCURACY This field dictates the degree of accuracy required for output comparisons to be made

between implementations. In the data dictionary, accuracy is listed as N/A where accuracy is not

applicable, or TBD where accuracy is (T)o (B)e (D)etermined later. A formal modification will be released

when the values of the accuracy requirements have been approved.

A-83

NAME: A_ACCELERATION
DESCRIPTION: vehicle accelerations
USED IN: AECLP, ASP, CP, GP

UNITS:
meters

sec2

RANGE: [-20, 5]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: A_BIAS
DESCRIPTION: characteristic bias in the
accelerometer measurements
USED IN: ASP

UNITS:
meters

sec2

RANGE: [-30, 0]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A_COUNTER

DESCRIPTION: accelerations along the
r
x ,

r
y , and

r
z axes
USED IN: ASP
UNITS: none

RANGE: [0, 215 -1]
DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: A_GAIN_0
DESCRIPTION: standard gain in the accelerations
USED IN: ASP

UNITS: 2sec

meters

RANGE: [0, 1]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A_SCALE
DESCRIPTION: multiplicative constant used to
determine limit on deviation accelerometer values.
USED IN: ASP
UNITS: none
RANGE: [0, 3]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A_STATUS
DESCRIPTION: Flag indicating whether or not the
accelerometers are working properly.
USED IN: ASP, CP
UNITS: none
RANGE: [0 : healthy, 1: unhealthy]
DATA TYPE: array (1..3, 0..3) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: AECLP_DONE
DESCRIPTION: Flag indicating completion of
AECLP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task AECLP
incomplete, TRUE: running of task AECLP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: AE_CMD
DESCRIPTION: Valve settings for the axial engines.
USED IN: AECLP, CP
UNITS: none
RANGE: [0, 127]
DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: AE_STATUS
DESCRIPTION: Status of axial engines.
USED IN: AECLP, CP
UNITS: none
RANGE: [0: Healthy, 1: Failed.]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: AE_SWITCH
DESCRIPTION: Flag indicating whether or not axial
engines are turned on.
USED IN: AECLP, GP
UNITS: none
RANGE: [0: axial engines are off, 1: axial engines are
on.]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

A-84

NAME: AE_TEMP
DESCRIPTION: Temperature of axial engines when
they are turned on.
USED IN: AECLP, CP, CRCP, GP
UNITS: none
RANGE: [0: Cold, 1: Warming-Up, 2: Hot]
DATA TYPE: Integer*2
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: ALPHA_MATRIX
DESCRIPTION: Matrix of misalignment angles
USED IN: ASP
UNITS: none
RANGE: [-π , π]
DATA TYPE: array (1..3, 1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: AR_ALTITUDE
DESCRIPTION: altimeter radar height above terrain
USED IN: ARSP, CP, GP
UNITS: meters
RANGE: [0, 2000]
DATA TYPE: array (0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: AR_COUNTER
DESCRIPTION: counter containing elapsed time
since transmission of radar pulse
USED IN: ARSP
UNITS: Cycles

RANGE: [-1, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: AR_FREQUENCY
DESCRIPTION: increment frequency of
AR_COUNTER
USED IN: ARSP

UNITS:
cycles

sec

RANGE: [1, 2.45x109]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: AR_STATUS
DESCRIPTION: status of the altimeter radars
USED IN: ARSP, CP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: array (0..4) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: ARSP_DONE
DESCRIPTION: Flag indicating completion of ARSP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task ARSP incomplete,
TRUE: running of task ARSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: ASP_DONE
DESCRIPTION: Flag indicating completion of ASP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task ASP incomplete,
TRUE: running of task ASP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: ATMOSPHERIC_TEMP
DESCRIPTION: atmospheric temperature
USED IN: ASP, CP, GSP, TSP
UNITS: degrees C
RANGE: [-200, 25]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: C_STATUS
DESCRIPTION: Flag indicating whether or not the
communications processor is working properly.
USED IN: CP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

A-85

NAME: CHUTE_RELEASED
DESCRIPTION: signal indicating parachute has been
released
USED IN: AECLP, CP, CRCP, GP
UNITS: none
RANGE: [0: Chute Attached, 1: Chute Released]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: CL
DESCRIPTION: Index which specifies which set of
Control Law Parameters to use
USED IN: AECLP, GP
UNITS: none
RANGE: [1: first, 2: second]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: CLP_DONE
DESCRIPTION: Control signal which indicates
whether or not Control Law Processing function has
completed.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of Control Law
Processing function incomplete, TRUE: running of
Control Law Processing function complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: COMM_SYNC_PATTERN
DESCRIPTION: sixteen bit synchronization pattern
USED IN: CP
UNITS: none
RANGE: [1101100110110010] (binary)
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CONTOUR_ALTITUDE
DESCRIPTION: Altitude in velocity-altitude contour.
USED IN: GP
UNITS: kilometers
RANGE: [-.01, 2]
DATA TYPE: array (1..100) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CONTOUR_CROSSED
DESCRIPTION: Indicates if the velocity-altitude
contour has been sensed.
USED IN: AECLP, CP, GP
UNITS: none
RANGE: [0: contour not crossed, 1: contour crossed]

DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: CONTOUR_VELOCITY
DESCRIPTION: Velocity in velocity-altitude
contour.
USED IN: GP

UNITS:
kilometers

sec

RANGE: [0, 0.5]
DATA TYPE: array (1..100) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CP_DONE
DESCRIPTION: Flag indicating completion of CP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task CP incomplete,
TRUE: running of task CP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: CRCP_DONE
DESCRIPTION: Flag indicating completion of CRCP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task CRCP incomplete,
TRUE: running of task CRCP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: DELTA_T
DESCRIPTION: Time step duration.
USED IN: AECLP, GP, RECLP, TDLRSP
UNITS: seconds
RANGE: [0.005, 0.20]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: DROP_HEIGHT
DESCRIPTION: Height from which vehicle should
free-fall to surface
USED IN: GP
UNITS: meters
RANGE: [0, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-86

NAME: DROP_SPEED
DESCRIPTION: Optimal speed during constant
velocity descent.
USED IN: GP

UNITS:
meters

sec

RANGE: [0, 4.0]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: ENGINES_ON_ALTITUDE
DESCRIPTION: Altitude at which the axial engines
are turned on.
USED IN: AECLP, GP
UNITS: meters
RANGE: [0, 2000]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: FRAME_BEAM_UNLOCKED
DESCRIPTION: Variable containing the number of
the frame during which the radar beam unlocked
USED I N: TDLRSP
UNITS: none

RANGE: [0, 231-1]
DATA TYPE: array (1..4) of Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none

RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: FRAME_ENGINES_IGNITED
DESCRIPTION: Variable containing the number of
the frame during which the engines were ignited
USED IN: AECLP, GP
UNITS: none

RANGE: [0, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: FULL_UP_TIME
DESCRIPTION: Time for axial engines to reach
optimum operational condition
USED IN: AECLP
UNITS: seconds

RANGE: [0, 60]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G1
DESCRIPTION: coefficient used to adjust A_GAIN
USED IN: ASP

UNITS:
Cree

meters

deg

sec2

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G2
DESCRIPTION: coefficient used to adjust A_GAIN
USED IN: ASP

UNITS: 2

2

deg

sec

Cree

meters

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G3
DESCRIPTION: coefficient used to adjust G_GAIN
USED IN: GSP

UNITS:
Cree

radians

deg

sec

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-87

NAME: G4
DESCRIPTION: coefficient used to adjust G_GAIN
USED IN: GSP

UNITS:

radians

sec
deg ree C 2

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G_COUNTER
DESCRIPTION: gyroscope measurement of vehicle
rotation rates
USED IN : GSP
UNITS: none

RANGE: [-(214-1), 214-1]
DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: G_GAIN_0
DESCRIPTION: standard gain in vehicle rotation
rates as measured by the gyroscopes
USED IN: GSP

UNITS:
radians

sec

RANGE: [-1, 1]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G_OFFSET
DESCRIPTION: standard offset of the rotation raw
values
USED IN: GSP

UNITS:
radians

sec

RANGE: [-0.5, 0.5]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G_ROTATION
DESCRIPTION: vehicle rotation rates
USED IN: CP, GSP, GP, RECLP

UNITS:
radians

sec

RANGE: [-1.0, 1.0]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: G_STATUS
DESCRIPTION: status of the gyroscopes
USED IN: CP, GSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: GA
DESCRIPTION: gain
USED IN: AECLP

UNITS:
sec

meter

RANGE: [0, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GAX
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [0, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GP1
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GP2
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-88

NAME: GP_ALTITUDE
DESCRIPTION: altitude as seen by guidance
processor
USED IN: AECLP, CP, GP
UNITS: meters
RANGE: [0, 2000]
DATA TYPE: array (0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_ATTITUDE
DESCRIPTION: direction cosine matrix
USED IN: AECLP, CP, GP
UNITS: none
RANGE: [-1, 1]
DATA TYPE: array (1..3, 1..3, 0..4) real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_DONE
DESCRIPTION: Flag indicating completion of GP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task GP incomplete,
TRUE: running of task GP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: GP_PHASE
DESCRIPTION: phase of operation as seen by
guidance processor
USED IN: CP, GP
UNITS: none
RANGE: [1, 5]
DATA TYPE: integer*4
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_ROTATION
DESCRIPTION: rotation rates as determined by the
guidance processing functional unit
USED IN: AECLP, CP, GP

UNITS:
radians

sec

RANGE: [-1.0, 1.0]
DATA TYPE: array (1..3, 1..3) real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_VELOCITY
DESCRIPTION: Velocity as corrected by the
guidance algorithm.
USED IN: AECLP, CP, GP

UNITS:
meters

sec

RANGE: [-100, 100]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GPY
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GQ
DESCRIPTION: gain
USED IN: AECLP
UNITS: seconds
RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GR
DESCRIPTION: gain
USED IN: AECLP
UNITS: seconds
RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GRAVITY
DESCRIPTION: gravity of planet
USED IN: AECLP, GP

UNITS:
meters

sec
2

RANGE: [0, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-89

NAME: GSP_DONE
DESCRIPTION: Flag indicating completion of GSP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task GSP incomplete,
TRUE: running of task GSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: GV
DESCRIPTION: gain
USED IN: AECLP

UNITS:
sec

meter

RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVE
DESCRIPTION: gain
USED IN: AECLP
UNITS: /second
RANGE: [0, 500]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVEI
DESCRIPTION: gain
USED IN: AECLP

UNITS: /second2
RANGE: [-5, 40]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVI
DESCRIPTION: gain
USED IN: AECLP
UNITS: /meter
RANGE: [-5, 5]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GW
DESCRIPTION: gain
USED IN: AECLP

UNITS:
sec

meter

RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GWI
DESCRIPTION: gain
USED IN: AECLP
UNITS: /meter
RANGE: [-5, 5]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: INIT_DONE
DESCRIPTION: Flag indicating completion of GCS
initialization.
USED IN: 0. GCS
UNITS: none
RANGE: [FALSE: initialization incomplete, TRUE:
initialization complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: INTERNAL_CMD
DESCRIPTION: Real vector containing the command
to be sent to the axial engines
USED IN: AECLP
UNITS: none
RANGE: [-0.7, 1.7]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: K_ALT
DESCRIPTION: Determines use of altimeter radar by
guidance processor
USED IN: ARSP, CP, GP
UNITS: none
RANGE: [0, 1]
DATA TYPE: array (0..4) of Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

A-90

NAME: K_MATRIX
DESCRIPTION: Determines use of doppler radar by
guidance processor.
USED IN: CP, GP, TDLRSP
UNITS: none
RANGE: [0, 1]
DATA TYPE: array (1..3, 1..3, 0..4) Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: M1
DESCRIPTION: lower measured temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M2
DESCRIPTION: upper measured temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M3
DESCRIPTION: lower measured temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M4
DESCRIPTION: upper measured temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: MAX_NORMAL_VELOCITY
DESCRIPTION: Maximum vertical
velocity for safe landing
USED IN: GP

UNITS:
meters

sec

RANGE: [0, 3.35]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: OMEGA
DESCRIPTION: gain of angular velocity
USED IN: AECLP
UNITS: /second
RANGE: [-50, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P1
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P2
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P3
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-91

NAME: P4
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: PACKET
DESCRIPTION: Packet of telemetry data
USED IN: CP
UNITS: N/A
RANGE: N/A
DATA TYPE: array (1..256) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: PE_INTEGRAL
DESCRIPTION: Integral portion of Pitch error
equation
USED IN: AECLP, CP
UNITS: meters
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: PE_MAX
DESCRIPTION: Maximum pitch error tolerable
USED IN: AECLP
UNITS: none
RANGE: [0, 1]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: PE_MIN
DESCRIPTION: Minimum pitch error tolerable.
USED IN: AECLP
UNITS: none
RANGE: [-1, 0]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: RE_CMD
DESCRIPTION: roll engine command
USED IN: CP, RECLP
UNITS: none
RANGE:
 [1: off,
 2: minimum, counterclockwise,
 3: minimum, clockwise,
 4; intermediate, counterclockwise,
 5: intermediate, clockwise,
 6: maximum, counterclockwise,
 7: maximum, clockwise]
note: the values above for Range have been derived
from range of intensity and direction as follows:
 Intensity [00:off, 01:minimum, 10:intermediate,
11:maximum](binary)
 Direction [0:counterclockwise (positive),
1:clockwise (negative)] (binary)
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: RE_STATUS
DESCRIPTION: status of the roll engines
USED IN: CP, RECLP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: RE_SWITCH
DESCRIPTION: Flag indicating whether or not the
roll engines are turned on.
USED IN: GP, RECLP
UNITS: none
RANGE: [0: roll engines are off, 1: roll engines are
on.]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: RECLP_DONE
DESCRIPTION: Flag indicating completion of
RECLP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task RECLP
incomplete, TRUE: running of task RECLP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

A-92

NAME: RENDEZVOUS
DESCRIPTION: Control signal which indicates
whether or not GCS_SIM_RENDEZVOUS is to be
activated.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: GCS_SIM_RENDEZVOUS is not
to be activated, TRUE: GCS_SIM_RENDEZVOUS is
to be activated]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: RUN_DONE
DESCRIPTION: Flag indicating completion of GCS.
USED IN: 0. GCS
UNITS: none
RANGE: [FALSE: running of GCS incomplete,
TRUE: running of GCS complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: SP_DONE
DESCRIPTION: Control signal which indicates
whether or not Sensor Processing function has been
completed.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of Sensor Processing
function incomplete, TRUE: running of Sensor
Processing function complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: SS_TEMP
DESCRIPTION: Solid state temperature data
USED IN: TSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: SUBFRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present subframe.
USED IN: CP
UNITS: none
RANGE: [1, 3]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: T1
DESCRIPTION: lower ambient temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-250, 250]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T2
DESCRIPTION: upper ambient temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-250, 250]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T3
DESCRIPTION: lower ambient temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-50, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T4
DESCRIPTION: upper ambient temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-50, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-93

NAME: TD_COUNTER
DESCRIPTION: value returned by Touch Down
Sensor
USED I N: TDSP
UNITS: none

RANGE: [-215 , 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: TD_SENSED
DESCRIPTION: Flag indicating whether or not touch
down has been sensed.
USED IN: CP, GP, TDSP
UNITS: none
RANGE: [0: touch down not sensed, 1: touch down
sensed]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: N/A

NAME: TDLR_ANGLES
DESCRIPTION: vector of doppler radar beam offset

angles (i.e., α , β, γ)
USED IN: TDLRSP
UNITS: radians

RANGE: [0,
π
2

)

DATA TYPE: array (1..3) real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_COUNTER
DESCRIPTION: value returned by Doppler radar
USED IN: TDLRSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: array (1..4) Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: TDLR_GAIN
DESCRIPTION: gain in doppler radar beam
USED IN: TDLRSP

UNITS:
sec

meters

RANGE: [-1, 1]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_LOCK_TIME
DESCRIPTION: locking time of doppler radar beam
USED IN: TDLRSP
UNITS: seconds
RANGE: [0, 60]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_OFFSET
DESCRIPTION: offset in doppler radar beam
USED IN: TDLRSP

UNITS:
meters

sec

RANGE: [-100, 0]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_STATE
DESCRIPTION: state of the touch down landing
radar beams.
USED IN: CP, TDLRSP
UNITS: none
RANGE: [0: Beam unlocked, 1: Beam locked]
DATA TYPE: array (1..4) logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TDLR_STATUS
DESCRIPTION: status of the doppler radar
USED IN: CP, TDLRSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: array (1..4) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TDLR_VELOCITY
DESCRIPTION: Velocity as computed by the touch
down landing radar.
USED IN: CP, GP, TDLRSP

UNITS:
meters

sec

RANGE: [-100, 100]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

A-94

NAME: TDLRSP_DONE
DESCRIPTION: Flag indicating completion of
TDLRSP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task TDLRSP
incomplete, TRUE: running of task TDLRSP
complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: TDSP_DONE
DESCRIPTION: Flag indicating completion of TDSP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task TDSP incomplete,
TRUE: running of task TDSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: TDS_STATUS
DESCRIPTION: status of the touch down sensor
USED IN: CP, GP, TDSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TE_DROP
DESCRIPTION: The axial thrust error when axial
engines are warm and the velocity altitude contour has
not been intersected.
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TE_INIT
DESCRIPTION: The axial thrust error when the axial
engines are cold.
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TE_INTEGRAL
DESCRIPTION: Integral portion of Thrust error
equation
USED IN: AECLP, CP, GP
UNITS: meters
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: TE_LIMIT
DESCRIPTION: Limiting thrust error
USED IN: AECLP
UNITS: none
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: TE_MAX
DESCRIPTION: Maximum thrust error tolerable
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TE_MIN
DESCRIPTION: Minimum thrust error tolerable.
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: THERMO_TEMP
DESCRIPTION: thermocouple pair temperature
USED IN: TSP
UNITS: none

RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

A-95

NAME: THETA
DESCRIPTION: roll angle
USED IN: RECLP
UNITS: radians
RANGE: [-π , π]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: THETA1
DESCRIPTION: pulse angle boundary
USED IN: RECLP
UNITS: radians
RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: THETA2
DESCRIPTION: pulse angle boundary
USED IN: RECLP
UNITS: radians
RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TS_STATUS
DESCRIPTION: status of the temperature sensors in
solid state, then thermocouple pair order
USED IN: CP, TSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: array (1..2) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TSP_DONE
DESCRIPTION: Flag indicating completion of TSP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task TSP incomplete,
TRUE: running of task TSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: VELOCITY_ERROR
DESCRIPTION: Distance from velocity-altitude
contour. (Difference in velocities from actual to
desired on contour.)
USED IN: AECLP, CP, GP

UNITS:
meters

sec

RANGE: [-300, 20]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: YE_INTEGRAL
DESCRIPTION: Integral portion of Yaw error
equation
USED IN: AECLP, CP
UNITS: meters
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: YE_MAX
DESCRIPTION: Maximum yaw error tolerable
USED IN: AECLP
UNITS: none
RANGE: [-1, 1]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: YE_MIN
DESCRIPTION: Minimum yaw error tolerable.
USED IN: AECLP
UNITS: none
RANGE: [-1, 1]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

A-96

PART II. CONTENTS OF DATA STORES

Table A.6.1 DATA STORE: GUIDANCE_STATE

VARIABLE NAME USED BY:

A_STATUS ASP, CP

AE_STATUS AECLP, CP

AE_SWITCH AECLP, GP

AE_TEMP AECLP, CP, CRCP, GP

AR_STATUS ARSP, CP

C_STATUS CP

CL AECLP, GP

CONTOUR_CROSSED AECLP, CP, GP

FRAME_BEAM_UNLOCKED TDLRSP

FRAME_ENGINES_IGNITED AECLP, GP

G_STATUS CP, GSP

GP_ALTITUDE CP, GP, AECLP

GP_ATTITUDE AECLP, CP, GP

GP_PHASE CP, GP

GP_ROTATION AECLP, CP, GP

GP_VELOCITY AECLP, CP, GP

INTERNAL_CMD AECLP

K_ALT ARSP, CP, GP

K_MATRIX CP, GP, TDLRSP

PE_INTEGRAL AECLP, CP

RE_STATUS CP, RECLP

RE_SWITCH GP, RECLP

TDLR_STATE CP, TDLRSP

TDLR_STATUS CP, TDLRSP

TDS_STATUS CP, GP, TDSP

TE_INTEGRAL AECLP, CP, GP

TE_LIMIT AECLP

THETA RECLP

TS_STATUS CP, TSP

VELOCITY_ERROR AECLP, CP, GP

YE_INTEGRAL AECLP, CP

A-97

Table A.6.2 DATA STORE: EXTERNAL

VARIABLE NAME USED BY

A_COUNTER ASP

AE_CMD AECLP, CP

AR_COUNTER ARSP

CHUTE_RELEASED AECLP, CP, CRCP, GP

FRAME_COUNTER AECLP, ARSP, CP, GP, TDLRSP

G_COUNTER GSP

PACKET CP

RE_CMD RECLP, CP

SS_TEMP TSP

SUBFRAME_COUNTER CP

TD_COUNTER TDSP

TDLR_COUNTER TDLRSP

THERMO_TEMP TSP

Table A.6.3 DATA STORE: SENSOR_OUTPUT

VARIABLE NAME USED BY:

A_ACCELERATION AECLP, ASP, CP, GP

AR_ALTITUDE ARSP, CP, GP

ATMOSPHERIC_TEMP ASP, CP, GSP, TSP

G_ROTATION CP, GSP, GP, RECLP

TD_SENSED CP, GP, TDSP

TDLR_VELOCITY CP, GP, TDLRSP

A-98

Table A.6.4 DATA STORE: RUN_PARAMETERS

VARIABLE NAME USED BY

A_BIAS ASP

A_GAIN_0 ASP

A_SCALE ASP

ALPHA_MATRIX ASP

AR_FREQUENCY ARSP

COMM_SYNC_PATTERN CP

CONTOUR_ALTITUDE GP

CONTOUR_VELOCITY GP

DELTA_T AECLP, GP, RECLP, TDLRSP

DROP_HEIGHT GP

DROP_SPEED GP

ENGINES_ON_ALTITUDE AECLP, GP

FULL_UP_TIME AECLP

G1 ASP

G2 ASP

G3 GSP

G4 GSP

G_GAIN_0 GSP

G_OFFSET GSP

GA AECLP

GAX AECLP

GP1 AECLP

GP2 AECLP

GPY AECLP

GQ AECLP

GR AECLP

GRAVITY AECLP, GP

GV AECLP

GVE AECLP

GVEI AECLP

GVI AECLP

GW AECLP

GWI AECLP

M1 TSP

M2 TSP

M3 TSP

M4 TSP

MAX_NORMAL_VELOCITY GP

OMEGA AECLP

P1 RECLP

P2 RECLP

P3 RECLP

P4 RECLP

PE_MAX AECLP

PE_MIN AECLP

T1 TSP

T2 TSP

T3 TSP

T4 TSP

A-99

Table A.6.4 (continued) DATA STORE: RUN_PARAMETERS

VARIABLE NAME USED BY

TDLR_ANGLES TDLRSP

TDLR_GAIN TDLRSP

TDLR_LOCK_TIME TDLRSP

TDLR_OFFSET TDLRSP

TE_DROP AECLP

TE_INIT AECLP

TE_MAX AECLP

TE_MIN AECLP

THETA1 RECLP

THETA2 RECLP

YE_MAX AECLP

YE_MIN AECLP

A-100

PART III. CONTROL SIGNALS, DATA CONDITIONS, AND GROUP FLOWS

Table A.6.5 CONTROL SIGNALS (OPTIONAL USAGE)

CONTROL SIGNAL NAME

AECLP_DONE

ARSP_DONE

ASP_DONE

CLP_DONE

CP_DONE

CRCP_DONE

GP_DONE

GSP_DONE

INIT_DONE

RECLP_DONE

RENDEZVOUS

RUN_DONE

SP_DONE

TDLRSP_DONE

TDSP_DONE

TSP_DONE

Note: These variables are not in the required global data stores.

Table A.6.6 DATA CONDITIONS (REQUIRED USAGE)

DATA CONDITION VARIABLE NAME

AE_SWITCH

AE_TEMP

CHUTE_RELEASED

CONTOUR_CROSSED

GP_PHASE

RE_SWITCH

TD_SENSED

TDLR_STATE

A-101

Table A.6.7 INITIALIZATION DATA

VARIABLE NAME USED BY

A_ACCELERATION AECLP, ASP, CP, GP
A_BIAS ASP
A_COUNTER ASP
A_GAIN_0 ASP
A_SCALE ASP
A_STATUS ASP, CP
AE_STATUS AECLP, CP
AE_SWITCH AECLP, GP
AE_TEMP AECLP, CP, CRCP, GP
ALPHA_MATRIX ASP
AR_ALTITUDE ARSP, CP, GP
AR_COUNTER ARSP
AR_FREQUENCY ARSP
AR_STATUS ARSP, CP
ATMOSPHERIC_TEMP ASP, CP, GSP, TSP
C_STATUS CP
CHUTE_RELEASED AECLP, CP, CRCP, GP
CL AECLP, GP
COMM_SYNC_PATTERN CP
CONTOUR_ALTITUDE GP
CONTOUR_CROSSED AECLP, CP, GP
CONTOUR_VELOCITY GP
DELTA_T AECLP, GP, RECLP, TDLRSP
DROP_HEIGHT GP
DROP_SPEED GP
ENGINES_ON_ALTITUDE AECLP, GP
FRAME_BEAM_UNLOCKED TDLRSP
FRAME_COUNTER AECLP, ARSP, CP, GP, TDLRSP
FRAME_ENGINES_IGNITED AECLP, GP
FULL_UP_TIME AECLP
G1 ASP
G2 ASP
G3 GSP
G4 GSP
G_COUNTER GSP
G_GAIN_0 GSP
G_OFFSET GSP
G_ROTATION CP, GSP, GP, RECLP
G_STATUS CP, GSP
GA AECLP
GAX AECLP
GP1 AECLP
GP2 AECLP
GP_ALTITUDE AECLP, CP, GP
GP_ATTITUDE AECLP, CP, GP
GP_PHASE CP, GP
GP_ROTATION AECLP, CP, GP
GP_VELOCITY AECLP, CP, GP
GPY AECLP
GQ AECLP
GR AECLP
GRAVITY AECLP, GP
GV AECLP

A-102

Table A.6.7 (continued) INITIALIZATION DATA

VARIABLE NAME USED BY

GVE AECLP
GVEI AECLP
GVI AECLP
GW AECLP
GWI AECLP
K_ALT ARSP, CP, GP
K_MATRIX CP, GP, TDLRSP
M1 TSP
M2 TSP
M3 TSP
M4 TSP
MAX_NORMAL_VELOCITY GP
OMEGA AECLP
P1 RECLP
P2 RECLP
P3 RECLP
P4 RECLP
PE_INTEGRAL AECLP, CP
PE_MAX AECLP
PE_MIN AECLP
RE_STATUS CP, RECLP
RE_SWITCH GP, RECLP
SS_TEMP TSP
SUBFRAME_COUNTER CP
T1 TSP
T2 TSP
T3 TSP
T4 TSP
TD_COUNTER TDSP
TD_SENSED CP, GP, TDSP
TDLR_ANGLES TDLRSP
TDLR_COUNTER TDLRSP
TDLR_GAIN TDLRSP
TDLR_LOCK_TIME TDLRSP
TDLR_OFFSET TDLRSP
TDLR_STATE CP, TDLRSP
TDLR_STATUS CP, TDLRSP
TDLR_VELOCITY CP, GP, TDLRSP
TDS_STATUS CP, GP, TDSP
TE_DROP AECLP
TE_INIT AECLP
TE_INTEGRAL AECLP, CP, GP
TE_LIMIT AECLP
TE_MAX AECLP
TE_MIN AECLP
THERMO_TEMP TSP
THETA RECLP
THETA1 RECLP
THETA2 RECLP
TS_STATUS CP, TSP
VELOCITY_ERROR AECLP, CP, GP
YE_INTEGRAL AECLP, CP

A-103

YE_MAX AECLP
YE_MIN AECLP

Table A.6.8 TEMP_DATA

VARIABLE NAME

SS_TEMP

THERMO_TEMP

Table A.6.9 SENSOR_DATA

VARIABLE NAME

A_COUNTER

AR_COUNTER

TDLR_COUNTER

G_COUNTER

TEMP_DATA

TD_COUNTER

Table A.6.10 OUTPUT_DATA

VARIABLE NAME

AE_CMD

RE_CMD

PACKET

Table A.6.11 OUTPUT_CONTROL

VARIABLE NAME

AE_SWITCH

RE_SWITCH

CHUTE_RELEASED

Table A.6.12 FRAME_DATA

VARIABLE NAME

FRAME_COUNTER

SUBFRAME_COUNTER

A.7 NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION

A-104

This specification was developed using the extended structured analysis method

advocated by Hatley (ref. A.12, A.13) and Cadre's teamwork (ref. A.19). This method is

based on a hierarchical approach to defining processes and the associated data and

control flows.

The documents constructed as a part of this specification include data context and

flow diagrams, control context and flow diagrams, process and control specifications, and

a Data Requirements Dictionary. Figure A.7.1 defines the graphical symbols used in the

data flow and control flow diagrams, respectively.

The data flow diagrams describe the processes, data flows, and data stores. The

data context diagram is the highest-level data flow diagram and represents the data flow

between the system and the external entities.

The control flow diagrams describe processes, control signal and data condition

flows, control specifications, and data stores. The control signal and data condition flows

are depicted using directed arcs with broken lines. The control signals listed in the data

dictionary may be implemented by the programmer in any form desired, or they may be

completely ignored and the control of the program conducted through other means. The

control flow diagrams show what the process structure must do under all conditions.

Signal flows between the control flow diagram and the control specification have a short

bar at the end of the directed arc. The control flow diagrams contain duplicate

descriptions of the processes represented on the data flow diagrams. The control context

diagram representing the most abstract control flow is similar to the data context diagram.

The control specifications describe the control requirements of a system. These

specifications contain the conditions under which the processes detailed in the data and

control flow diagrams are activated and de-activated, and in some cases also contain

output values for control signals.

The Data Requirements Dictionary contains definitions for data, data conditions,

control signals, and group flows.

Following is a list of definitions and explanations for the structured analysis

diagrams:

1. The data and control flow names on the directed arcs in the structured analysis figures

can be found in the Data Requirements Dictionary Part I, while the group flow names

on the arcs can be found in the Data Requirements Dictionary Part III.

2. In the Process Activation Tables, the first column contains the inputs. The second set

of columns (separated by two vertical lines) contains the cells which indicate whether a

process is to be activated or deactivated. A blank cell indicates that the process is

deactivated. An integer indicates that the process is activated. A process whose cell

A-105

contains the integer "n" must complete before the process with integer "n+1" is

activated. All processes whose cells contain the same integer can be activated in any

order. The third set of columns, if present, represents the output values for control

signals.

3. The meanings for the symbols used in the expressions for inputs are:
= equal
~= not equal
~ logical NOT
& logical AND
| logical OR
() grouping (expression inside parentheses is
evaluated first)

Figure A.7.1 GRAPHICAL SYMBOLS USED IN STRUCTURED ANALYSIS DIAGRAMS

PROCESS MODULE

SOURCE OR SINK

DATA CONDITION OR
CONTROL FLOW

CONTROL SPECIFICATION

DATA FLOW

DATA STORE

A.8 IMPLEMENTATION NOTES

INTERFACE

Background

A-106

For the purposes of this research experiment, each GCS implementation must

function as if it were actually controlling a planetary lander. In reality, each GCS

implementation will be interacting with a software simulator (GCS_SIM) that models the

behavior of a physical lander when exposed to the environmental forces of a planet.

Due to the fact that each GCS implementation must interact with GCS_SIM as if it

were connected to the lander hardware, there are some additional requirements that are

placed on a GCS implementation that help define a software interface. The software

interface to the simulator replaces the physical connection to planetary lander hardware

through the use of a simulator support utility and an additional requirement involving the

organization of the global data stores.

Simulator Support Utility

A single simulator support utility (GCS_SIM_RENDEZVOUS) is provided to form

a uniform interface between the GCS implementation and the simulation environment

(GCS_SIM). This utility is a routine which simplifies the interface between the GCS

implementations and the simulation of the vehicle sensing and control mechanisms. This

utility also includes a synchronization mechanism for the configurations using more than

one version of the GCS. This routine provides the following support functions:

• Initialization for the Beginning of Terminal Descent

• Simulator Rendezvous Synchronization

• GCS Interface for Simulated Reads and Writes

Input/Output

The GCS_SIM_RENDEZVOUS routine simulates all of the input/output operations

for each GCS implementation. When using the rendezvous routine with a GCS

implementation, all data needed by rendezvous is passed via the four global data stores

and there are no additional parameters required. All information read from or written to

each GCS implementation will be transferred through the four global data stores defined

in the data dictionary.

A-107

Figure A.8.1 DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMENTATIONS

 GCS

Implementation

Rendezvous

Run_parameters

Guidance_

 State

Sensor_

 Output

External

Rom Ram I/O Device

Simulated Hardware Interface

GCS_SIM

Simulated Hardware

and

Environment

Hardware Component

Input/Output Device

Read-Only Memory

On-board Random Access Memory

On-board Random Access Memory

Global Data Store (Software Interface)

EXTERNAL

RUN_PARAMETERS

GUIDANCE_STATE

SENSOR_OUTPUT

A-108

Process

The GCS uses the sensor input values in order to calculate control commands which

are used by GCS_SIM to manipulate the actuators. Since GCS_SIM handles the orbit to

terminal descent portion of each trajectory, a rendezvous must be issued at the start of

each trajectory to load initial sensor values into each GCS implementation. Following

the first call to rendezvous, all GCS implementations will synchronize themselves by

calling rendezvous prior to the execution of each subframe. This rendezvous, in effect,

suspends the GCS implementations until the other GCS implementations have processed

this subframe.

The calling convention for this GCS_SIM provided support utility is as follows:

• GCS_SIM_RENDEZVOUS (requires no parameters)

GCS Initialization

During the initialization phase of each GCS trajectory (the first call to

GCS_SIM_RENDEZVOUS) the frame counter (FRAME_COUNTER) will be updated

with the starting frame number for the particular trajectory, and the subframe counter

(SUBFRAME_COUNTER) will be initialized to the value one. Under normal

circumstances, the value of the frame counter will be "1," but the programmer should not

rely on that.

By using the interface described above, the simulator can be transparent to the

implementation.

A.9 NUMERICAL INTEGRATION INSTRUCTIONS

Within the Guidance Processing functional unit, the calculations of GP_VELOCITY,

GP_ALTITUDE, and GP_ATTITUDE require the use of a highly accurate integration method. To

maintain the necessary degree of accuracy, three methods of numerical integration have been designated as

acceptable for coding, namely Adams-Moulton method, Hamming's method, and the Runge-Kutta

fourth-order method for simultaneous equations. If the Runge-Kutta method is used, it is required that the

three equations be solved as a set of simultaneous equations.

Each method is briefly described in the following paragraphs, and references to numerical analysis

texts describing the method are provided. Algorithms specified in either a text listed or another suitable

numerical analysis text should be used during coding.

Adams-Moulton Method

A-109

The Adams-Moulton Method requires values from the previous four time steps to calculate

the value at the next time step. The Adams-Moulton method is a predictor/corrector method.

Both (ref. A.14) (pp. 346-7) and (ref. A.16) (pp. 478-81) explain the Adams-Moulton method.

Hamming's Method

The Hamming method uses a predictor/corrector method similar to that of Adams-Moulton.

Hamming's method uses the same predictor as Milne's, but uses a much simpler corrector

formula. Milne's method of integration was deemed too unstable for use, but Hamming's

method with the simpler corrector is sufficiently stable. A description of both Hamming's

method and Milne's method can be found in (ref. A.14) (pp. 347-8).

Runge-Kutta Fourth-Order Method for Simultaneous Equations

The well-known Runge-Kutta fourth-order method for simultaneous equations requires only

the previous two values to calculate the next value. References can be found in many texts

including: (ref. A.15)(pp. 356-60), (ref. A.17) (pp. 240-6; pp. 282-5), (ref. A.18) (pg. 447; pp.

471-3)

During the first time step, using a numerical integration method necessitates some

specification of previous values. These values will be provided during initialization for

the data elements provided in Table A.9.1.

A-110

TABLE A.9.1 INITIAL VALUES PROVIDED FOR USE IN INTEGRATION

A_ACCELERATION (1..3, 0..4)

AR_ALTITUDE (0..4)

GP_ALTITUDE (0..4)

GP_ATTITUDE (1..3, 1..3, 0..4)

GP_VELOCITY (1..3, 0..4)

G_ROTATION (1..3, 0..4)

K_ALT (0..4)

K_MATRIX (1..3, 1..3, 0..4)

TDLR_VELOCITY (1..3, 0..4)

Note that not all integration required by the GCS specification requires the use of

one of the methods listed in this appendix. More specifically, in computing THETA,

TE_INTEGRAL, PE_INTEGRAL, and YE_INTEGRAL, Euler's method provides

sufficient accuracy and simplicity and should be used. Information on Euler's method

may be found in: (ref. A.14)(pp. 318-22), (ref. A.15)(pg. 223), and (ref. A.16)(pp. 462-3).

ADAPTATION OF RUNGE-KUTTE FOURTH-ORDER METHOD FOR

SIMULTANEOUS EQUATIONS TO THE GCS SOFTWARE

In the case where the Runge-Kutte method has been selected for integration in the

Guidance Processing functional unit, the following gives information on how it is to be

applied to GCS. The notation and formulas presented here are merely one representation

of the Runge-Kutte method and its adaptation to GCS. The software

designer/implementer may vary the notation and/or the form of the equations as long as

the algorithm used is equivalent to the one presented here.

The Runge-Kutte fourth-order method (for one dependent variable only) can be

summarized as follows:

Given:

 Let dy/dx = f(x,y)

 Let h represent the interval between equidistant values of x
 Let the initial values for x and y be x0 and y0 respectively

 Let x1 = x0 + h

The problem is to estimate y1

The solution is:
 y1 = y0 + k

 k = 1/6 x (k
1
 + 2 x (k

2
 + k

3
) + k

4
)

 where:

A-111

 k
1 = h x f(x

0 , y0)

 k
2
 = h x f(x

0 + h/2, y
0 + k

1/
/2)

 k3 = h x f(x
0 + h/2, y

0 + k
2
/2)

 k
4
 = h x f(x

0 + h, y
0 + k3)

The GCS problem to be solved is as follows:

Simultaneously calculate current values for the variables GP_ATTITUDE,

GP_VELOCITY, and GP_ALTITUDE, using the equations for the corresponding

derivatives given in GUIDANCE PROCESSING (P-Spec 2.2), Table A.5.8.

Adaptation to GCS of the Runge-Kutte fourth-order method for simultaneous equations

In the discussion that follows, let the "dependent" variables refer to

GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE, and let the "sensor" variables

refer to G_ROTATION, A_ACCELERATION, K_MATRIX, TDLR_VELOCITY,

K_ALT, and AR_ALTITUDE. In the Runge-Kutte method, it is assumed that the

derivative for y can be obtained as a function of the dependent and independent variables.

In GCS, the derivative for each of the dependent variables is a function of some subset of

the dependent variables and some subset of the sensor variables. The values for the

sensor variables are only available to GCS at discrete values of time, namely at any time

which is an integer multiple of the value of DELTA_T. It is therefore not possible to

calculate derivatives at the midpoint between two frames. The mapping of the Runge-

Kutte independent variable to the GCS time interval is shown below. This mapping

should be used, as it will ensure that derivatives can be calculated as required.

 Runge-Kutte

< ------------------------------ h ----------------------------- >

| | |

x 0 x0 + h/2 x1

 GCS

< -------DELTA_T---------><--------DELTA_T------- >

| | |

t2 t1 t0 Time

2 1 0 History

Subscript

n-2 n-1 n Frame

Number

A-112

where:
 h = 2 x DELTA_T

 t

0
 = present time (time for the current frame)

 t
1
= t

0
 - DELTA_T (time one frame ago)

 t2 = t0 - (2 x DELTA_T) (time two frames ago)

The Algorithm

The following is intended to be a conceptual representation of the Runge-Kutte

algorithm as applied to GCS. It is not intended to be pseudo code or actual code. In this

discussion, the subscripts for arrays have been omitted except for the history subscript

which appears as "(j)" where j is 0, 1, or 2. This has been done here in order to present the

concepts involved concisely, but without low-level details. The previously calculated

values of the dependent variables at t1, although available, are not to be used. Also note

that the history values of the dependent and sensor variables with subscripts of 3 and 4

are not used in this adaptation of Runge-Kutte to GCS.

Notation

Let k

1
, k

2
, k

3
 k

4
 each represent a 3 x 3 array to hold estimate for change in attitude.

Let l
1
, l

2,
 l

3
, l

4
each represent a vector of size 3 to hold estimate for change in velocity.

Let m
1
, m

2
, m

3
 m

4
 each represent a scalar to hold estimate for change in altitude.

Let SENS_ATT(j) represent the G_ROTATION array with time history subscript j, where j
is 0, 1, or 2.

Let SENS_VEL(j) represent the G_ROTATION, A_ACCELERATION, K_MATRIX, and
TDLR_VELOCITY arrays with time history subscript (j), where j = 0, 1, or 2.

Let SENS_ALT(j) represent the K_ALT and AR_ALTITUDE arrays with time history
subscript j, where

 j = 0, 1, or 2.

Let f_att represent the function for derivative of attitude with respect to time.
Let f_vel represent the function for derivative of velocity with respect to time.
Let f_alt represent the function for derivative of altitude with respect to time.

Algorithm

Do first estimates of changes using derivatives calculated at t2:

A-113

k
1
 = h x f_att (GP_ATTITUDE(2), SENS_ATT(2))

l
1
 = h x f_vel (GP_ATTITUDE(2), GP_VELOCITY(2), SENS_VEL(2))

m
1
 = h x f_alt (GP_ATTITUDE(2), GP_VELOCITY(2), GP_ALTITUDE(2),

SENS_ALT(2))

Do second estimates of changes using derivatives calculated at t1:

k
2
 = h x f_att (GP_ATTITUDE(2) + k

1
/2, SENS_ATT(1))

l
2
 = h x f_vel (GP_ATTITUDE(2) + k

1
/2, GP_VELOCITY(2) + l

1
/2, SENS_VEL(1))

m
2
= h x f_alt (GP_ATTITUDE(2) + k

1
/2, GP_VELOCITY(2) + l

1
/2,

GP_ALTITUDE(2) + m
1
/2, SENS_ALT(1))

Do third estimates of changes using derivatives calculated at t1:

k
3
 = h x f_att (GP_ATTITUDE(2) + k

2
/2, SENS_ATT(1))

l
3
 = h x f_vel (GP_ATTITUDE(2) + k

2
/2, GP_VELOCITY(2) + l

2
/2, SENS_VEL(1))

m
3
 = h x f_alt (GP_ATTITUDE(2) + k

2
/2, GP_VELOCITY(2) + l

2
/2,

GP_ALTITUDE(2) + m
2
/2, SENS_ALT(1))

Do fourth estimates of changes using derivatives calculated at t
0
:

k
4
 = h x f_att (GP_ATTITUDE(2) + k

3
, SENS_ATT(0))

l
4
 = h x f_vel (GP_ATTITUDE(2) + k

3
, GP_VELOCITY(2) + l

3
, SENS_VEL(0))

m
4
= h x f_alt (GP_ATTITUDE(2) + k

3
, GP_VELOCITY(2) + l

3
, GP_ALTITUDE(2) +

m
3
, SENS_ALT(0))

Add weighted average of four change estimates to previous value of dependent variable to
get current dependent variable:

GP_ATTITUDE(0) = GP_ATTITUDE(2) + 1/6 x (k
1
 + 2 x (k

2
 + k

3
) + k

4
)

GP_VELOCITY(0) = GP_VELOCITY(2) + 1/6 x (l
1
 + 2 x (l

2
 + l

3
) + l

4
)

GP_ALTITUDE(0) = GP_ALTITUDE(2) + 1/6 x (m
1
 + 2 x (m

2
 + m

3
) + m

4
)

A.10 COMMUNICATIONS PACKET INSTRUCTIONS

STRUCTURE OF PACKET

The global variable PACKET is defined in the data dictionary as an array of 256 elements of type
Integer*2. The actual memory which holds this array can also be thought of as an array of 512
elements of type Byte. The message to be transmitted can therefore be thought of as a series of
contiguous bytes, as illustrated in Table A.5.7. The message on which the checksum is to be
calculated consists of the synchronization pattern, the sequence number, the sample mask, and the
data section. The data section always begins in the eighth byte, but the position of the last byte of
the data section depends upon the particular subframe in which the packet is being transmitted.
The checksum is always in the two bytes immediately following the last used byte of the data
section for the subframe, or in other words, immediately following the message. The bytes of
PACKET following the checksum are unused.

A-114

Subframe

Byte Position of
Message

Position of Least
Significant Byte of

Checksum

Position of Most
Significant Byte of

Checksum

1 1 - 129 130 131

2 1 - 173 174 175

3 1 - 45 46 47

PROCEDURE FOR CALCULATING THE CHECKSUM

The message polynomial is to be formed as described below, and then is to be multiplied by 216.
This product polynomial is to be divided by the generator polynomial, using modulo 2 arithmetic.
The 16-bit remainder obtained from this division (with its bits in reverse order) is the checksum,
and is to be placed into the packet immediately following the message.

Conventions

Byte 1 of the synchronization pattern will be referred to as the first byte of the message, while
the last used byte of the data section will be referred to as the last byte of the message. Each
number appearing below is given with the most significant digit on the left, and the least
significant digit on the right. When bit numbers are referenced, they are the VAX FORTRAN
bit numbers (bit 0 is the least significant bit, while bit 7 is the most significant bit of the byte).

Form the Message Polynomial

Let n represent the number of bytes in the message
Let pbytei represent byte i of the packet

Let biti,j represent bit j of byte i of the packet. Then,

<pbytei> = <biti,7><biti,6><biti,5><biti,4><biti,3><biti,2><biti,1><biti,0>

<mbytei> = <biti,0><biti,1><biti,2><biti,3><biti,4><biti,5><biti,6><biti,7>

<Message Polynomial> = <mbyte1><mbyte2>.....<mbyten>

In other words, the message polynomial is formed by taking the bytes of the message in
order from the first to the last, but within each byte, taking the bits in order from the least to
the most significant.

Form the Dividend

<Dividend> = <Message Polynomial><0000000000000000>

The dividend is formed by multiplying the message polynomial by 216, or in other words, by
appending 16 zeroes to the end of the polynomial.

Form the Divisor

<Divisor> = <11000000000000101>

The divisor is the CRC-16 generator polynomial, which is x16 + x15 + x2 + x0

Perform the Long Division

Divide the dividend by the divisor, using modulo two arithmetic.
Form the Checksum and Place it into the Packet

Let R represent the final 16-bit remainder from the long division.
Let <Ri> represent bit i of R. Then,

<R> =
<R15><R14><R13><R12><R11><R10><R9><R8><R7><R6><R5><R4><R3><R2><R1><R0

>
<Checksum> =
<R0><R1><R2><R3><R4><R5><R6><R7><R8><R9><R10><R11><R12><R13><R14><R15

>

A-115

Thus, the checksum is the final 16-bit remainder, with the bits reversed.
The checksum is to be placed into the packet in standard VAX byte order, immediately
following the last used byte of the message.

CHECKSUM ALGORITHMS

While different algorithms exist for calculating the checksum, any algorithm used in an
implementation must be equivalent to, or accomplish the same results as the procedure described
above.

EXAMPLE OF THE CALCULATION OF A CHECKSUM

Assume that the message to be sent consists of four bytes (this message is obviously shorter than
any message to be sent in any GCS subframe, but it is infeasible to present an example with a
message of 45 bytes or more).
Assume the message to be sent is:

Byte Position Contents in
Hexadecimal

Contents in
Binary

1 44 01000100

2 4F 01001111

3 56 01010110

4 45 01000101

A-116

In this example, the long division(in binary) is as follows:

11000000000000101 001000101111001001101010101000100000000000000000

111100101000110011100011110110

)

 11000000000000101
 10010111100101100
 11000000000000101
 10101111001010011
 11000000000000101
 11011110010101100
 11000000000000101
 11110010101001101
 11000000000000101
 11001010100100001
 11000000000000101
 10101001001000001
 11000000000000101
 11010010010001000
 11000000000000101
 10010010001101000
 11000000000000101
 10100100011011010
 11000000000000101
 11001000110111110
 11000000000000101
 10001101110110000
 11000000000000101
 10011011101101010
 11000000000000101
 10110111011011110
 11000000000000101
 11101110110110110
 11000000000000101
 10111011011001100
 11000000000000101
 11110110110010010
 11000000000000101
 1101101100101110

The remainder is 1101101100101110

A-117

The checksum is then the remainder with the bits reversed, or: 0111010011011011

The two bytes of the checksum will then be placed into the bytes immediately following the data
portion, in standard VAX byte order (low order byte first followed by high order byte) as follows:

Byte Position Contents in
Hexadecimal

Contents in
Binary

1 44 01000100

2 4F 01001111

3 56 01010110

4 45 01000101

5 DB 11011011

6 74 01110100

A.11 BIBLIOGRAPHY

A.1 George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE Aircraft

Design, Systems and Operations Conference, Atlanta, GA, September 1988.

A.2 Special Committee 167 of Requirements and Technical Concepts for Aviation Inc. (RTCA, Inc.).

Software Considerations in Airborne Systems and Equipment Certification, DOCUMENT NO.
RTCA/DO-178B. RTCA Inc., Washington, D. C., 1992

A.3 Harm Buning and D. T. Greenwood. Flight mechanics for space and re-entry vehicles. Technical

report, The University of Michigan Engineering Summer Conferences, Summer 1964.

A.4 Herbert Goldstein. Classical Mechanics. Addison-Wesley Publishing Company, Inc., Reading,

Massachusetts, USA, 1959.

A.5 Irving H. Shames. Engineering Mechanics -- Statics and Dynamics. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1980.

A.6 Dan Edwin Christie. Vector Mechanics. McGraw-Hill Inc., New York, 1964

A.7 David Hestenes. New Foundations for Classical Mechanics. D. Reidel Publishing Company,

Boston, 1986

A.8 D. N. Burghes and A. M. Downs. Classical Mechanics and Control. Ellis Horwood Limited, Coll

House, Westergate, England, 1975.

A.9 G. S. Light and J. B. Higham. Theoretical Mechanics. Longman Inc., New York, 1975.

A.10 Don C. Rich and J. R. Dunham. Guidance and Control Software Simulator (GCS_SIM) Software

Specification. Technical Report NASA Contract NAS1-17964; Task Assignment No. 8, Research
Triangle Institute, Research Triangle Park, NC, 1987.

A.11 Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1981.

A-118

A.12 Derek J. Hatley. The use of structured methods in the development of large, software-based
avionics systems. In Proceedings of the AIAA/IEEE 6th Digital Avionics Systems Conference,
New York, December 1984.

A.13 Derek J. Hatley and Imtiaz A. Pirbhai, Strategies for Real-Time System Specification. Dorset

House Publishing Company, New York, New York, 1987.

A.14 W. Allen Smith. Elementary Numerical Analysis. Harper and Row, New York, 1979.

A.15 J. B. Scarborough. Numerical Mathematical Analysis. The Johns Hopkins Press, Baltimore, 1962

A.16 Stephen M. Pizer. Numerical Computing and Mathematical Analysis. Science Research

Associates, Inc., Chicago, 1975

A.17 Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS-KENT Publishing
Company, Boston, 1989.

A.18 Melvin J. Maron and Robert J. Lopez. Numerical Analysis: A Practical Approach.

Wadsworth Publishing Company, Belmont, California, 1990.

A.19 teamwork/SA teamwork/RT User's Guide, Cadre Technologies, Inc., Providence, Rhode Island,

Release 4.0, 1990.

A.20 Neil A. Holmberg, Robert P. Faust, and H. Milton Holt, Viking '75 Spacecraft
Design and Test Summary, Volume I - Lander Design, NASA Reference
Publication 1027, Langley Research Center, Hampton, Virginia, 1980

B-1

Appendix B: Design Description for the Pluto Implementation of the

Guidance and Control Software

Authors: Philip Morris and Rob Angellatta, Lockheed Martin Engineering and Sciences Corp.

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

B-2

B. CONTENTS

B.1 INTRODUCTION TO PLUTO GCS DESIGN...B-3

B.1.1 TOP-LEVEL DESCRIPTION..B-3
B.1.2 DESIGN METHODOLOGY..B-3
B.1.3 DESIGN SYNTAX SPECIFICATIONS ...B-4

B.2 DESIGN STRUCTURE...B-4

B.2.1 HIGH-LEVEL SOFTWARE DESIGN...B-4
B.2.2 DATA AND CONTROL FLOW ..B-6
B.2.3 MODULE DESCRIPTION..B-6
B.2.4 PROCESS SCHEDULING...B-16
B.2.5 DATA DICTIONARY ...B-16
B.2.6 DERIVED REQUIREMENTS..B-16

B.3 REFERENCES..B-16

B.4 TEAMWORK DESIGN ...B-17

 B-3

B.1 Introduction to Pluto GCS Design

This document contains a detailed description of the Pluto software design. The Pluto software
design fully encompasses all software requirements as presented in the GCS Guidance and
Control Software Development Specification (ref. B.3) defining a GCS implementation. The
Pluto design provides full and complete software design specifications suitable for coding a GCS
implementation.

B.1.1 Top-Level Description

A GCS implementation represents the guidance and control subsystem of a planetary landing
vehicle. The guidance and control subsystem provides navigation, guidance, and attitude control
for the lander during the terminal phase of a planetary landing. The Terminal phase of a
planetary landing refers to the vehicle events beginning with the separation from the aeroshell to
the actual contact with the planet surface.

The overall objective of the guidance and control subsystem is to effect a safe landing and to
communicate the lander’s telemetry data to a remote receiving station. Pluto implements a
velocity-altitude contour (VAC) strategy for fulfilling the guidance and control responsibilities.
The VAC strategy consists of attempting to match the vehicle’s actual velocity-altitude contour
with a predetermined descent contour stored in the flight software.

The communication task consists of preparing the appropriate telemetry data for transmission
by the on-board communication gear. Preparing the telemetry data involves building a
communications packet containing various vehicle guidance and control information.
Periodically, a communications packet is prepared and provided to the communications gear for
transmission.

B.1.2 Design Methodology

The Pluto design specification has been developed using the structured analysis with real time
extensions (SA/RT) methodology as embodied in Cadre’s Teamwork/SA (ref. B.4) and
Teamwork/RT software development tools. Cadre’s Teamwork/SA implements the Structured
Analysis (SA) approach to systems analysis as described by DeMarco (ref. B.5). Cadre’s
Teamwork/RT is the companion product of Teamwork/SA implementing the real-time extensions
to SA as described by Hatley (ref. B.6).

The SA/RT software specification methodology emphasizes data flow between processes.
Individual processes are activated when their input data is available. In addition, explicit control
specifications are available for describing process sequencing which is often necessary in real-
time systems.

Note that both the SA and SA/RT methodologies are intended to describe software
development specifications. The Structured Design (SD) methodology, as described by Page-
Jones (ref. B.7), is more appropriate for describing the Pluto design specifications. However, the
Pluto design was originally developed using SA/RT and during the transition to in-house software
development, a decision was made to stay with SA/RT. The potential loss in design description
capability directly attributable to the SA/RT methodology as compared with the SD methodology
is minimal as compared to the loss of development man-hours it would cost to convert the design
from SA/RT to SD during the transition phase.

 B-4

B.1.3 Design Syntax Specifications

The main criterion for choosing an algorithm language for describing the Pluto design was that
the algorithms should be clear, concise, and easy to read. No specific language was chosen to
describe the algorithms of the Pluto design; rather, a “structured English” approach is followed.
The language, with a few exceptions, is very similar to the Pascal programming language.

The algorithm description language’s major deviations from Pascal are as follows: First,
blocks are not delimited by “BEGIN/END” pairs. Blocks are readily apparent and an “END”
appears in a few instances to clarify the end of a block. Semicolons are not used to signify the
end of a statement. Again, the end of the statements is quite obvious.

A few conventions were borrowed from the C programming language. Hexadecimal value
notation appears as 0xdddd where “0x” identifies “dddd” as a hexadecimal value. A few bitwise
binary operators are introduced; “&” signifies bitwise and operation, “XOR” signifies bitwise
exclusive or operation, and “>>” represents the bitwise shift right operation.

Two syntax features are peculiar to P-Spec 1.8 CP. The at sign “@” was selected to serve as
an indirection operator. It has the same semantics as Pascal’s “^”. The reason for not
maintaining the caret “^” for specifying indirection is that it was previously chosen to signify
exponentiation. The Modula-2 record syntax was selected for specifying records primarily for
it’s ability to support deviate record structure. Also, when specifying the records, it is necessary
to define the size of particular data types. Several terms were introduced for specifying the size
of particular data elements: byte - an 8-bit quantity, word - a 16-bit quantity, longword a 32-bit
quantity, and quadword a 64-bit quantity.

B.2 Design Structure

In the Teamwork representation of the Pluto design given in B.4, the SA/RT software
specification methodology organizes the design as a top-down functional decomposition. As
such, the Pluto design described in this section follows the top-down functional decomposition.

B.2.1 High-level Software Design

The ultimate goal of the guidance and control subsystem is to safely land the vehicle onto the
planet’s surface. Pluto attempts to safely land the vehicle by sensing the vehicle’s position
relative to the designated landing surface and commanding the vehicle’s locomotive resources in
an effort to maintain a predetermined descent contour. A secondary goal of the guidance and
control subsystem is to provide periodic communications of the vehicle’s telemetry data.

The design context diagram depicts Pluto as a process transforming raw sensor data into
various output data. The raw sensor data originates from the on-board sensors. As a process,
Pluto transforms the incoming raw sensor data into engine data which is passed on to the engine
controller and packet data which is passed on to the communications gear, and when appropriate
issues the chute_released signal.

Pluto organizes the vehicle terminal descent as a sequence of time slices. That is, Pluto
divides the vehicle’s journey into regular intervals of time. Each “time slice”, or frame, has a
well defined time duration as specified by the constant DELTA_T. During each frame, Pluto first
determines the vehicle’s position relative to the planet’s surface and computes the vehicle’s actual
descent contour, then Pluto decides how closely the actual descent contour matches the
predetermined VAC, and finally computes and issues the necessary corrective action.

 B-5

As depicted in DFD 0, Pluto processing is partitioned into three processes. Process 1, the
Sensor Processing Subframe, is responsible for gathering and transforming, if necessary, the
current information available from the vehicle’s sensors. Process 2, the Guidance Processing
Subframe, is responsible for determining if the vehicle’s actual VAC matches the preprogrammed
VAC. Process 3, the Control Law Subframe is responsible for maneuvering necessary to put the
vehicle closer to the preprogrammed VAC.

Each frame consists of performing the Sensor Processing Subframe processing, followed by
the Guidance Processing Subframe processing, followed by the Control Law Subframe
processing. This control structure is represented by PAT 0-s1. When Pluto processing is started,
the data element GP_PHASE is initialized to 1. Pluto processing always begins at the beginning
of a frame and will always terminate at the completion of a frame. Termination occurs at the
completion of Control Law Processing Subframe processing during the frame in which Guidance
Processing Subframe processing asserts the signal GP_PHASE to 5.

The Sensor Processing Subframe is responsible for collecting the information provided by the
on-board sensors. The vehicle’s sensors include accelerometers, gyroscopes, temperature
sensors, an altimeter radar, a four-beam Doppler radar, and a touch-down switch. Sensor
Processing Subframe processing is decomposed into eight distinct tasks as represented by the
eight processes of DFD 1. The specific responsibilities assigned to each process are detailed in
section 2.3 below.

PAT 1-s1 contains the control specification for the processes of DFD 1, Sensor Processing
Subframe. It is not immediately obvious why the data element SUBFRAME_COUNTER was
selected as the input to PAT 1-s1. Within each of the three “subframe” processes, a specific order
of process activation is required. This particular ordering is necessary when the activation of
some process depends upon the completion of another process.

The PAT is a control specification designed specifically for representing the ordering of
process activation. The Pat specifies dependencies in the ordering of process activation via the
conditions of the input signals. Although in PAT 1-s1, signal conditions are not necessary for
determining the sequencing of process activation's, the Teamwork SA/RT implementation of the
PAT requires an input signal. So, an input signal, the data element SUBFRAME_COUNTER,
and it’s value have been selected which always evaluates to “true”. This is also the case with
PAT 2-s1 and PAT 3-s1.

The major responsibilities of the Guidance Processing Subframe are to determine the current
state of the vehicle and to determine how closely the actual vehicle VAC matches the
preprogrammed VAC. These tasks are partitioned into three processes as depicted on DFD 2.
The process named GCS_SIM_RENDEZVOUS appears on DFD 1, DFD 2 and DFD 3. All three
“bubbles” represent the same process. At the beginning of each “subframe”, Pluto is required to
contact the other vehicle subsystems. GCS_SIM_RENDEZVOUS processing provides the
interface to the other vehicle subsystems. The requirements for GCS_SIM_RENDEZVOUS are
described in section 2.3 below.

Once Pluto has determined the present vehicle state, it is necessary to command the vehicle’s
locomotive resources, if available, in an effort to maintain the desired VAC. This responsibility
is charged to the Control Law Processing Subframe. This processing is responsible for releasing
the parachute and computing the appropriate engine commands. The process named CP appears
on DFD 1, DFD 2 and DFD 3. All three “bubbles” represent the same process. At the end of
each “subframe”, Pluto is required to transmit particular telemetry data to a remote receiving
station. CP processing is delegated the task of periodic telemetry communications.

 B-6

B.2.2 Data and Control Flow

Consistent with the Software Development Specification, Pluto organizes its global storage
into four data stores labeled EXTERNAL, GUIDANCE_STATE, SENSOR_OUTPUT,
RUN_PARAMETERS. The data dictionary describes the organization of each data store and
describes each of the data elements comprising the data stores.

The data stores are represented on DFD 1, DFD 2, and DFD 3. Each DFD clearly depicts the
data flows between the represented processes and the data stores. It is important to note that a
non-labeled data flow indicates that all data elements contained in the data store are available in
the flow. The data flows originating and terminating in the process GCS_SIM_RENDEZVOUS
are not labeled. All data elements stored in each of the data stores is available as input and output
to the process GCS_SIM_RENDEZVOUS. However, GCS_SIM_RENDEZVOUS does not
necessarily process as input or update as output all of the elements of each data store. The Pluto
control flow is described above in section 2.1 High-level software design.

B.2.3 Module Description

Process specifications, better known as P-Specs, reside at the lowest level of decomposition in
the SA/RT development methodology. P-Specs provide a functional description of the necessary
processing within a process. A map to the P-Specs found in Pluto is presented below.

The Sensor Processing Subframe provides the guidance and control subsystem with an
interface to the vehicle’s on-board sensors. The vehicle’s sensors provide Pluto with information
pertaining to the lander’s current state within the terminal descent operation. Sensor Processing
Subframe processing is decomposed into eight distinct tasks as described below.

The GCS_SIM_RENDEZVOUS process is responsible for the Pluto communications with
other vehicle subsystems. GCS_SIM_RENDEZVOUS has both read and write access to all four
of the global stores. The actual implementation of the GCS_SIM_RENDEZVOUS functionality
will be provided to the implementer. GCS_SIM_RENDEZVOUS is represented in the Sensor
Processing subframe by DFD 1.1, in the Guidance Processing subframe by DFD 2.1, and in the
Control Law Processing subframe by DFD 3.1. The functional processing of
GCS_SIM_RENDEZVOUS is represented in P-Spec 1.1.

The ARSP process is responsible for determining the distance from the vehicle to the landing
surface. ARSP processes data originating from the on-board altimeter radar sensor and reports
the vehicle’s altitude above the planet’s surface. DFD 1.2 represents the role of ARSP in the
Sensor processing subframe and P-Spec 1.2 specifies the ARSP functional processing.

ARSP processing requires an extrapolation algorithm for computing the value of
AR_ALTITUDE. The development specifications calls for extrapolating a value for
AR_ALTITUDE from a third-order polynomial fitted to the previous four values of
AR_ALTITUDE. Given four equally spaced values, we can approximate the third order function
representing the polynomial containing the given values. The fifth value in the series may then
be extrapolated from this function. The value of DELTA_T represents the spacing of the values
stored in AR_ALTITUDE.

ARSP employs the divided difference technique for performing the necessary extrapolation.
Begin by constructing a difference table for the given values. The first column represents the
given values of AR_ALTITUDE reported in the most recent previous four frames. The second
column entries are computed as the difference between adjacent column one entries. Similarly,
the third column entries are computed as the difference between adjacent column two entries.

 B-7

The fourth column is computed as the difference between the column three entries. Letting “A”
represent the data element “AR_ALTITUDE” and “t” represent the current frame, the table
appears as:

 Frame

 number Column

 ------ --

 1 2 3 4

 t-4 A[4]

 A[3]-A[4]

 t-3 A[3] (A[2]-A[3])-(A[3]-A[4])

 A[2]-A[3] ((A[1]-A[2])-(A[2]-A[3]))-((A[2]-A[3])-(A[3]-A[4]))

 t-2 A[2] (A[1]-A[2])-(A[2]-A[3])

 A[1]-A[2]

 t-1 A[1]

 t-0

An extrapolation of the altitude for the current frame is constructed by summing the last

element of each column:

 A[0] = A[1] + A[1]-A[2] + (A[1]-A[2])-(A[2]-A[3]) +
 ((A[1]-A[2])-(A[2]-A[3]))-((A[2]-A[3])-(A[3]-A[4]))

 Simplifying the equation yields:

 A[0] = 4*A[1] - 6*A[2] + 4*A[3] - A[4]

The ASP process is responsible for determining the vehicle accelerations along each of it’s
three axes. ASP processes data originating from the on-board accelerometers and reports the
vehicle accelerations. DFD 1.3 represents the role of ASP in the Sensor processing subframe and
P-Spec 1.3 specifies the ASP functional processing.

The CP process is responsible for preparing a data packet suitable for transmission by the on-
board communications gear. CP collects the appropriate data from the four global stores and
arranges them into a data packet. CP is represented in the Sensor Processing subframe by DFD
1.8, in the Guidance Processing subframe by DFD 2.3, and in the Control Law Processing
subframe by DFD 3.5. The functional processing of CP is described in P-Spec 1.8.

The GSP process is responsible for determining the vehicle’s rotation rates. GSP processes
data originating from the on-board gyroscope sensors and reports the vehicle rotation rates. DFD
1.4 represents the role of GSP in the Sensor processing subframe and P-Spec 1.4 specifies the
GSP functional processing.

The TDLRSP process is responsible for computing vehicle’s descent velocities. TDLRSP
processes data originating from the on-board touch down landing radar sensor and reports the
vehicle descent velocities. DFD 1.5 represents the role of TDLRSP in the Sensor processing
subframe and P-Spec 1.5 specifies the TDLRSP functional processing.

The TDSP process is responsible for determining the vehicle’s touch down status. TDSP
processes data originating from the on-board touch down sensor and reports the vehicle’s touch
down status. DFD 1.6 represents the role of TDSP in the Sensor processing subframe and P-Spec
1.6 specifies the TDSP functional processing.

The TSP process is responsible for determining the ambient atmospheric temperature. TSP
processes data originating from the two on-board temperature sensors and reports the ambient

 B-8

atmospheric temperature. DFD 1.7 represents the role of TSP in the Sensor processing subframe
and P-Spec 1.7 specifies the TSP functional processing.

TSP contains four algorithms for computing the atmospheric temperature. The algorithm for
computing the temperature based on the solid state (SS) sensor has been derived as follows. The
task is to determine the linear function specifying the linear equation containing the points (M1,
T1) and (M2, T2).

y = mx + b
where: m is the slope of the line

b is the y intercept

 substituting the given point (M1, T1) for (x, y):

T1 = m ⋅M1+ b
b = T1− m ⋅M1

 the slope of the line is expressed by the delta y divided by delta x:

 m =
T2 − T1

M2 − M1

 substituting into the point-slope equation gives:

 solid _ state_ temp =
T2 −T1

M 2 − M1
⋅ SS_ TEMP +T1 −

T 2 − T1
M2 − M1

⋅M1

The algorithm for converting a sensor measure residing in the lower parabolic region of the

thermo-couple (TC) sensor was developed as follows. The first task is to determine the function
which describes the lower parabolic region of the TC sensor:

y =
1

4 p
⋅ (x − h)2 + k

where: (h ,k) is the vertex
 y = (k - p) is the directrix

Given that "the temperature goes down as the square of the measurement":

y =
1

4 p
⋅ (x − h)2 + k standard equation of parabola

y = −(x − h)2 + k from spec. "goes down as the square"
1

4 p
= −1

p = −
1

4

The derivative of a function at a given point is equivalent to the slope of the line tangent to the
function at the given point.

 f (x) = y = −(x − h)
2 + k

f ' (x) = −2(x −h)

The slope of the line tangent to point (M3, T3):

m = −2(M3− h)

h = M 3+
m

2

 Note, the slope of the line tangent to the point is equivalent to the slope of the line containing
the points (M3, T3) and (M4, T4), so:

 B-9

 m =
T4 − T3

M4 −M 3

substituting the given point (M3, T3) for (x, y):

T 3 = −(M3 − (M3+

m

2
))

2 + k

k = T3 +
m

2

2

The function representing the TC sensor lower parabolic region:

y =
1

4 p
⋅ (x − h)2 + k

where: p = −
1

4
, h = M3 +

m

2
, k = T3 +

m

2

2

, and m =
T4 −T3

M4 − M3

lower_ parabolic_ function = − x − M3+

T4 − T3

M4 −M3

2

2

+T 3 +

T4 − T3

M4 − M3

2

2

Similarly, the algorithm for converting a sensor measure residing in the upper parabolic region
of the thermo-couple sensor was developed as follows. The function which describes the upper
parabolic region of the TC sensor:

y =
1

4 p
⋅ (x − h)2 + k

where: (h ,k) is the vertex
 y = (k - p) is the directrix

Given "the temp. goes up as the square of the measurement":

y =
1

4 p
⋅ (x − h)2 + k standard equation of parabola

y = (x − h)2 + k from spec. " goes up as the square"
1

4 p
= 1

p =
1

4

The derivative of a function at a given point is equivalent to the slope of the line tangent to the
function at the given point.

 f (x) = y = (x −h)2 + k
f ' (x) = 2(x − h)

The slope of the line tangent to point (M4, T4):

m = 2(M4 − h)

h = M 4 −
m

2

Note, the slope of the line tangent to the point is equivalent to the slope of the line containing

the points (M3, T3) and (M4, T4), so:

 m =
T4 − T3

M4 −M 3

 B-10

substituting the given point (M4, T4) for (x, y):

T 4 = (M4 − (M4 +

m

2
))

2 + k

k = T4 −
m

2

2

The function representing the TC sensor upper parabolic region:

y =
1

4 p
⋅ (x − h)2 + k

where: p =
1

4
, h = M4 −

m

2
, k = T 4 −

m

2

2

, and m =
T4 −T3

M 4 −M3

upper_ parabolic_ function = x − M4 −

T4 − T3

M4 − M3

2

2

+ T4 −

T4 − T3

M4 − M3

2

2

And finally, the algorithm for converting a sensor measure residing in the linear region of the
thermo-couple sensor was developed as follows. The task is to determine the linear function
specifying the linear equation containing the points (M3, T3) and (M4, T4).

y = mx + b
where: m is the slope of the line

b is the y intercept

 substituting the given point (M3, T3) for (x, y):

T 3 = m ⋅M3 + b
b = T3− m ⋅M3

 the slope of the line is expressed by the delta y divided by delta x:

 m =
T4 − T3

M4 −M 3

 substituting into the point-slope equation gives:

 tc_ linear_ temp =
T4 − T3

M4 −M3
⋅THERMO_ TEMP + T3 −

T4 −T3

M4 −M3
⋅M3

The GP process is responsible for the guidance tasks of the vehicle. Guidance tasks include
determining the current vehicle VAC, determining how closely the actual vehicle VAC matches
the preprogrammed VAC, determining which set of engine control law should be in effect, and
determining the appropriate state for the engines. GP processes data originating in the Sensor
Processing Subframe, the preprogrammed run parameters, and the engine state data in performing
the various guidance tasks. DFD 2.2 represents the role of GP in the Sensor processing subframe
and P-Spec 2.2 specifies the GP functional processing.

When computing the optimal velocity during the GP processing, there is one case where
interpolation is necessary and two cases where extrapolation is required. Note, in order to
implement the following routines, it is assumed that the velocity altitude array data contains at
least two valid entries.

Given the point (x0, f(x0)), the point (x1, f(x1)), and the x value of the desired point (x, f(x))

where x0 < x < x1, interpolate to find f(x)

 B-11

f (x) − f (x0)

x − x0
=

f (x1) − f (x0)

x1 − x0

f (x) = f (x0) +
f (x1)− f (x0)

x1 − x0

⋅ x− x0()

There are two cases for extrapolation. First, if the desired value is greater than the largest
value stored in the velocity-altitude contour table, then a value must be extrapolated above the
largest value stored in the table. Letting (x0, f(x0)) refer to the second largest value stored in the

velocity-altitude contour table and (x1, f(x1)) refer to the largest value stored in the velocity-

altitude contour table, the formula for extrapolation is:

f (x) − f (x0)

x − x0
=

f (x1) − f (x0)

x1 − x0

f (x) = f (x0) +
f (x1)− f (x0)

x1 − x0

⋅ x− x0()

This is not misprinted, it is indeed the same formula displayed above describing the
interpolation.

In the case where the desired value is less than the smallest value stored in the velocity-
altitude contour table, then a value must be extrapolated below the smallest value stored in the
table. Letting (x0, f(x0)) refer to the smallest value stored in the velocity-altitude contour table

and (x1, f(x1)) refer to the second smallest value stored in the velocity-altitude contour table, the

formula for extrapolation is:

f (x0)− f (x)

x0 − x
=

f (x1) − f (x0)

x1 − x0

f (x) = f (x0) −
f (x1)− f (x0)

x1 − x0

⋅ x0 − x()

GP is responsible for computing the current values of the data elements GP_ATTITUDE,
GP_VELOCITY, and GP_ALTITUDE. The current value of GP_ATTITUDE is expressed by
the following formula:

 B-12

Notice that the formula for computing the rate of change of GP_ALTITUDE contains
references to both GP_ATTITUDE and GP_VELOCITY. Because of these references the
solution for computing the current values of these data elements must solve these three equations
simultaneously -- a system of equations.

The solution to computing this system of equations proposed in Pluto is based on the fourth-
order Runge-Kutta (RK) method. Operating on a single equation, the RK method computes four
estimates for the incremental value and then uses a weighted average of the four estimates to
compute the result. The solution employs the RK method to the three equations simultaneously
by computing the first estimate for each equation first, then computing the second estimate for
each equation second, and so on, finally performing the weighted averages. In this manner, the
intermediately computed estimates are available to the "downstream" computations of other
further estimates as necessary.

The typical application of the RK method involves computing the new value of a function
given the current value of the function and a step size. The first estimate, k1, of the incremental

value is determined by multiplying the rate-of-change of the function at the current value by the
step size. The second estimate, k2, of the incremental value is determined by multiplying the

rate-of-change of the function at the midpoint of the line connecting the known value and the
estimated new value determined by k1. The straight forward application of the RK method to

GCS is to treat the value for the current frame as the "new value," the value at the previous frame
as the "old value," and the step size as DELTA_T.

But, there is a problem implementing this straight forward approach. In order to determine the
rate-of-change, that is the first derivative of the function, for a specific instance in time, it is
necessary to know specific sensor measurements at that point in time. The equations for rate-of-

 B-13

change presented above depict the necessary sensor measurements. So, if DELTA_T is chosen
as the step-size, it is not possible to compute the rate-of-change at the "midpoint" of the line
connecting GP_VELOCITYt-1 and the first estimate of GP_VELOCITYt

Likewise in the case of the computation of GP_ALTITUDE. In order for the necessary sensor
information to be available for computations involving the "midpoint," the "midpoint" must
coincide with the execution of the sensor processing subframe. Thus, if a step-size of 2 *
DELTA_T is chosen, the "midpoint" falls on a frame boundary, and the necessary sensor
information is available. The Pluto design implements the RK method with 2 * DELTA_T as the
step-size, the data element value computed two frames previously as the "old value," and the data
element current value as the "new value."

P-Spec 2.2 GP, presented in B.4, contains a detailed description of the application of the
modified RK method for computing the current values of GP_ATTITUDE, GP_VELOCITY, and
GP_ALTITUDE.

The Control Law Processing Subframe provides the guidance and control subsystem with an
interface to the vehicle’s locomotive resources, namely the axial engines, the roll engines and the
parachute. The vehicle’s locomotive resources provide Pluto with the means of maneuvering the
lander. Control Law Processing Subframe processing is decomposed into several distinct tasks.

The AECLP process is responsible for generating the appropriate axial engine commands.
AECLP processes data originating from the Sensor Processing Subframe and Guidance
Processing Subframe processing and computes the axial engine commands. DFD 3.2 represents
the role of AECLP in the Control Law Processing Subframe and P-Spec 3.2 specifies the AECLP
functional processing.

The development specifications present the following formula as a solution for determining a
value for the data element TE_LIMIT, note that the following data elements are abbreviated
GRAVITY as GRAV, GP_ATTITUDE(1,3,0) as ATT, VELOCITY_ERROR as VEL_ERROR ,

and OMEGA as Ω:

 B-14

integrating both terms:

 B-15

The CRCP process is responsible for determining whether or not to release the parachute.
CRCP determines to release the parachute based on the current state of the parachute and the
axial engine temperature. DFD 3.3 represents the role of CRCP in the Control Law Processing
Subframe and P-Spec 3.2 specifies the CRCP functional processing.

The RECLP process is responsible for generating the appropriate roll engine commands.
RECLP processes data originating from the Sensor Processing Subframe and Guidance
Processing Subframe processing and computes the roll engine commands. DFD 3.4 represents
the role of RECLP in the Control Law Processing Subframe and P-Spec 3.4 specifies the RECLP
functional processing.

 B-16

B.2.4 Process scheduling

The Pluto software design specification contains no explicit process scheduling needs.

B.2.5 Data Dictionary

The data dictionary contains formal definitions of all the data items presented in the data-flow

and control-flow diagrams. Teamwork provides an integrated data dictionary for use with the
SA/RT software development tools. A copy of Pluto’s data dictionary as stored in Teamwork
may be found in B.4.

B.2.6 Derived Requirements

According to DO-178B (ref. B.1) derived requirements are those requirements which are not
directly traceable to higher level requirements. The GCS Software Development Specification
goes to great length in presenting the software specifications for a GCS implementation. As such,
it has not been necessary for the Pluto software design specification to create any derived
requirements.

B.3 References

B.1 RTCA Special Committee 152. Software Considerations in Airborne Systems and Equipment

Certification. Technical Report RTCA/DO-178B, Requirements and Technical Concepts for

Aviation, December 1992.

B.2 George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE Aircraft

Design, Systems and Operations Conference, Atlanta, GA, September 1988.

B.3 Withers, B. Edward; and Becher, Bernice: Guidance and Control Software Development

Specification. version 2.3 with formal modifications through 2.3-3, 1994

B.4 Teamwork/SA Teamwork/RT User’s Guide. Release 4.0, Cadre Technologies Inc., 1990

B.5 DeMarco, Tom: Structured Analysis and System Specification. Prentice-Hall Inc., 1979.

B.6 Hatley, Derek J.; and Imtiaz A. Pirbhai: Strategies for Real-Time System Specification. Dorset

House Publishing Co., 1988

B.7 Page-Jones, Meilir: The Practical Guide to Structured Systems Design. Yourdon Press, 1980

 B-17

 B.4 Teamwork Design

B-18

B-19

B-20

B-21

B-22

B-23

B-24

B-25

B-26

B-27

B-28

B-29

B-30

B-31

B-32

B-33

B-34

B-35

B-36

B-37

B-38

B-39

B-40

B-41

B-42

B-43

B-44

B-45

B-46

B-47

B-48

B-49

B-50

B-51

B-52

B-53

B-54

B-55

B-56

B-57

B-58

B-59

B-60

B-61

B-62

B-63

B-64

B-65

B-66

B-67

B-68

B-69

B-70

B-71

B-72

B-73

B-74

B-75

B-76

B-77

B-78

B-79

B-80

B-81

B-82

B-83

B-84

B-85

B-86

B-87

B-88

B-89

B-90

B-91

B-92

B-93

B-94

B-95

B-96

B-97

B-98

B-99

B-100

B-101

B-102

B-103

B-104

B-105

B-106

B-107

B-108

B-109

B-110

B-111

B-112

B-113

B-114

B-115

B-116

B-117

B-118

B-119

B-120

B-121

B-122

B-123

B-124

B-125

B-126

B-127

B-128

B-129

B-130

B-131

B-132

B-133

B-134

B-135

B-136

B-137

B-138

B-139

B-140

B-141

B-142

B-143

B-144

B-145

B-146

B-147

B-148

 C-1

Appendix C: Source Code for the Pluto Implementation of the

Guidance and Control Software

Author: Philip Morris, Lockheed Martin Engineering and Sciences Corp.

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

 C-2

**
* Module: AECLP.FOR
* Facility: Pluto
* P-Spec: 3.2
* Abstract:
* This module contains the implementation of the functional
* requirements for AECLP.
*
* List of Routines:
* subroutine AECLP
**

**
* Title: AECLP
* Facility: Pluto
* Abstract:
* 1) determine the current operational status of the axial engines.
* 2) generate the appropriate axial engine commands.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
**

 subroutine AECLP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local variables ***

 real*8 q_over_omega
 real*8 pitch_error
 real*8 pitch_error_limit
 real*8 yaw_error
 real*8 yaw_error_limit
 real*8 thrust_error

 integer*4 i

 C-3

* 1) Determine the current operational status of the axial engines.

 AE_STATUS = K$HEALTHY

* 2) Generate the appropriate axial engine commands.
*
* Determine if the axial engines are on. If the axial engines
* are "off" (value 0) then the axial engine commands are "0".
* Otherwise, further processing is required in order to determine
* the appropriate axial engine commands.
**

 if (AE_SWITCH .EQ. K$AXIAL_ENGINES_ARE_OFF) then
 AE_CMD(1) = 0
 AE_CMD(2) = 0
 AE_CMD(3) = 0
 else

* The axial engines are "on" so further processing is required.
*
* 2A) determine the axial engine temperature.

*** range check the current altitude ***

 call RANGE_CHECK(GP_ALTITUDE(0), K$GP_ALTITUDE$LB,
 & K$GP_ALTITUDE$UB, 'AECLP', K$GP_ALTITUDE$NAME)

* The three possible engine temperature states are: "Cold" (value 0),
* "Warming up" (value 1), and "Hot" (value 2). The current temperature
* of the axial engines is stored in the data element AE_TEMP.
**

 if (GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE) then

 if (AE_TEMP .EQ. K$COLD) then

 if ((FRAME_COUNTER - FRAME_ENGINES_IGNITED) *
 & DELTA_T .LT. FULL_UP_TIME) then
 AE_TEMP = K$WARMING_UP
 end if

 else if (AE_TEMP .EQ. K$WARMING_UP) then
 if ((FRAME_COUNTER - FRAME_ENGINES_IGNITED) *
 & DELTA_T .GE. FULL_UP_TIME) then

 C-4

 AE_TEMP = K$HOT
 end if
 end if
 end if

* 2B) Compute the pitch error limit.

*** range check the pitch error integral ***

 call RANGE_CHECK(PE_INTEGRAL, K$PE_INTEGRAL$LB,
 & K$PE_INTEGRAL$UB, 'AECLP', K$PE_INTEGRAL$NAME)

*** range check the x-axis roll rate ***

 call RANGE_CHECK(GP_VELOCITY(1, 0), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'AECLP', K$GP_VELOCITY$NAME)

*** range check the z-axis roll rate ***

 call RANGE_CHECK(GP_VELOCITY(3, 0), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'AECLP', K$GP_VELOCITY$NAME)

*** check for potential divide by zero condition ***

 call ZERO_CHECK(GP_VELOCITY(1, 0), 'AECLP')

*** compute the current value for PE_INTEGRAL ***

 PE_INTEGRAL = PE_INTEGRAL +
 & (GP_VELOCITY(3, 0) / ABS(GP_VELOCITY(1, 0))) * DELTA_T

*** range check the pitch error integral (again) ***

 call RANGE_CHECK(PE_INTEGRAL, K$PE_INTEGRAL$LB,
 & K$PE_INTEGRAL$UB, 'AECLP', K$PE_INTEGRAL$NAME)

*** range check the pitch rotational displacement ***

 call RANGE_CHECK(GP_ROTATION(3, 1), K$GP_ROTATION$LB,
 & K$GP_ROTATION$UB, 'AECLP', K$GP_ROTATION$NAME)

*** compute the pitch error limit ***

 pitch_error_limit = GQ(CL) * GP_ROTATION(3, 1) +
 & GW(CL) * (GP_VELOCITY(3, 0) / ABS(GP_VELOCITY(1, 0))) +
 & GWI(CL) * PE_INTEGRAL

 if (pitch_error_limit .LT. PE_MIN(CL)) then
 pitch_error_limit = PE_MIN(CL)

 C-5

 else if (pitch_error_limit .GT. PE_MAX(CL)) then
 pitch_error_limit = PE_MAX(CL)

 end if

* 2C) Compute the yaw error limit.

*** range check the yaw error integral ***

 call RANGE_CHECK(YE_INTEGRAL, K$YE_INTEGRAL$LB,
 & K$YE_INTEGRAL$UB, 'AECLP', K$YE_INTEGRAL$NAME)

*** range check the y-axis roll rate ***

 call RANGE_CHECK(GP_VELOCITY(2, 0), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'AECLP', K$GP_VELOCITY$NAME)

*** check for potential divide by zero condition ***

 call ZERO_CHECK(GP_VELOCITY(1, 0), 'AECLP')

*** Compute the current value for YE_INTEGRAL ***

 YE_INTEGRAL = YE_INTEGRAL +
 & (GP_VELOCITY(2, 0) / ABS(GP_VELOCITY(1, 0))) * DELTA_T

*** range check the yaw error integral (again) ***

 call RANGE_CHECK(YE_INTEGRAL, K$YE_INTEGRAL$LB,
 & K$YE_INTEGRAL$UB, 'AECLP', K$YE_INTEGRAL$NAME)

*** range check the yaw rotational displacement ***

 call RANGE_CHECK(GP_ROTATION(1, 2), K$GP_ROTATION$LB,
 & K$GP_ROTATION$UB, 'AECLP', K$GP_ROTATION$NAME)

*** compute the yaw error limit ***

 yaw_error_limit = -GR(CL) * GP_ROTATION(1, 2) +
 & GV(CL) * (GP_VELOCITY(2, 0) / ABS(GP_VELOCITY(1, 0))) +
 & GVI(CL) * YE_INTEGRAL

 if (yaw_error_limit .LT. YE_MIN(CL)) then
 yaw_error_limit = YE_MIN(CL)

 else if (yaw_error_limit .GT. YE_MAX(CL)) then
 yaw_error_limit = YE_MAX(CL)

 C-6

 end if

* 2D) Compute the thrust limiting error.

 if (CONTOUR_CROSSED .EQ. K$CONTOUR_CROSSED) then

*** range check the thrust error integral ***

 call RANGE_CHECK(TE_INTEGRAL, K$TE_INTEGRAL$LB,
 & K$TE_INTEGRAL$UB, 'AECLP', K$TE_INTEGRAL$NAME)

*** range check the velocity error ***

 call RANGE_CHECK(VELOCITY_ERROR, K$VELOCITY_ERROR$LB,
 & K$VELOCITY_ERROR$UB, 'AECLP', K$VELOCITY_ERROR$NAME)

*** Compute the current value for TE_INTEGRAL ***

 TE_INTEGRAL = TE_INTEGRAL + VELOCITY_ERROR * DELTA_T

*** range check the thrust error integral (again) ***

 call RANGE_CHECK(TE_INTEGRAL, K$TE_INTEGRAL$LB,
 & K$TE_INTEGRAL$UB, 'AECLP', K$TE_INTEGRAL$NAME)

*** range check the attitude component ***

 call RANGE_CHECK(GP_ATTITUDE(1, 3, 0), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'AECLP', K$GP_ATTITUDE$NAME)

*** range check the x-axis acceleration ***

 call RANGE_CHECK(A_ACCELERATION(1, 0),
 & K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'AECLP', K$A_ACCELERATION$NAME)

*** range check the thrust error limit ***

 call RANGE_CHECK(TE_LIMIT, KTE_LIMITLB,
 & KTE_LIMITUB, 'AECLP', KTE_LIMITNAME)

* v1 Changes for AR#23. Item 8. Added check for zero.

 call ZERO_CHECK(OMEGA, 'AECLP')
 q_over_omega = (GA * (-GAX * (A_ACCELERATION(1,0) +
 & GRAVITY * GP_ATTITUDE(1,3,0)) + GVE *
 & VELOCITY_ERROR + GVEI(CL) * TE_INTEGRAL)) /
 & OMEGA

 C-7

* v1 Changes for AR#23. End Change.

 TE_LIMIT = q_over_omega +
 & (TE_LIMIT - q_over_omega) * EXP(-OMEGA * DELTA_T)

*** range check the current value of for the thrust error limit ***

 call RANGE_CHECK(TE_LIMIT, KTE_LIMITLB,
 & KTE_LIMITUB, 'AECLP', KTE_LIMITNAME)

 if (TE_LIMIT .LT. TE_MIN(CL)) then
 TE_LIMIT= TE_MIN(CL)

 else if (TE_LIMIT .GT. TE_MAX(CL)) then
 TE_LIMIT = TE_MAX(CL)
 end if
 end if

* 2E) Compute the pitch, yaw and thrust errors.

*** Note, to get here (AE_SWITCH = K$AXIAL_ENGINES_ON) ***

 if (CHUTE_RELEASED .EQ. K$CHUTE_RELEASED) then

 if (CONTOUR_CROSSED .EQ. K$CONTOUR_NOT_CROSSED) then
 pitch_error = pitch_error_limit
 yaw_error = yaw_error_limit
 thrust_error = TE_DROP

 else
 pitch_error = pitch_error_limit
 yaw_error = yaw_error_limit
 thrust_error = TE_LIMIT
 end if

 else
*** "Chute Attached" ***
 pitch_error = GQ(CL) * GP_ROTATION(3, 1)
 yaw_error = -GR(CL) * GP_ROTATION(1, 2)
 thrust_error = TE_INIT

 end if

* 2F) Compute the axial engine value settings.

 C-8

 INTERNAL_CMD(1) = GP1 * pitch_error + thrust_error
 INTERNAL_CMD(2) = GP2 * pitch_error -
 & GPY * yaw_error + thrust_error
 INTERNAL_CMD(3) = GP2 * pitch_error +
 & GPY * yaw_error + thrust_error

* 2G) Convert the axial engine value settings to engine commands.

*** range check the internal command ***

 call RANGE_CHECK(INTERNAL_CMD(1), K$INTERNAL_CMD$LB,
 & K$INTERNAL_CMD$UB, 'AECLP', K$INTERNAL_CMD$NAME)

 call RANGE_CHECK(INTERNAL_CMD(2), K$INTERNAL_CMD$LB,
 & K$INTERNAL_CMD$UB, 'AECLP', K$INTERNAL_CMD$NAME)

 call RANGE_CHECK(INTERNAL_CMD(3), K$INTERNAL_CMD$LB,
 & K$INTERNAL_CMD$UB, 'AECLP', K$INTERNAL_CMD$NAME)

*** do the convertion for each engine ***

 do i = 1,3

 if (INTERNAL_CMD(i) .LT. 0) then
 AE_CMD(i) = 0

* v1 Changes for AR#23. Item 2. Added D0 to 0.5

 else if (INTERNAL_CMD(i) .LE. 1) then
 AE_CMD(i) = INT(127 * INTERNAL_CMD(i) + 0.5D0)

* v1 Changes for AR#23. End Change.

 else
 AE_CMD(i) = 127

 end if
 end do

 end if

 return
 end

***** end of module AECLP.FOR ***

 C-9

**
* Module: ARSP.FOR
* Facility: Pluto
* P-Spec: 1.2
* Abstract:
* This module contains the implementation of the functional
* requirements for ARSP.
*
* List of Routines:
* subroutine ARSP
**

**
* Title: ARSP
* Facility: Pluto
* Abstract:
* 1) maintain the history of the altitude and altimeter sensor data
* elements
* 2) determine the operational status of the altimeter radar sensor
* 3) Report the current altitude.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 10-JAN-1995 Philip Morris (PEM)
**
 subroutine ARSP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

**
* 1) Maintain the history of the altitude and the sensor status by
* "rotating variables."
**
 AR_ALTITUDE(4) = AR_ALTITUDE(3)
 AR_ALTITUDE(3) = AR_ALTITUDE(2)
 AR_ALTITUDE(2) = AR_ALTITUDE(1)
 AR_ALTITUDE(1) = AR_ALTITUDE(0)

 C-10

 AR_STATUS(4) = AR_STATUS(3)
 AR_STATUS(3) = AR_STATUS(2)
 AR_STATUS(2) = AR_STATUS(1)
 AR_STATUS(1) = AR_STATUS(0)

 K_ALT(4) = K_ALT(3)
 K_ALT(3) = K_ALT(2)
 K_ALT(2) = K_ALT(1)
 K_ALT(1) = K_ALT(0)

**
* 2) determine the operational status of the altimeter radar sensor.
*
* 3) There are three methods for determining the altitude.
*
* A) compute altitude from the sensor measurement.
*
* B) estimate altitude by fitting a third-order polynomial to the
* altitude history data values.
*
* C) report the altitude as the most recently reported altitude.
**

**
* If an echo has been received, then the lower order fifteen bits of
* AR_COUNTER contain the raw sensor measurement, and the upper bit of
* AR_COUNTER will be clear (ie: 0). When an echo has not been received,
* the AR_COUNTER will contain 16 set bits (ie: 0xFFFF).
*
* The data type of AR_COUNTER is integer*2 and the valid value range
* is specified as (-1, 32767). This implementation assumes that integer
* values are represented by twos complement. Thus, when an echo has not
* been recieved, the AR_COUNTER will contain the value of -1. Similarly,
* when an echo has been received, AR_COUNTER will contain a non-negative
* value.
**

 if (AR_COUNTER .NE. -1) then
 AR_STATUS(0) = K$HEALTHY
 K_ALT(0) = 1

*** A) compute the altitude from the sensor measurement ***

* v1 Changes for PR#24. Item 8. Changed 3E08 to 3D08.

* AR_ALTITUDE(0) = (AR_COUNTER * 3E08) / (2.0 * AR_FREQUENCY)
 AR_ALTITUDE(0) = (AR_COUNTER * 3D08) / (2.0 * AR_FREQUENCY)

* v1 Changes for PR#24. End Change.

 C-11

 else
* no echo received
 AR_STATUS(0) = K$FAILED

*** if at least one of the history sensor status is "failed" ***

 if ((AR_STATUS(1) .EQ. K$FAILED) .OR.
 & (AR_STATUS(2) .EQ. K$FAILED) .OR.
 & (AR_STATUS(3) .EQ. K$FAILED) .OR.
 & (AR_STATUS(4) .EQ. K$FAILED)) then

 K_ALT(0) = 0

*** C) return previously computed value ***

*** range check the altitude ****

 call RANGE_CHECK(AR_ALTITUDE(1),K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB,'ARSP', K$AR_ALTITUDE$NAME)

*** the value stored in AR_ALTITUDE(1) is aready
*** stored in AR_ALTITUDE(0)!

 else
* all sensor status histories are "healthy"

*** B) extrapolate the altitude ***

 K_ALT(0) = 1

*** range check the altitude ****

* v1 Changes for PR#24. Extra. Changed 'ASP' to 'ARSP'.

 call RANGE_CHECK(AR_ALTITUDE(1),K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB,'ARSP', K$AR_ALTITUDE$NAME)

 call RANGE_CHECK(AR_ALTITUDE(2),K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB,'ARSP', K$AR_ALTITUDE$NAME)

 call RANGE_CHECK(AR_ALTITUDE(3),K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB,'ARSP', K$AR_ALTITUDE$NAME)

 call RANGE_CHECK(AR_ALTITUDE(4),K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB,'ARSP', K$AR_ALTITUDE$NAME)

 AR_ALTITUDE(0) = 4*AR_ALTITUDE(1) - 6*AR_ALTITUDE(2) +
 & 4*AR_ALTITUDE(3) - AR_ALTITUDE(4)

 C-12

* v1 Changes for PR#24. End Change.

 end if
 end if

 return
 end

***** end of module arsp.for **

 C-13

**
* Module: ASP.FOR
* Facility: Pluto
* P-Spec: 1.3
* Abstract:
* This module contains the implementation of the functional
* requirements for ASP.
*
* List of Routines:
* subroutine ASP
**

**
* Title: ASP
* Facility: Pluto
* Abstract:
* 1) maintaining the history of the accelerations and accelerometer
* sensor statuses
* 2) determining the operational status of the accelerometer sensors
* 3) Reporting the current vehicle accelerations along each of the
* vehicle's three axes.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 16-MAR-1995 Philip Morris (PEM)
**

 subroutine ASP

 implicit none

*** define local constants ***

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local variables ***

 real*8 temp
 real*8 accel_m(3)

 C-14

 integer*4 i

 real*8 mean
 real*8 sd

* 1) Maintain the history of the vehicle accelerations and
* accelerometer sensor status by "rotating variables."

 A_ACCELERATION(1, 4) = A_ACCELERATION(1, 3)
 A_ACCELERATION(1, 3) = A_ACCELERATION(1, 2)
 A_ACCELERATION(1, 2) = A_ACCELERATION(1, 1)
 A_ACCELERATION(1, 1) = A_ACCELERATION(1, 0)

 A_ACCELERATION(2, 4) = A_ACCELERATION(2, 3)
 A_ACCELERATION(2, 3) = A_ACCELERATION(2, 2)
 A_ACCELERATION(2, 2) = A_ACCELERATION(2, 1)
 A_ACCELERATION(2, 1) = A_ACCELERATION(2, 0)

 A_ACCELERATION(3, 4) = A_ACCELERATION(3, 3)
 A_ACCELERATION(3, 3) = A_ACCELERATION(3, 2)
 A_ACCELERATION(3, 2) = A_ACCELERATION(3, 1)
 A_ACCELERATION(3, 1) = A_ACCELERATION(3, 0)

 A_STATUS(1, 3) = A_STATUS(1, 2)
 A_STATUS(1, 2) = A_STATUS(1, 1)
 A_STATUS(1, 1) = A_STATUS(1, 0)

 A_STATUS(2, 3) = A_STATUS(2, 2)
 A_STATUS(2, 2) = A_STATUS(2, 1)
 A_STATUS(2, 1) = A_STATUS(2, 0)

 A_STATUS(3, 3) = A_STATUS(3, 2)
 A_STATUS(3, 2) = A_STATUS(3, 1)
 A_STATUS(3, 1) = A_STATUS(3, 0)

* 2) and 3), determine the operational status and the vehicle
* accelerations for each axis.

*** range check the atmospheric temperature ****

 call RANGE_CHECK(ATMOSPHERIC_TEMP,K$ATMOSPHERIC_TEMP$LB,
 & K$ATMOSPHERIC_TEMP$UB,'ASP', K$ATMOSPHERIC_TEMP$NAME)

*** compute the preliminary value for the accelerations ***

 temp = (G1 * ATMOSPHERIC_TEMP) + (G2 * ATMOSPHERIC_TEMP**2)

 C-15

 accel_m(1) = A_BIAS(1)+ (A_GAIN_0(1) + temp) * A_COUNTER(1)
 accel_m(2) = A_BIAS(2)+ (A_GAIN_0(2) + temp) * A_COUNTER(2)
 accel_m(3) = A_BIAS(3)+ (A_GAIN_0(3) + temp) * A_COUNTER(3)

 A_ACCELERATION(1, 0) = ALPHA_MATRIX(1, 1) * accel_m(1) +
 & ALPHA_MATRIX(1, 2) * accel_m(2) +
 & ALPHA_MATRIX(1, 3) * accel_m(3)

 A_ACCELERATION(2, 0) = ALPHA_MATRIX(2, 1) * accel_m(1) +
 & ALPHA_MATRIX(2, 2) * accel_m(2) +
 & ALPHA_MATRIX(2, 3) * accel_m(3)

 A_ACCELERATION(3, 0) = ALPHA_MATRIX(3, 1) * accel_m(1) +
 & ALPHA_MATRIX(3, 2) * accel_m(2) +
 & ALPHA_MATRIX(3, 3) * accel_m(3)

* Determine whether or not the preliminary values for the
* accelerations are reasonable. The preliminary value for an
* acceleration is deemed reasonable: 1) if it differs from the mean
* of the previous three measurements by not more than A_SCALE
* standard deviations; 2) when any of the three accelerometer
* history statuses is "unhealthy" (value 1). If a preliminary
* acceleration value is found to be reasonable,
* then it is reported as the acceleration for it's axis. If a
* preliminary value is not found to be reasonable, then the
* mean of the previous three measurements is reported as the
* acceleration for that axis.
*
* The current value for the sensor status is determined directly
* from the reasonableness of the value of the preliminary
* accleration. If the preliminary acceleration is reasonable, the
* sensor status is deemed "healthy " (value 0). If the preliminary
* acceleration is not reasonable, the sensor status is deemed
* "unhealthy."

 do i=1,3

* v1 PR#27 Item 1. Adjust mean calculation.

* if ((A_STATUS(i, 1) .EQ. K$UNHEALTHY) .OR.
* & (A_STATUS(i, 2) .EQ. K$UNHEALTHY) .OR.
* & (A_STATUS(i, 3) .EQ. K$UNHEALTHY)) then
*
*** one or more history statuses are "unhealthy" ***
*
* A_STATUS(i, 0) = K$HEALTHY
*
* else

 C-16

* all history status are "healthy"
 A_STATUS(i, 0) = K$HEALTHY

 if ((A_STATUS(i, 1) .EQ. K$HEALTHY) .AND.
 & (A_STATUS(i, 2) .EQ. K$HEALTHY) .AND.
 & (A_STATUS(i, 3) .EQ. K$HEALTHY)) then

 if ((A_ACCELERATION(i,1) .NE. A_ACCELERATION(i,2)) .OR.
 & (A_ACCELERATION(i,1) .NE. A_ACCELERATION(i,3))) then

* v1 PR#27 End Change.

*** compute the mean of the previous three values ***

*** range check the acceleration values ****

 call RANGE_CHECK(A_ACCELERATION(i, 1),K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB,'ASP', K$A_ACCELERATION$NAME)

 call RANGE_CHECK(A_ACCELERATION(i, 2),K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB,'ASP', K$A_ACCELERATION$NAME)

 call RANGE_CHECK(A_ACCELERATION(i, 3),K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB,'ASP', K$A_ACCELERATION$NAME)

* v1 PR#27 Item 2. Adjust Standard deviation calculation.

*** compute the standard deviation ***

 mean = (A_ACCELERATION(i, 1) +
 & A_ACCELERATION(i, 2) +
 & A_ACCELERATION(i, 3)) / 3.0D0

 temp = ((A_ACCELERATION(i,1) - mean)**2 +
 & (A_ACCELERATION(i,2) - mean)**2 +
 & (A_ACCELERATION(i,3) - mean)**2)
 & / 3.0D0

 sd = SQRT(temp)

 temp = ABS(mean - A_ACCELERATION(i, 0))
 if (temp .GT. A_SCALE * sd) then
 A_ACCELERATION(i, 0) = mean
 A_STATUS(i, 0) = K$UNHEALTHY
 end if

 end if ! close if block for A_ACCELERATION
 end if ! close if block for A_STATUS

 C-17

 end do

* Note, numerical inaccuracies are inherent in the digital
* representation of real numbers. Computing the variance can
* potentially result in a small negative value, when the previous
* accelerations have identical values. Therefore, the following
* algorithm specifies a seperate case for computing the standard
* deviation when the previous accelerations have identical values.

*
* if ((A_ACCELERATION(i,1) .EQ. A_ACCELERATION(i,2)) .AND.
* & (A_ACCELERATION(i,1) .EQ. A_ACCELERATION(i,3))) then
* sd = 0.0
* else
* temp = ((A_ACCELERATION(i,1)**2 +
* & A_ACCELERATION(i,2)**2 +
* & A_ACCELERATION(i,3)**2) / 3.0) - mean**2
*
* call NEG_VALUE_CHECK(temp, 'ASP')
*
* sd = SQRT(temp)
*
* end if
*
* if (ABS(mean - A_ACCELERATION(i, 0)) .GT.
* & A_SCALE * sd) then
* A_ACCELERATION(i, 0) = mean
* A_STATUS(i, 0) = K$UNHEALTHY
* else
* A_STATUS(i, 0) = K$HEALTHY
* end if
*
* end if
*
* end do

* v1 PR#27 End Change.

 return
 end

***** end of module asp.for ***

 C-19

**
* Module: CLPSF.FOR
* Facility: Pluto
* P-Spec: 3.0
* Abstract:
* This module contains the entry for the control law processing
* subframe.
*
* List of Routines:
* subroutine CLPSF
**

**
* Title: CLPSF
* Facility: Pluto
* Abstract:
* This routine provides control of the Control Law Processing
* SubFrame processing.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 15-Feb-1995 Philip Morris (PEM)
**

 subroutine CLPSF

 implicit none

*** execution begins here ***

 call GCS_SIM_RENDEZVOUS

* v1 Changes for AR#26. Item 1. Correct Spelling

* call AELCP
 call AECLP

* v1 Changes for AR#26. Item 1. End Cahnge.

 call RECLP
 call CRCP
 call CP

 return
 end

***** end of module CLPSF.FOR ***

C-20

* Module: CONSTANTS.FOR
* Facility: Pluto
* Abstract:
* This module contains the constants used in Pluto. The constants
* consist of values for enumerated types, upper and lower
* bounds, and error reporting text.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
* v2 10-Jan-1995 Philip Morris (PEM)

*** define constant values (for enumerated types) ***********************

*** AE_TEMP values ***

* v1 Changes for AR#23. Item 4. Changed logical*1 to integer*2

 integer*2 K$COLD
 parameter (K$COLD = 0)

 integer*2 K$WARMING_UP
 parameter (K$WARMING_UP = 1)

 integer*2 K$HOT
 parameter (K$HOT = 2)

* v1 Changes for AR#23. End Change.

*** AE_SWITCH values ***

 logical*1 K$AXIAL_ENGINES_ARE_OFF
 parameter (K$AXIAL_ENGINES_ARE_OFF= 0)

 logical*1 K$AXIAL_ENGINES_ARE_ON
 parameter (K$AXIAL_ENGINES_ARE_ON = 1)

*** CHUTE_RELEASED values ***

 logical*1 K$CHUTE_ATTACHED
 parameter (K$CHUTE_ATTACHED = 0)

 logical*1 K$CHUTE_RELEASED
 parameter (K$CHUTE_RELEASED = 1)

*** CL values ***

C-21

 integer*2 K$FIRST
 parameter (K$FIRST = 1)

 integer*2 K$SECOND
 parameter (K$SECOND = 2)

*** CONTOUR_CROSSED values ***

 logical*1 K$CONTOUR_NOT_CROSSED
 parameter (K$CONTOUR_NOT_CROSSED = 0)

 logical*1 K$CONTOUR_CROSSED
 parameter (K$CONTOUR_CROSSED = 1)

*** RE_CMD values ***

 integer*2 K$CCW
 parameter (K$CCW = 0)

 integer*2 K$CW
 parameter (K$CW = 1)

 integer*2 K$OFF
 parameter (K$OFF = 0)

 integer*2 K$MINIMUM
 parameter (K$MINIMUM = 2)

 integer*2 K$INTERMEDIATE
 parameter (K$INTERMEDIATE = 4)

 integer*2 K$MAXIMUM
 parameter (K$MAXIMUM = 6)

*** RE_SWITCH values ***

 logical*1 K$ROLL_ENGINES_ARE_OFF
 parameter (K$ROLL_ENGINES_ARE_OFF = 0)

 logical*1 K$ROLL_ENGINES_ARE_ON
 parameter (K$ROLL_ENGINES_ARE_ON = 1)

*** Sensor statuses ***

 logical*1 K$HEALTHY
 parameter (K$HEALTHY = 0)

 logical*1 K$UNHEALTHY
 parameter (K$UNHEALTHY = 1)

C-22

 logical*1 K$FAILED
 parameter (K$FAILED = 1)

*** TD_SENSED values ***

 logical*1 K$TOUCH_DOWN_NOT_SENSED
 parameter (K$TOUCH_DOWN_NOT_SENSED = 0)

 logical*1 K$TOUCH_DOWN_SENSED
 parameter (K$TOUCH_DOWN_SENSED = 1)

*** TDLR_STATE values ***

 logical*1 K$BEAM_UNLOCKED
 parameter (K$BEAM_UNLOCKED= 0)

 logical*1 K$BEAM_LOCKED
 parameter (K$BEAM_LOCKED = 1)

*** define Range checking constants ************************************

*** upper and lower bounds ***

* v1 Changes for AR#23. Item 3. Added D0 to some reals.

 real*8 K$A_ACCELERATION$LB
 parameter (K$A_ACCELERATION$LB = -20.0)

 real*8 K$A_ACCELERATION$UB
 parameter (K$A_ACCELERATION$UB = 5.0)

 real*8 K$AR_ALTITUDE$LB
 parameter (K$AR_ALTITUDE$LB = 0.0)

 real*8 K$AR_ALTITUDE$UB
 parameter (K$AR_ALTITUDE$UB = 2000.0)

 real*8 K$ATMOSPHERIC_TEMP$LB
 parameter (K$ATMOSPHERIC_TEMP$LB = -200.0)

 real*8 K$ATMOSPHERIC_TEMP$UB
 parameter (K$ATMOSPHERIC_TEMP$UB = 25.0)

 real*8 K$G_ROTATION$LB
 parameter (K$G_ROTATION$LB = -1.0)

 real*8 K$G_ROTATION$UB
 parameter (K$G_ROTATION$UB = 1.0)

 real*8 K$GP_ALTITUDE$LB

C-23

 parameter (K$GP_ALTITUDE$LB = 0.0)

 real*8 K$GP_ALTITUDE$UB
 parameter (K$GP_ALTITUDE$UB = 2000.0)

 real*8 K$GP_ATTITUDE$LB
 parameter (K$GP_ATTITUDE$LB = -1.0)

 real*8 K$GP_ATTITUDE$UB
 parameter (K$GP_ATTITUDE$UB = 1.0)

 real*8 K$GP_ROTATION$LB
 parameter (K$GP_ROTATION$LB = -1.0)

 real*8 K$GP_ROTATION$UB
 parameter (K$GP_ROTATION$UB = 1.0)

 real*8 K$GP_VELOCITY$LB
 parameter (K$GP_VELOCITY$LB = -100.0)

 real*8 K$GP_VELOCITY$UB
 parameter (K$GP_VELOCITY$UB = 100.0)

 real*8 K$INTERNAL_CMD$LB
 parameter (K$INTERNAL_CMD$LB = -0.7D0)

 real*8 K$INTERNAL_CMD$UB
 parameter (K$INTERNAL_CMD$UB = 1.7D0)

 real*8 K$PE_INTEGRAL$LB
 parameter (K$PE_INTEGRAL$LB = -100.0)

 real*8 K$PE_INTEGRAL$UB
 parameter (K$PE_INTEGRAL$UB = 100.0)

 real*8 K$TDLR_VELOCITY$LB
 parameter (K$TDLR_VELOCITY$LB = -100.0)

 real*8 K$TDLR_VELOCITY$UB
 parameter (K$TDLR_VELOCITY$UB = 100.0)

 real*8 K$TE_INTEGRAL$LB
 parameter (K$TE_INTEGRAL$LB = -100.0)

 real*8 K$TE_INTEGRAL$UB
 parameter (K$TE_INTEGRAL$UB = 100.0)

 real*8 KTE_LIMITLB
 parameter (KTE_LIMITLB = -100.0)

 real*8 KTE_LIMITUB

C-24

 parameter (KTE_LIMITUB = 100.0)

* v2 Changes for AR#24. Item 5. Changed signs.

 real*8 K$THETA$UB
 parameter (K$THETA$UB = 3.141592653589793)

 real*8 K$THETA$LB
 parameter (K$THETA$LB = -3.141592653589793)

* real*8 K$THETA$UB
* parameter (K$THETA$UB = -3.141592653589793)
*
* real*8 K$THETA$LB
* parameter (K$THETA$LB = 3.141592653589793)

* v2 Changes for AR#24. End Change.

 real*8 K$VELOCITY_ERROR$LB
 parameter (K$VELOCITY_ERROR$LB = -300.0)

 real*8 K$VELOCITY_ERROR$UB
 parameter (K$VELOCITY_ERROR$UB = 20.0)

 real*8 K$YE_INTEGRAL$LB
 parameter (K$YE_INTEGRAL$LB = -100.0)

 real*8 K$YE_INTEGRAL$UB
 parameter (K$YE_INTEGRAL$UB = 100.0)

* v1 Changes for AR#23. End Change.

*** define constants for data element names used in error messages ******

 character*(*) K$A_ACCELERATION$NAME
 parameter (K$A_ACCELERATION$NAME = 'A_ACCELERATION')

 character*(*) K$AR_ALTITUDE$NAME
 parameter (K$AR_ALTITUDE$NAME = 'AR_ALTITUDE')

 character*(*) K$ATMOSPHERIC_TEMP$NAME
 parameter (K$ATMOSPHERIC_TEMP$NAME= 'ATMOSPHERIC_TEMP')

 character*(*) K$G_ROTATION$NAME
 parameter (K$G_ROTATION$NAME = 'G_ROTATION')

 character*(*) K$GP_ALTITUDE$NAME
 parameter (K$GP_ALTITUDE$NAME = 'GP_ALTITUDE')

C-25

 character*(*) K$GP_ATTITUDE$NAME
 parameter (K$GP_ATTITUDE$NAME = 'GP_ATTITUDE')

 character*(*) K$GP_ROTATION$NAME
 parameter (K$GP_ROTATION$NAME = 'GP_ROTATION')

 character*(*) K$GP_VELOCITY$NAME
 parameter (K$GP_VELOCITY$NAME = 'GP_VELOCITY')

 character*(*) K$INTERNAL_CMD$NAME
 parameter (K$INTERNAL_CMD$NAME = 'INTERNAL_CMD')

 character*(*) K$PE_INTEGRAL$NAME
 parameter (K$PE_INTEGRAL$NAME = 'PE_INTEGRAL')

 character*(*) K$TDLR_VELOCITY$NAME
 parameter (K$TDLR_VELOCITY$NAME = 'TDLR_VELOCITY')

 character*(*) K$TE_INTEGRAL$NAME
 parameter (K$TE_INTEGRAL$NAME = 'TE_INTEGRAL')

 character*(*) KTE_LIMITNAME
 parameter (KTE_LIMITNAME = 'TE_LIMIT')

 character*(*) K$THETA$NAME
 parameter (K$THETA$NAME = 'THETA')

 character*(*) K$VELOCITY_ERROR$NAME
 parameter (K$VELOCITY_ERROR$NAME = 'VELOCITY_ERROR')

 character*(*) K$YE_INTEGRAL$NAME
 parameter (K$YE_INTEGRAL$NAME = 'YE_INTEGRAL')

***** end of module CONSTANTS.FOR ***************************************

C-26

**
* Module: CP.FOR
* Facility: Pluto
* P-Spec: 2.3
* Abstract:
* This module contains the implementation of the functional
* requirements for CP.
*
* List of Routines:
* subroutine CP
* function CRC16
**

**
* Title: CP
* Facility: Pluto
* Abstract:
* 1) determine the current operational status of the communicator.
* 2) construct a telemetry data packet.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 13-jan-1995 Philip Morris (PEM)
**

 subroutine CP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** define local constants ***

*** the byte count (size in bytes) of the three packets ***

 integer*4 K$SP_SIZE
 parameter (K$SP_SIZE = 129)

 integer*4 K$GP_SIZE

C-27

 parameter (K$GP_SIZE = 173)

 integer*4 K$CLP_SIZE
 parameter (K$CLP_SIZE = 45)

*** declare local functions ***

 integer*2 CRC16

*** declare local variables ***
 integer*2 seq_temp
 logical*1 seq_temp_char(2)
 equivalence (seq_temp,seq_temp_char(1))

* 1) Determine the current operational status of the communicator.

 C_STATUS = 0

**
* 2) Construct a telemetry data packet.
**

**
* 2A) Get synchronization pattern.
**

 PACKET.sync_pattern = COMM_SYNC_PATTERN

**
* 2B) Determine the sequence number.
**

 seq_temp = MOD(3*(FRAME_COUNTER-1)+
 & (SUBFRAME_COUNTER-1), 256)
 PACKET.seq_number = seq_temp_char(1)

**
* 2C) Prepare the data mask,
* 2D) Prepare the data, and
* 2E) Compute the checksum.
*
* The 'PACKET' data structure is defined in module EXTERNAL.FOR
**

 if (SUBFRAME_COUNTER .EQ. 1) then
 PACKET.DATA_MASK = '1F20F1F4'X

 PACKET.sp.ar_altitude = AR_ALTITUDE(0)
 PACKET.sp.ar_status = AR_STATUS(0)

C-28

 PACKET.sp.atmospheric_temp = ATMOSPHERIC_TEMP
 PACKET.sp.a_acceleration(1)= A_ACCELERATION(1,0)
 PACKET.sp.a_acceleration(2)= A_ACCELERATION(2,0)
 PACKET.sp.a_acceleration(3)= A_ACCELERATION(3,0)
 PACKET.sp.a_status(1) = A_STATUS(1,0)
 PACKET.sp.A_STATUS(2) = A_STATUS(2,0)
 PACKET.sp.a_status(3) = A_STATUS(3,0)
 PACKET.sp.c_status = C_STATUS
 PACKET.sp.g_rotation(1) = G_ROTATION(1,0)
 PACKET.sp.g_rotation(2) = G_ROTATION(2,0)
 PACKET.sp.g_rotation(3) = G_ROTATION(3,0)
 PACKET.sp.g_status = G_STATUS
 PACKET.sp.k_alt = K_ALT(0)
 PACKET.sp.k_matrix(1) = K_MATRIX(1,1,0)
 PACKET.sp.k_matrix(2) = K_MATRIX(2,2,0)
 PACKET.sp.k_matrix(3) = K_MATRIX(3,3,0)
 PACKET.sp.tdlr_state(1) = TDLR_STATE(1)
 PACKET.sp.tdlr_state(2) = TDLR_STATE(2)
 PACKET.sp.tdlr_state(3) = TDLR_STATE(3)
 PACKET.sp.tdlr_state(4) = TDLR_STATE(4)
 PACKET.sp.tdlr_status(1) = TDLR_STATUS(1)
 PACKET.sp.tdlr_status(2) = TDLR_STATUS(2)
 PACKET.sp.tdlr_status(3) = TDLR_STATUS(3)
 PACKET.sp.tdlr_status(4) = TDLR_STATUS(4)
 PACKET.sp.tdlr_velocity(1) = TDLR_VELOCITY(1,0)
 PACKET.sp.tdlr_velocity(2) = TDLR_VELOCITY(2,0)
 PACKET.sp.tdlr_velocity(3) = TDLR_VELOCITY(3,0)
 PACKET.sp.tds_status = TDS_STATUS
 PACKET.sp.td_sensed = TD_SENSED
 PACKET.sp.ts_status(1) = TS_STATUS(1)
 PACKET.sp.ts_status(2) = TS_STATUS(2)

* v1 PR#25 Item 1. Send whole packet.

* PACKET.sp.checksum = CRC16(PACKET.sp, K$SP_SIZE)
 PACKET.sp.checksum = CRC16(PACKET.PACKET, K$SP_SIZE)

* v1 PR#25 End Change.

 else if (SUBFRAME_COUNTER .EQ. 2) then
 PACKET.data_mask = '007F0002'X

 PACKET.gp.contour_crossed = CONTOUR_CROSSED
 PACKET.gp.c_status = C_STATUS
 PACKET.gp.gp_altitude = GP_ALTITUDE(0)

*** first element of array changes most rapidly ***

 PACKET.gp.gp_attitude(1) = GP_ATTITUDE(1, 1, 0)
 PACKET.gp.gp_attitude(2) = GP_ATTITUDE(2, 1, 0)

C-29

 PACKET.gp.gp_attitude(3) = GP_ATTITUDE(3, 1, 0)
 PACKET.gp.gp_attitude(4) = GP_ATTITUDE(1, 2, 0)
 PACKET.gp.gp_attitude(5) = GP_ATTITUDE(2, 2, 0)
 PACKET.gp.gp_attitude(6) = GP_ATTITUDE(3, 2, 0)
 PACKET.gp.gp_attitude(7) = GP_ATTITUDE(1, 3, 0)
 PACKET.gp.gp_attitude(8) = GP_ATTITUDE(2, 3, 0)
 PACKET.gp.gp_attitude(9) = GP_ATTITUDE(3, 3, 0)

 PACKET.gp.gp_phase = GP_PHASE

 PACKET.gp.gp_rotation(1) = GP_ROTATION(2, 1)
 PACKET.gp.gp_rotation(2) = GP_ROTATION(3, 1)
 PACKET.gp.gp_rotation(3) = GP_ROTATION(1, 2)
 PACKET.gp.gp_rotation(4) = GP_ROTATION(3, 2)
 PACKET.gp.gp_rotation(5) = GP_ROTATION(1, 3)
 PACKET.gp.gp_rotation(6) = GP_ROTATION(2, 3)

 PACKET.gp.gp_velocity(1) = GP_VELOCITY(1, 0)
 PACKET.gp.gp_velocity(2) = GP_VELOCITY(2, 0)
 PACKET.gp.gp_velocity(3) = GP_VELOCITY(3, 0)

 PACKET.gp.velocity_error = VELOCITY_ERROR

* v1 PR#25 Item 1. Send whole packet.

* PACKET.gp.checksum = CRC16(PACKET.gp, K$GP_SIZE)
 PACKET.gp.checksum = CRC16(PACKET.PACKET, K$GP_SIZE)

* v1 PR#25 End Change.

 else
 PACKET.data_mask = 'E0A00E09'X

 PACKET.clp.ae_cmd(1) = AE_CMD(1)
 PACKET.clp.ae_cmd(2) = AE_CMD(2)
 PACKET.clp.ae_cmd(3) = AE_CMD(3)
 PACKET.clp.ae_status = AE_STATUS
 PACKET.clp.ae_temp = AE_TEMP
 PACKET.clp.chute_released = CHUTE_RELEASED
 PACKET.clp.c_status = C_STATUS
 PACKET.clp.pe_integral = PE_INTEGRAL
 PACKET.clp.re_cmd = RE_CMD
 PACKET.clp.re_status = RE_STATUS
 PACKET.clp.te_integral = TE_INTEGRAL
 PACKET.clp.ye_integral = YE_INTEGRAL

* v1 PR#25 Item 1. Send whole packet.

* PACKET.clp.checksum = CRC16(PACKET.clp, K$CLP_SIZE)
 PACKET.clp.checksum = CRC16(PACKET.PACKET, K$CLP_SIZE)

C-30

* v1 PR#25 End Change.

 end if

 return
 end

***** end of subroutine CP ***

**
* Title: CRC16
* Facility: Pluto
* Abstract:
* Compute the Cyclic Redundancy Code of the specified buffer using
* CRC-16 as the generator polynomial.
*
* Arguments:
* character*(*) message - address of first byte of message.
* integer*4 bytecount - count of bytes in message.
*
* Returns:
* integer*2 crc16 - the bit checksum of the specified message.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

 integer*2 function CRC16(message, bytecount)

 implicit none

*** declare the arguments ***

 integer*4 bytecount
 byte message(bytecount)

*** declare local variables ***

 integer*4 i
 logical*2 index
 integer*2 temp

*** The "signature" table for the CRC-16 generator polynomial 0xA001 ***

 integer*2 crc16_table(0:255)

 data (crc16_table(i),i= 0, 7)
 & /'0000'X, 'c0c1'X, 'c181'X, '0140'X,
 & 'c301'X, '03c0'X, '0280'X, 'c241'X/

C-31

 data (crc16_table(i),i= 8, 15)
 & /'c601'X, '06c0'X, '0780'X, 'c741'X,
 & '0500'X, 'c5c1'X, 'c481'X, '0440'X/
 data (crc16_table(i),i= 16, 23)
 & /'cc01'X, '0cc0'X, '0d80'X, 'cd41'X,
 & '0f00'X, 'cfc1'X, 'ce81'X, '0e40'X/
 data (crc16_table(i),i= 24, 31)
 & /'0a00'X, 'cac1'X, 'cb81'X, '0b40'X,
 & 'c901'X, '09c0'X, '0880'X, 'c841'X/
 data (crc16_table(i),i= 32, 39)
 & /'d801'X, '18c0'X, '1980'X, 'd941'X,
 & '1b00'X, 'dbc1'X, 'da81'X, '1a40'X/
 data (crc16_table(i),i= 40, 47)
 & /'1e00'X, 'dec1'X, 'df81'X, '1f40'X,
 & 'dd01'X, '1dc0'X, '1c80'X, 'dc41'X/
 data (crc16_table(i),i= 48, 55)
 & /'1400'X, 'd4c1'X, 'd581'X, '1540'X,
 & 'd701'X, '17c0'X, '1680'X, 'd641'X/
 data (crc16_table(i),i= 56, 63)
 & /'d201'X, '12c0'X, '1380'X, 'd341'X,
 & '1100'X, 'd1c1'X, 'd081'X, '1040'X/
 data (crc16_table(i),i= 64, 71)
 & /'f001'X, '30c0'X, '3180'X, 'f141'X,
 & '3300'X, 'f3c1'X, 'f281'X, '3240'X/
 data (crc16_table(i),i= 72, 79)
 & /'3600'X, 'f6c1'X, 'f781'X, '3740'X,
 & 'f501'X, '35c0'X, '3480'X, 'f441'X/
 data (crc16_table(i),i= 80, 87)
 & /'3c00'X, 'fcc1'X, 'fd81'X, '3d40'X,
 & 'ff01'X, '3fc0'X, '3e80'X, 'fe41'X/
 data (crc16_table(i),i= 88, 95)
 & /'fa01'X, '3ac0'X, '3b80'X, 'fb41'X,
 & '3900'X, 'f9c1'X, 'f881'X, '3840'X/
 data (crc16_table(i),i= 96,103)
 & /'2800'X, 'e8c1'X, 'e981'X, '2940'X,
 & 'eb01'X, '2bc0'X, '2a80'X, 'ea41'X/
 data (crc16_table(i),i=104,111)
 & /'ee01'X, '2ec0'X, '2f80'X, 'ef41'X,
 & '2d00'X, 'edc1'X, 'ec81'X, '2c40'X/
 data (crc16_table(i),i=112,119)
 & /'e401'X, '24c0'X, '2580'X, 'e541'X,
 & '2700'X, 'e7c1'X, 'e681'X, '2640'X/
 data (crc16_table(i),i=120,127)
 & /'2200'X, 'e2c1'X, 'e381'X, '2340'X,
 & 'e101'X, '21c0'X, '2080'X, 'e041'X/
 data (crc16_table(i),i=128,135)
 & /'a001'X, '60c0'X, '6180'X, 'a141'X,
 & '6300'X, 'a3c1'X, 'a281'X, '6240'X/
 data (crc16_table(i),i=136,143)
 & /'6600'X, 'a6c1'X, 'a781'X, '6740'X,
 & 'a501'X, '65c0'X, '6480'X, 'a441'X/

C-32

 data (crc16_table(i),i=144,151)
 & /'6c00'X, 'acc1'X, 'ad81'X, '6d40'X,
 & 'af01'X, '6fc0'X, '6e80'X, 'ae41'X/
 data (crc16_table(i),i=152,159)
 & /'aa01'X, '6ac0'X, '6b80'X, 'ab41'X,
 & '6900'X, 'a9c1'X, 'a881'X, '6840'X/
 data (crc16_table(i),i=160,167)
 & /'7800'X, 'b8c1'X, 'b981'X, '7940'X,
 & 'bb01'X, '7bc0'X, '7a80'X, 'ba41'X/
 data (crc16_table(i),i=168,175)
 & /'be01'X, '7ec0'X, '7f80'X, 'bf41'X,
 & '7d00'X, 'bdc1'X, 'bc81'X, '7c40'X/
 data (crc16_table(i),i=176,183)
 & /'b401'X, '74c0'X, '7580'X, 'b541'X,
 & '7700'X, 'b7c1'X, 'b681'X, '7640'X/
 data (crc16_table(i),i=184,191)
 & /'7200'X, 'b2c1'X, 'b381'X, '7340'X,
 & 'b101'X, '71c0'X, '7080'X, 'b041'X/
 data (crc16_table(i),i=192,199)
 & /'5000'X, '90c1'X, '9181'X, '5140'X,
 & '9301'X, '53c0'X, '5280'X, '9241'X/
 data (crc16_table(i),i=200,207)
 & /'9601'X, '56c0'X, '5780'X, '9741'X,
 & '5500'X, '95c1'X, '9481'X, '5440'X/
 data (crc16_table(i),i=208,215)
 & /'9c01'X, '5cc0'X, '5d80'X, '9d41'X,
 & '5f00'X, '9fc1'X, '9e81'X, '5e40'X/
 data (crc16_table(i),i=216,223)
 & /'5a00'X, '9ac1'X, '9b81'X, '5b40'X,
 & '9901'X, '59c0'X, '5880'X, '9841'X/
 data (crc16_table(i),i=224,231)
 & /'8801'X, '48c0'X, '4980'X, '8941'X,
 & '4b00'X, '8bc1'X, '8a81'X, '4a40'X/
 data (crc16_table(i),i=232,239)
 & /'4e00'X, '8ec1'X, '8f81'X, '4f40'X,
 & '8d01'X, '4dc0'X, '4c80'X, '8c41'X/
 data (crc16_table(i),i=240,247)
 & /'4400'X, '84c1'X, '8581'X, '4540'X,
 & '8701'X, '47c0'X, '4680'X, '8641'X/
 data (crc16_table(i),i=248,255)
 & /'8201'X, '42c0'X, '4380'X, '8341'X,
 & '4100'X, '81c1'X, '8081'X, '4040'X/

*** crc is a 16-bit unsigned integer value ***

 CRC16 = 0

*** process every byte in the message ***

 do i = 1,bytecount
 temp = message(i)

C-33

 index = IEOR(CRC16, temp) ! bitwise xOR lower 8 bits of crc
 index = IAND(index,'00FF'X) ! clear top byte of word
 CRC16 = ISHFT(CRC16, -8) ! bitwise right shift crc 8 times
 CRC16 = IEOR(CRC16,crc16_table(index)) ! bitwise XOR 16 bits
 end do

 return
 end

***** end of function CRC16 ***

***** end of module CP **

C-34

* Module: CRCP.FOR
* Facilitiy: Pluto
* P-Spec: 3.3
* Abstract:
* This module contains the implementation of the functional
* requirements for CRCP.
*
* List of Routines:
* subroutine CRCP

* Title: CRCP
* Facility: Pluto
* Abstract:
* 1) Determine whether or not to release the parachute.
*
* Arguments: None.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.

 subroutine CRCP

 implicit none

*** include the global common stores ***

 include 'guidance_state.for'
 include 'external.for'

*** include constant definitions ***

 include 'constants.for'

* The parachute is to be released during the same frame in which the
* axial engine temperature becomes "HOT" (2). Valid states for
* CHUTE_RELEASED are "Chute Attached" (0) and "Chute Released" (1).

*** 1) Determine whether or not to release the parachute. ***

 if (CHUTE_RELEASED .eq. K$CHUTE_ATTACHED) then

 if (AE_TEMP .eq. K$HOT) then
 CHUTE_RELEASED = K$CHUTE_RELEASED
 end if

 end if

 return

C-35

 end

***** end of module crcp.for **

C-36

**
* Module: EXTERNAL.FOR
* Facility: Pluto
* Abstract:
* This module contains the data definitions for the
* global common data store named EXTERNAL.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
**

*** COMMON block definition ***

 COMMON /EXTERNAL/
 & A_COUNTER,
 & AE_CMD,
 & AR_COUNTER,
 & CHUTE_RELEASED,
 & FRAME_COUNTER,
 & G_COUNTER,
 & PACKET,
 & RE_CMD,
 & SS_TEMP,
 & SUBFRAME_COUNTER,
 & TD_COUNTER,
 & TDLR_COUNTER,
 & THERMO_TEMP

*** data type declarations ***

 integer*2 A_COUNTER(1:3)
 integer*2 AE_CMD(1:3)
 integer*2 AR_COUNTER
 logical*1 CHUTE_RELEASED
 integer*4 FRAME_COUNTER
 integer*2 G_COUNTER(1:3)
 integer*2 RE_CMD
 integer*2 SS_TEMP
 integer*2 SUBFRAME_COUNTER
 integer*2 TD_COUNTER
 integer*2 TDLR_COUNTER(1:4)
 integer*2 THERMO_TEMP

* Although the specifications define 'packet' as an array of
* integer*2's, the functional unit CP treats 'packet' as a
* variant record. The definitions below reserve an array
* of 256 integer*2 data and overlay the area with a variant
* record structure.

C-37

*** the Sensor Processing subframe data field and checksum ***

 structure /sp_data_t/
 real*8 ar_altitude
 logical*1 ar_status
 real*8 atmospheric_temp
 real*8 a_acceleration(1:3)
 logical*1 a_status(1:3)
 logical*1 c_status
 real*8 g_rotation(1:3)
 logical*1 g_status
 integer*4 k_alt
 integer*4 k_matrix(1:3)
 logical*1 tdlr_state(1:4)
 logical*1 tdlr_status(1:4)
 real*8 tdlr_velocity(1:3)
 logical*1 tds_status
 logical*1 td_sensed
 logical*1 ts_status(2)
 integer*2 checksum
 end structure

*** the Guidance Processing subframe data field and checksum ***

 structure /gp_data_t/
 logical*1 contour_crossed
 logical*1 c_status
 real*8 gp_altitude
 real*8 gp_attitude(1:9)
 integer*4 gp_phase
 real*8 gp_rotation(1:6)
 real*8 gp_velocity(1:3)
 real*8 velocity_error
 integer*2 checksum
 end structure

*** the Control Law Processing subframe data field and checksum ***

* v1 Changes for AR#23. Item 5. ae_temp was changed from logical*1 to integer*2

 structure /clp_data_t/
 integer*2 ae_cmd(1:3)
 logical*1 ae_status
 integer*2 ae_temp
 logical*1 chute_released
 logical*1 c_status
 real*8 pe_integral
 integer*2 re_cmd
 logical*1 re_status

C-38

 real*8 te_integral
 real*8 ye_integral
 integer*2 checksum
 end structure

* v1 Changes for AR#23. End Change.

*** the data packet structure ***

 structure /data_packet_t/
 union
 map
 integer*2 PACKET(1:256)
 end map
 map
 integer*2 sync_pattern
 logical*1 seq_number
 integer*4 data_mask
 union
 map
 record /sp_data_t/ sp
 end map
 map
 record /gp_data_t/ gp
 end map
 map
 record /clp_data_t/ clp
 end map
 end union
 end map
 end union
 end structure

*** declare a variable of type PACKET ***

 record /data_packet_t/ PACKET

***** end of module EXTERNAL.FOR **

C-39

**
* Module: GP.FOR
* Facility: Pluto
* P-Spec: 2.2
* Abstract:
* This module contains the implementation of the functional
* requirements for GP.
*
* List of Routines:
* subroutine GP
* subroutine DERIV_ALT
* subroutine DERIV_ATT
* subroutine DERIV_VEL
* subroutine MULT_ATT
* subroutine MULT_VEL
* subroutine AVG_ATT
* subroutine AVG_VEL
**

**
* Title: GP
* Facility: Pluto
* Abstract:
* 1) Maintain the history of the vehicle's altitude, velocities,
* and attitude.
* 2) Compute the current vehicle altitude, velocities and attitude.
* 3) Determine if the engines should be switched on or off.
* 4) Compute the current velocity error.
* 5) Determe if the predetermined velocity-altitude contour has
* been crossed.
* 6) Determine the current guidance phase.
* 7) Determine the appropriate axial engine control law parameters.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 01-Dec-1994 Philip Morris (PEM)
* v2 10-JAN-1995 Philip Morris (PEM)
* v3 16-MAR-1995 Philip Morris (PEM)
**

 subroutine GP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'

C-40

 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local variables ***

 real*8 temp
 real*8 cur_altitude
 real*8 optimal_velocity

 real*8 att_k1(3,3), att_k2(3,3)
 real*8 att_k3(3,3), att_k4(3,3)
 real*8 att_tmp(3,3)

 real*8 vel_k1(3), vel_k2(3), vel_k3(3), vel_k4(3)
 real*8 vel_tmp(3)
 real*8 alt_k1, alt_k2, alt_k3, alt_k4

 real*8 step_size

 integer*4 i, j

* 1) Maintain the history of the vehicle altitude, velocities,
* and attitude by "rotating variables."

 GP_ALTITUDE(4) = GP_ALTITUDE(3)
 GP_ALTITUDE(3) = GP_ALTITUDE(2)
 GP_ALTITUDE(2) = GP_ALTITUDE(1)
 GP_ALTITUDE(1) = GP_ALTITUDE(0)

 GP_VELOCITY(1, 4) = GP_VELOCITY(1, 3)
 GP_VELOCITY(1, 3) = GP_VELOCITY(1, 2)
 GP_VELOCITY(1, 2) = GP_VELOCITY(1, 1)
 GP_VELOCITY(1, 1) = GP_VELOCITY(1, 0)

 GP_VELOCITY(2, 4) = GP_VELOCITY(2, 3)
 GP_VELOCITY(2, 3) = GP_VELOCITY(2, 2)
 GP_VELOCITY(2, 2) = GP_VELOCITY(2, 1)
 GP_VELOCITY(2, 1) = GP_VELOCITY(2, 0)

 GP_VELOCITY(3, 4) = GP_VELOCITY(3, 3)
 GP_VELOCITY(3, 3) = GP_VELOCITY(3, 2)
 GP_VELOCITY(3, 2) = GP_VELOCITY(3, 1)
 GP_VELOCITY(3, 1) = GP_VELOCITY(3, 0)

 GP_ATTITUDE(1, 1, 4) = GP_ATTITUDE(1, 1, 3)
 GP_ATTITUDE(1, 2, 4) = GP_ATTITUDE(1, 2, 3)

C-41

 GP_ATTITUDE(1, 3, 4) = GP_ATTITUDE(1, 3, 3)
 GP_ATTITUDE(2, 1, 4) = GP_ATTITUDE(2, 1, 3)
 GP_ATTITUDE(2, 2, 4) = GP_ATTITUDE(2, 2, 3)
 GP_ATTITUDE(2, 3, 4) = GP_ATTITUDE(2, 3, 3)
 GP_ATTITUDE(3, 1, 4) = GP_ATTITUDE(3, 1, 3)
 GP_ATTITUDE(3, 2, 4) = GP_ATTITUDE(3, 2, 3)
 GP_ATTITUDE(3, 3, 4) = GP_ATTITUDE(3, 3, 3)

 GP_ATTITUDE(1, 1, 3) = GP_ATTITUDE(1, 1, 2)
 GP_ATTITUDE(1, 2, 3) = GP_ATTITUDE(1, 2, 2)
 GP_ATTITUDE(1, 3, 3) = GP_ATTITUDE(1, 3, 2)
 GP_ATTITUDE(2, 1, 3) = GP_ATTITUDE(2, 1, 2)
 GP_ATTITUDE(2, 2, 3) = GP_ATTITUDE(2, 2, 2)
 GP_ATTITUDE(2, 3, 3) = GP_ATTITUDE(2, 3, 2)
 GP_ATTITUDE(3, 1, 3) = GP_ATTITUDE(3, 1, 2)
 GP_ATTITUDE(3, 2, 3) = GP_ATTITUDE(3, 2, 2)
 GP_ATTITUDE(3, 3, 3) = GP_ATTITUDE(3, 3, 2)

 GP_ATTITUDE(1, 1, 2) = GP_ATTITUDE(1, 1, 1)
 GP_ATTITUDE(1, 2, 2) = GP_ATTITUDE(1, 2, 1)
 GP_ATTITUDE(1, 3, 2) = GP_ATTITUDE(1, 3, 1)
 GP_ATTITUDE(2, 1, 2) = GP_ATTITUDE(2, 1, 1)
 GP_ATTITUDE(2, 2, 2) = GP_ATTITUDE(2, 2, 1)
 GP_ATTITUDE(2, 3, 2) = GP_ATTITUDE(2, 3, 1)
 GP_ATTITUDE(3, 1, 2) = GP_ATTITUDE(3, 1, 1)
 GP_ATTITUDE(3, 2, 2) = GP_ATTITUDE(3, 2, 1)
 GP_ATTITUDE(3, 3, 2) = GP_ATTITUDE(3, 3, 1)

 GP_ATTITUDE(1, 1, 1) = GP_ATTITUDE(1, 1, 0)
 GP_ATTITUDE(1, 2, 1) = GP_ATTITUDE(1, 2, 0)
 GP_ATTITUDE(1, 3, 1) = GP_ATTITUDE(1, 3, 0)
 GP_ATTITUDE(2, 1, 1) = GP_ATTITUDE(2, 1, 0)
 GP_ATTITUDE(2, 2, 1) = GP_ATTITUDE(2, 2, 0)
 GP_ATTITUDE(2, 3, 1) = GP_ATTITUDE(2, 3, 0)
 GP_ATTITUDE(3, 1, 1) = GP_ATTITUDE(3, 1, 0)
 GP_ATTITUDE(3, 2, 1) = GP_ATTITUDE(3, 2, 0)
 GP_ATTITUDE(3, 3, 1) = GP_ATTITUDE(3, 3, 0)

* 2) Compute the current vehicle altitude, velocities and attitude.

*** range check the following data elements ***

 call RANGE_CHECK(GP_ATTITUDE(1, 1, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(1, 2, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(1, 3, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(2, 1, 2), K$GP_ATTITUDE$LB,

C-42

 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(2, 2, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(2, 3, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(3, 1, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(3, 2, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)
 call RANGE_CHECK(GP_ATTITUDE(3, 3, 2), K$GP_ATTITUDE$LB,
 & K$GP_ATTITUDE$UB, 'GP', K$GP_ATTITUDE$NAME)

 call RANGE_CHECK(GP_VELOCITY(1, 2), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'GP', K$GP_VELOCITY$NAME)
 call RANGE_CHECK(GP_VELOCITY(2, 2), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'GP', K$GP_VELOCITY$NAME)
 call RANGE_CHECK(GP_VELOCITY(3, 2), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'GP', K$GP_VELOCITY$NAME)

 call RANGE_CHECK(GP_ALTITUDE(2), K$GP_ALTITUDE$LB,
 & K$GP_ALTITUDE$UB, 'GP', K$GP_ALTITUDE$NAME)

*** sensor data ***

 call RANGE_CHECK(G_ROTATION(1, 0), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(2, 0), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(3, 0), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(1, 1), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(2, 1), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(3, 1), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(1, 2), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(2, 2), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)
 call RANGE_CHECK(G_ROTATION(3, 2), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'GP', K$G_ROTATION$NAME)

 call RANGE_CHECK(A_ACCELERATION(1, 0), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(2, 0), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(3, 0), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(1, 1), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)

C-43

 call RANGE_CHECK(A_ACCELERATION(2, 1), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(3, 1), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(1, 2), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(2, 2), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)
 call RANGE_CHECK(A_ACCELERATION(3, 2), K$A_ACCELERATION$LB,
 & K$A_ACCELERATION$UB, 'GP', K$A_ACCELERATION$NAME)

 call RANGE_CHECK(TDLR_VELOCITY(1, 0), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(2, 0), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(3, 0), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(1, 1), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(2, 1), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(3, 1), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(1, 2), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(2, 2), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)
 call RANGE_CHECK(TDLR_VELOCITY(3, 2), K$TDLR_VELOCITY$LB,
 & K$TDLR_VELOCITY$UB, 'GP', K$TDLR_VELOCITY$NAME)

 call RANGE_CHECK(AR_ALTITUDE(0), K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB, 'GP', K$AR_ALTITUDE$NAME)
 call RANGE_CHECK(AR_ALTITUDE(1), K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB, 'GP', K$AR_ALTITUDE$NAME)
 call RANGE_CHECK(AR_ALTITUDE(2), K$AR_ALTITUDE$LB,
 & K$AR_ALTITUDE$UB, 'GP', K$AR_ALTITUDE$NAME)

* A five step implementation of the RK method. The functions
* deriv_att(), deriv_vel(), and deriv_alt() are described below.
*
* The interval begins at the current frame minus 2 frames.
*
* 1. Compute the first estimate of the incremental value for
* GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE based upon the
* rate of change at the beginning of the interval
* (2 frames ago):
*
* estimate = rate_of_change * step_size

C-44

 step_size = 2 * DELTA_T

 call deriv_att(att_k1, GP_ATTITUDE(1,1,2), 2)
 call mult_att(att_k1, step_size)

* v1 Changes for AR#23. Item 13. "att_k1" changed to "vel_k1"

 call deriv_vel(vel_k1, GP_VELOCITY(1,2), GP_ATTITUDE(1,1,2), 2)
 call mult_vel(vel_k1, step_size)

* v1 Changes for AR#23. End Change.

 call deriv_alt(alt_k1, GP_ALTITUDE(2),GP_VELOCITY(1,2),
 & GP_ATTITUDE(1,1,2), 2)
 alt_k1 = alt_k1 * step_size

* 2. Compute the second estimate of the incremental value for
* GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE based upon the
* rate of change at the midpoint of the first estimate k1:

 call avg_att(att_tmp, GP_ATTITUDE(1,1,2), att_k1)
 call deriv_att(att_k2, att_tmp, 1)
 call mult_att(att_k2, step_size)

 call avg_vel(vel_tmp, GP_VELOCITY(1,2), vel_k1)
 call deriv_vel(vel_k2, vel_tmp, att_tmp, 1)

* v2 Changes for PR#24. Item 2. Changed division placement.

* call mult_vel(att_k2, step_size)
 call mult_vel(vel_k2, step_size)

* call deriv_alt(alt_k2, (GP_ALTITUDE(2) + alt_k1)/2,
* & vel_tmp, att_tmp, 1)
 call deriv_alt(alt_k2, (GP_ALTITUDE(2) + alt_k1/2),
 & vel_tmp, att_tmp, 1)
 alt_k2 = alt_k2 * STEP_SIZE

* v2 Changes for AR#24. End Change.

* 3. Compute the third estimate of the incremental value for
* GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE based upon the
* rate of change at the midpoint of the second estimate k2:

C-45

 call avg_att(att_tmp, GP_ATTITUDE(1,1,2), att_k2)
 call deriv_att(att_k3, att_tmp, 1)
 call mult_att(att_k3, step_size)

 call avg_vel(vel_tmp, GP_VELOCITY(1,2), vel_k2)
 call deriv_vel(vel_k3, vel_tmp, att_tmp, 1)
 call mult_vel(vel_k3, step_size)

* v2 Changes for PR#24. Item 2. Changed division placement.

* call deriv_alt(alt_k3, (GP_ALTITUDE(2) + alt_k2)/2,
* & vel_tmp, att_tmp, 1)
 call deriv_alt(alt_k3, (GP_ALTITUDE(2) + alt_k2/2),
 & vel_tmp, att_tmp, 1)

* v2 Changes for AR#24. End Change.

 alt_k3 = alt_k3 * STEP_SIZE

* 4. Compute the fourth estimate of the incremental value for
* GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE based upon the
* the rate-of-change at the third estimate k3:

 do i = 1,3
 do j = 1,3
 att_tmp(i,j) = GP_ATTITUDE(i, j, 2) + att_k3(i, j)
 end do
 end do

 call deriv_att(att_k4, att_tmp, 0)
 call mult_att(att_k4, step_size)

 do i = 1,3
 vel_tmp(i) = GP_VELOCITY(i,2) + vel_k3(i)
 end do

* v1 Changes for AR#23. Item 15. 4th parameter changed to "0"

 call deriv_vel(vel_k4, vel_tmp, att_tmp, 0)

* v2 Changes for PR#24. Item 4. Changed att_k to vel_k4.

* call mult_vel(att_k4, step_size)
 call mult_vel(vel_k4, step_size)

* v2 Changes for AR#24. End Change.

C-46

* v1 Changes for AR#23. End Change.

 call deriv_alt(alt_k4, (GP_ALTITUDE(2) + alt_k3),
 & vel_tmp, att_tmp, 0)
 alt_k4 = alt_k4 * STEP_SIZE

* 5. Perform a weighted average of the four previously computed
* estimates of the new value for GP_ATTITUDE, GP_VELOCITY, and
* GP_ALTITUDE.
*
* Note, the syntax (*, x) and (*, *, x) represent the xth history of
* the data element.

* GP_ATTITUDE(*, *, 0) = GP_ATTITUDE(*, *, 2) +
* & (1/6)(att_k1 + 2*(att_k2 + att_k3) + att_k4)

 do i = 1,3
 do j = 1,3
 att_tmp(i,j) = (att_k2(i,j) + att_k3(i,j)) * 2.0
 att_tmp(i,j) = (att_tmp(i,j) + att_k1(i,j) +
 & att_k4(i,j)) / 6.0
 GP_ATTITUDE(i, j, 0) = GP_ATTITUDE(i, j, 2) + att_tmp(i,j)
 end do
 end do

* GP_VELOCITY(*, 0) = GP_VELOCITY(*, 2) +
* & (1/6)(vel_k1 + 2*(vel_k2 + vel_k3) + vel_k4)

 do i = 1,3
 vel_tmp(i) = (vel_k2(i) + vel_k3(i)) * 2.0
 vel_tmp(i) = (vel_tmp(i) + vel_k1(i) + vel_k4(i)) / 6.0
 GP_VELOCITY(i, 0) = GP_VELOCITY(i, 2) + vel_tmp(i)
 end do

* GP_ALTITUDE(0) = GP_ALTITUDE(2) +
* & (1/6)(alt_k1 + 2*(alt_k2 + alt_k3) + alt_k4)

 GP_ALTITUDE(0) = GP_ALTITUDE(2) +
 & (alt_k1 + 2.0*(alt_k2 + alt_k3) + alt_k4) / 6.0

*** establish the "final" rotation matrix ***

C-47

 GP_ROTATION(1, 1) = 0
 GP_ROTATION(1, 2) = G_ROTATION(3, 0)
 GP_ROTATION(1, 3) = -G_ROTATION(2, 0)
 GP_ROTATION(2, 1) = -G_ROTATION(3, 0)
 GP_ROTATION(2, 2) = 0
 GP_ROTATION(2, 3) = G_ROTATION(1, 0)
 GP_ROTATION(3, 1) = G_ROTATION(2, 0)
 GP_ROTATION(3, 2) = -G_ROTATION(1, 0)
 GP_ROTATION(3, 3) = 0

* 3) Determine if the engines should be switched on or off.

*** range check the current altitude ****

 call RANGE_CHECK(GP_ALTITUDE(0), K$GP_ALTITUDE$LB,
 & K$GP_ALTITUDE$UB, 'GP', K$GP_ALTITUDE$NAME)

*** range check the current x-axis vehicle velocity ****

 call RANGE_CHECK(GP_VELOCITY(1, 0), K$GP_VELOCITY$LB,
 & K$GP_VELOCITY$UB, 'GP', K$GP_VELOCITY$NAME)

*** ***

 if (AE_SWITCH .EQ. K$AXIAL_ENGINES_ARE_OFF) then
 if (RE_SWITCH .EQ. K$ROLL_ENGINES_ARE_ON) then
 if (TD_SENSED .EQ. K$TOUCH_DOWN_NOT_SENSED) then
 if (GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE) then
 AE_SWITCH = K$AXIAL_ENGINES_ARE_ON
 FRAME_ENGINES_IGNITED = FRAME_COUNTER
 end if
 end if
 end if
 else
*** the axial engines are "on" ***

 if (TD_SENSED .EQ. K$TOUCH_DOWN_SENSED) then
 AE_SWITCH = K$AXIAL_ENGINES_ARE_OFF
 RE_SWITCH = K$ROLL_ENGINES_ARE_OFF
 else
*** touch down "not sensed" ***

* v1 PR#27 Item 3. Included a MAX function.

* if (GP_ALTITUDE(0) .LE. DROP_HEIGHT) then
* temp = 2*GRAVITY*GP_ALTITUDE(0)
* call NEG_VALUE_CHECK(temp, 'GP')

C-48

 if (GP_ALTITUDE(0) .LE. DROP_HEIGHT) then
 temp = 2 * GRAVITY * MAX(0.0D0, GP_ALTITUDE(0))

* v1 PR#27 End Change

 if (sqrt(temp)+GP_VELOCITY(1,0) .LE.
 & MAX_NORMAL_VELOCITY) then
 AE_SWITCH = K$AXIAL_ENGINES_ARE_OFF
 RE_SWITCH = K$ROLL_ENGINES_ARE_OFF
 end if
 end if
 end if
 end if

* 4) Compute the current velocity error.

*** compute the optimal velocity ***

*** convert GP_ALTITUDE from meters to kilometers ***

 cur_altitude = GP_ALTITUDE(0) / 1000.0

 do i = 1, 100
 if (CONTOUR_ALTITUDE(i) .EQ. cur_altitude) then

*** found an exact match in the table ***

 optimal_velocity = CONTOUR_VELOCITY(i)

 goto 100 ! early exit

 else if (CONTOUR_ALTITUDE(i) .GT. cur_altitude) then
 if (i .GT. 1) then

*** interpolate between i-1 and i ***

*** check for potential divide by zero condition ***

 call ZERO_CHECK(CONTOUR_ALTITUDE(i)-
 & CONTOUR_ALTITUDE(i-1), 'GP')

*** interpolation formula ***

 optimal_velocity = CONTOUR_VELOCITY(i-1) +
 & ((CONTOUR_VELOCITY(i) - CONTOUR_VELOCITY(i-1)) /
 & (CONTOUR_ALTITUDE(i) - CONTOUR_ALTITUDE(i-1)) *
 & (cur_altitude - CONTOUR_ALTITUDE(i-1)))

C-49

 goto 100 ! early exit

 else

*** Extrapolate for altitude < smallest value in table entries ***

*** check for potential divide by zero condition ***

 call ZERO_CHECK(CONTOUR_ALTITUDE(2) -
 & CONTOUR_ALTITUDE(1), 'GP')

*** Extrapolation formula ***

 optimal_velocity = CONTOUR_VELOCITY(1) -
 & ((CONTOUR_VELOCITY(2) - CONTOUR_VELOCITY(1)) /
 & (CONTOUR_ALTITUDE(2) - CONTOUR_ALTITUDE(1))) *
 & (CONTOUR_ALTITUDE(1) - cur_altitude)

 goto 100 ! early exit

 end if

 else
*** CONTOUR_ALTITUDE(i) < cur_altitude

 if ((CONTOUR_ALTITUDE(i) .EQ. 0) .OR. (i .EQ. 100)) then

*** Extrapolate for altitude > largest value in table entries ***
*** note, i points to first (lowest) "0" entry in the table ***

*** check for potential divide by zero condition ***

 call ZERO_CHECK(CONTOUR_ALTITUDE(i-1) -
 & CONTOUR_ALTITUDE(i-2), 'GP')

*** Extrapolation formula ***

 optimal_velocity = CONTOUR_VELOCITY(i-1) +
 & ((CONTOUR_VELOCITY(i-1) - CONTOUR_VELOCITY(i-2)) /
 & (CONTOUR_ALTITUDE(i-1) - CONTOUR_ALTITUDE(i-2))) *
 & (cur_altitude - CONTOUR_ALTITUDE(i-1))

 goto 100 ! early exit

 end if
 end if
 end do

 100 continue

C-50

*** convert optimal_velocity from km/sec to m/sec ***

 optimal_velocity = optimal_velocity * 1000.0

*** compute the velocity error ***

 VELOCITY_ERROR = GP_VELOCITY(1, 0) - optimal_velocity

* 5) Determine if the predetermined velocity-altitude contour has
* been crossed.

* v1 Changes for AR#23. Item 17. >= changed to <=

 if (GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE) then
 if (CONTOUR_CROSSED .EQ. K$CONTOUR_NOT_CROSSED) then
 if (VELOCITY_ERROR .GE. 0) then
 CONTOUR_CROSSED = K$CONTOUR_CROSSED
 end if
 end if
 end if

* v1 Changes for AR#23. End Change.

* 6) Determine the current guidance phase.

 go to (1010, 1020, 1030, 1040, 2000), GP_PHASE

* v1 Changes for AR#23. Item 33. Added default goto

 go to 2000

* v1 Changes for AR#23. End Change.

*** GP_PHASE == 1 ***************************

 1010 continue

*** trans from 1 to 2 when the "engines on altitude" is reached ***

 if (GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE) then
 GP_PHASE = 2
 end if

C-51

 goto 2000

*** GP_PHASE == 2 ***************************

 1020 continue

*** trans from 2 to 5 when touch down is sensed ***

 if (TD_SENSED .EQ. K$TOUCH_DOWN_SENSED) then
 GP_PHASE = 5
 else

*** trans from 2 to 3 when the engines are hot and the chute is released ***

 if (AE_TEMP .EQ. K$HOT) then
 if (CHUTE_RELEASED .EQ. K$CHUTE_RELEASED) then
 GP_PHASE = 3
 end if
 end if
 end if

 goto 2000

*** GP_PHASE == 3 ***************************

 1030 continue

*** trans from 3 to 5 when touch down is sensed ***

 if (TD_SENSED .EQ. K$TOUCH_DOWN_SENSED) then
 GP_PHASE = 5
 else

*** trans from 3 to 5 when the TD sensor fails and altitude too low ***
*** trans from 3 to 4 when the TD sensor healthy and altitude too low ***

 if (GP_ALTITUDE(0) .LE. DROP_HEIGHT) then

 if (TDS_STATUS .EQ. K$FAILED) then
 GP_PHASE = 5
 else

* v1 PR#27 Item 3. Included a MAX function.

* temp = 2 * GRAVITY * GP_ALTITUDE(0)
* call NEG_VALUE_CHECK(temp, 'GP')
 temp = 2 * GRAVITY * MAX(0.0D0, GP_ALTITUDE(0))

* v1 PR#27 End Change

C-52

 if (sqrt(temp)+GP_VELOCITY(1,0) .LE.
 & MAX_NORMAL_VELOCITY) then
 GP_PHASE = 4
 end if
 end if
 end if
 end if

 goto 2000

*** GP_PHASE == 4 ***************************

 1040 continue

*** trans from 4 to 5 when touch down is sensed ***

 if (TD_SENSED .EQ. K$TOUCH_DOWN_SENSED) then
 GP_PHASE = 5
 else

*** trans from 4 to 5 when the TD sensor fails ***

 if (TDS_STATUS .EQ. K$FAILED) then
 GP_PHASE = 5
 end if
 end if

 2000 continue

* 7) Determine the appropriate axial engine control law parameter index.

*** Note, the optimal_velocity is computed above during the computing of
*** the current velocity error.

 if (CL .EQ. K$FIRST) then
 if (optimal_velocity .EQ. DROP_SPEED) then
 if (GP_VELOCITY(1, 0) .LT. DROP_SPEED) then
 CL = K$SECOND
 TE_INTEGRAL = 0
 end if
 end if
 end if

 return
 end

*** end of subroutine GP **

C-53

* Title: DERIV_ATT
* Facility: Pluto
* Abstract:
* Compute the derivative of the vehicle attitude.
* rate-of-change = deriv_att(attitude, i)
*
* Arguments:
* result array (1..3, 1..3) of real*8 The computed derivative.
* att array (1..3, 1..3) of real*8 The attitude structure
* index integer*4 The history index
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 01-Dec-1994 Philip Morris (PEM)

 subroutine DERIV_ATT(result, att, index)

 implicit none

*** define arguments ***

 real*8 att(1:3,1:3)
 real*8 result(1:3,1:3)

 integer*4 index

*** include the global common stores ***

 include 'sensor_output.for'

* v1 Changes for AR#23. Item 18. Replaced pv, qv, rv with rotation variables

 result(1,1) = G_ROTATION(3,index) * att(2,1) +
 & (-G_ROTATION(2,index) * att(3,1))
 result(1,2) = G_ROTATION(3,index) * att(2,2) +
 & (-G_ROTATION(2,index) * att(3,2))
 result(1,3) = G_ROTATION(3,index) * att(2,3) +
 & (-G_ROTATION(2,index) * att(3,3))

 result(2,1) = (-G_ROTATION(3,index) * att(1,1)) +
 & (G_ROTATION(1,index) * att(3,1))
 result(2,2) = (-G_ROTATION(3,index) * att(1,2)) +
 & (G_ROTATION(1,index) * att(3,2))
 result(2,3) = (-G_ROTATION(3,index) * att(1,3)) +
 & (G_ROTATION(1,index) * att(3,3))

C-54

 result(3,1) = G_ROTATION(2,index) * att(1,1) +
 & (-G_ROTATION(1,index) * att(2,1))
 result(3,2) = G_ROTATION(2,index) * att(1,2) +
 & (-G_ROTATION(1,index) * att(2,2))
 result(3,3) = G_ROTATION(2,index) * att(1,3) +
 & (-G_ROTATION(1,index) * att(2,3))

* v1 Changes for AR#23. End Change.

 return
 end

***** end of subroutine DERIV_ATT ***************************************

* Title: DERIV_VEL
* Facility: Pluto
* Abstract:
* Compute the derivative of the vehicle velocity.
* rate-of-change = deriv_vel(velocity, attitude, i)
*
* Arguments:
* result array (1..3) of real*8 The computed derivative.
* vel array (1..3) of real*8 The velocity vector
* att array (1..3, 1..3) of real*8 The attitude structure
* index integer*4 The history index
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 01-Dec-1994 Philip Morris (PEM)

 subroutine DERIV_VEL(result,vel,att,index)

 implicit none

*** define arguments ***

 real*8 att(1:3,1:3)
 real*8 result(1:3)
 real*8 vel(1:3)
 integer*4 index

*** include the global common stores ***

 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

C-55

* v1 Changes for AR#23. Item 19. Relpaced pv, qv, rv with rotation variables

*** declare local variables ***

 real*8 temp(3)

*** execution begins here ***

* v1 Changes for AR#23. Item 20. Changed index values for temp

 temp(1) = TDLR_VELOCITY(1,index) - vel(1)
 temp(2) = TDLR_VELOCITY(2,index) - vel(2)
 temp(3) = TDLR_VELOCITY(3,index) - vel(3)

 result(1) = G_ROTATION(3,index)*vel(2) +
 & (-G_ROTATION(2,index)*vel(3)) +
 & GRAVITY * att(1,3) + A_ACCELERATION(1,index) +
 & K_MATRIX(1,1,index) * temp(1) +
 & K_MATRIX(1,2,index) * temp(2) +
 & K_MATRIX(1,3,index) * temp(3)

 result(2) = -G_ROTATION(3,index)*vel(1) +
 & G_ROTATION(1,index)*vel(3) +
 & GRAVITY * att(2,3) + A_ACCELERATION(2,index) +
 & K_MATRIX(2,1,index) * temp(1) +
 & K_MATRIX(2,2,index) * temp(2) +
 & K_MATRIX(2,3,index) * temp(3)

 result(3) = G_ROTATION(2,index)*vel(1) +
 & (-G_ROTATION(1,index)*vel(2)) +
 & GRAVITY * att(3,3) + A_ACCELERATION(3,index) +
 & K_MATRIX(3,1,index) * temp(1) +
 & K_MATRIX(3,2,index) * temp(2) +
 & K_MATRIX(3,3,index) * temp(3)

* v1 Changes for AR#23. End Change.

 return
 end

***** end of subroutine DERIV_VEL ***************************************

* Title: DERIV_ALT
* Facility: Pluto
* Abstract:

C-56

* Compute the derivative of the vehicle altitude.
* rate-of-change = deriv_att(attitude, index)
*
* Arguments:
* result real*8 The computed derivative.
* alt real*8 The altitude
* vel array (1..3) of real*8 The velocity vector
* att array (1..3, 1..3) of real*8 The attitude structure
* index integer*4 The history index
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.

 subroutine DERIV_ALT(result,alt,vel,att,index)

 implicit none

*** define arguments ***

 real*8 alt
 real*8 att(1:3,1:3)
 real*8 result
 real*8 vel(1:3)
 integer*4 index

*** include the global common stores ***

 include 'guidance_state.for'
 include 'sensor_output.for'

*** execution begins here ***

 result = -att(1,3)*vel(1) + (-att(2,3)*vel(2)) +
 & (-att(3,3)*vel(3)) +
 & K_ALT(index)*(AR_ALTITUDE(index) - alt)

 return
 end

***** end of subroutine DERIV_ALT ***************************************

* Title: MULT_ATT
* Facility: Pluto
* Abstract:
* Multiply a 3x3 array by a scaler, result -> 3x3 array.
* mat = mat * scaler
*
* Arguments:
* att array (1..3, 1..3) of real*8 The attitude structure

C-57

* factor real*8 The scalar multiplier
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 01-Dec-1994 Philip Morris (PEM)

 subroutine MULT_ATT(att,factor)

 implicit none

*** define arguments ***

 real*8 att(1:3,1:3)
 real*8 factor

*** execution begins here ***

* v1 Changes for AR#23. Item 22. Changed att index values

 att(1,1) = att(1,1) * factor
 att(1,2) = att(1,2) * factor
 att(1,3) = att(1,3) * factor

 att(2,1) = att(2,1) * factor
 att(2,2) = att(2,2) * factor
 att(2,3) = att(2,3) * factor

 att(3,1) = att(3,1) * factor
 att(3,2) = att(3,2) * factor
 att(3,3) = att(3,3) * factor

 return
 end

* v1 Changes for AR#23. End Change.

***** end of subroutine MULT_ATT **

* Title: MULT_VEL
* Facility: Pluto
* Abstract:
* Multiply a 1x3 vector by a scaler, result -> vector
* vector = vector * scaler
*
* Arguments:
* att array (1..3) of real*8 The velocity structure
* factor real*8 The scalar multiplier

C-58

*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.

 subroutine MULT_VEL(vel, factor)

 implicit none

*** define arguments ***

 real*8 vel(1:3)
 real*8 factor

*** execution begins here ***

 vel(1) = vel(1) * factor
 vel(2) = vel(2) * factor
 vel(3) = vel(3) * factor

 return
 end

***** end of subroutine MULT_VEL **

* Title: AVG_ATT
* Facility: Pluto
* Abstract:
* Add two 3x3 array's
* result = (mat1 + mat2 / 2)
*
* Arguments:
* result array (1..3, 1..3) of real*8 the result attitude structure
* att_1 array (1..3, 1..3) of real*8 an attitude structure
* att_2 array (1..3, 1..3) of real*8 an attitude structure
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 01-Dec-1994 Philip Morris (PEM)

 subroutine AVG_ATT(result, att_1, att_2)

 implicit none

*** define arguments ***

 real*8 result(1:3, 1:3)
 real*8 att_1(1:3, 1:3), att_2(1:3, 1:3)

C-59

*** execution begins here ***

* v1 Changes for PR#23. Item 14 & 21. Function no longer averages but
* divides one element by 2

* v2 Changes for PR#24. Item 1. Changed index values.

* result(1,1) = att_1(1,1) + att_2(1,1) / 2.0
* result(1,2) = att_1(1,1) + att_2(1,1) / 2.0
* result(1,3) = att_1(1,1) + att_2(1,1) / 2.0
*
* result(2,1) = att_1(2,1) + att_2(2,1) / 2.0
* result(2,2) = att_1(2,1) + att_2(2,1) / 2.0
* result(2,3) = att_1(2,1) + att_2(2,1) / 2.0
*
* result(3,1) = att_1(3,1) + att_2(3,1) / 2.0
* result(3,2) = att_1(3,1) + att_2(3,1) / 2.0
* result(3,3) = att_1(3,1) + att_2(3,1) / 2.0
 result(1,1) = att_1(1,1) + att_2(1,1) / 2.0
 result(1,2) = att_1(1,2) + att_2(1,2) / 2.0
 result(1,3) = att_1(1,3) + att_2(1,3) / 2.0

 result(2,1) = att_1(2,1) + att_2(2,1) / 2.0
 result(2,2) = att_1(2,2) + att_2(2,2) / 2.0
 result(2,3) = att_1(2,3) + att_2(2,3) / 2.0

 result(3,1) = att_1(3,1) + att_2(3,1) / 2.0
 result(3,2) = att_1(3,2) + att_2(3,2) / 2.0
 result(3,3) = att_1(3,3) + att_2(3,3) / 2.0

* v2 Changes for PR#24. End Change.

* v1 Changes for PR#23. End Change.

 return
 end

***** end of subroutine AVG_ATT ***

* Title: AVG_VEL
* Facility: Pluto
* Abstract:
* Add two 1x3 vector's
* result = (vec1 + vec2 / 2)
*
* Arguments:

C-60

* result array (1..3) of real*8 the result velocity structure
* vel_1 array (1..3) of real*8 an velocity structure
* vel_2 array (1..3) of real*8 an velocity structure
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 01-Dec-1994 Philip Morris (PEM)

 subroutine AVG_VEL(result, vel_1, vel_2)

 implicit none

*** define arguments ***

 real*8 result(1:3)
 real*8 vel_1(1:3), vel_2(1:3)

*** execution begins here ***

* v1 Changes for AR#23. Item 14 & 21. Function no longer averages but
* divides one element by 2

 result(1) = vel_1(1) + vel_2(1) / 2.0
 result(2) = vel_1(2) + vel_2(2) / 2.0
 result(3) = vel_1(3) + vel_2(3) / 2.0

* v1 Changes for AR#23. End Change.

 return
 end

***** end of subroutine AVG_VEL ***

***** end of module GP **

C-61

**
* Module: GPSF.FOR
* Facility: Pluto
* P-Spec: 2
* Abstract:
* This module contains the entry for the guidance processing
* subframe.
*
* List of Routines:
* subroutine GPSF
**

**
* Title: GPSF
* Facility: Pluto
* Abstract:
* This routine provides control of the Guidance Processing SubFrame
* processing.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

 subroutine GPSF

 implicit none

*** execution begins here ***

 call GCS_SIM_RENDEZVOUS
 call GP
 call CP

 return
 end

***** end of module GPSF.FOR **

C-62

**
* Module: GSP.FOR
* Facility: Pluto
* P-Spec: 1.4
* Abstract:
* This module contains the implementation of the functional
* requirements for GSP.
*
* List of Routines:
* subroutine GSP
**

**
* Title: GSP
* Facility: Pluto
* Abstract:
* 1) maintain the history of the vehicle rotation rates
* 2) determine the operational status of the gyroscope sensors
* 3) Report the current vehicle rotation rates along each of the
* vehicle's three axes.
*
* Arguments: None
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
**

 subroutine GSP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local variables ***

* v1 Changes for AR#23. Item 23. counter type changed from real*8 to integer*2

 integer*2 counter
 real*8 temp

 integer*4 i

C-63

* v1 Changes for AR#23. End Change.

* 1) Maintain the history of the vehicle rotation rates by "rotating
* variables."

 G_ROTATION(1, 4) = G_ROTATION(1, 3)
 G_ROTATION(1, 3) = G_ROTATION(1, 2)
 G_ROTATION(1, 2) = G_ROTATION(1, 1)
 G_ROTATION(1, 1) = G_ROTATION(1, 0)

 G_ROTATION(2, 4) = G_ROTATION(2, 3)
 G_ROTATION(2, 3) = G_ROTATION(2, 2)
 G_ROTATION(2, 2) = G_ROTATION(2, 1)
 G_ROTATION(2, 1) = G_ROTATION(2, 0)

 G_ROTATION(3, 4) = G_ROTATION(3, 3)
 G_ROTATION(3, 3) = G_ROTATION(3, 2)
 G_ROTATION(3, 2) = G_ROTATION(3, 1)
 G_ROTATION(3, 1) = G_ROTATION(3, 0)

* 2) determine the operational status of the gyroscope sensors.

 G_STATUS = K$HEALTHY

* 3) Report the current vehicle rotation rates along each of the
* vehicle's three axes.

*** range check the atmospheric temperature ****

 call RANGE_CHECK(ATMOSPHERIC_TEMP,K$ATMOSPHERIC_TEMP$LB,
 & K$ATMOSPHERIC_TEMP$UB,'GSP', K$ATMOSPHERIC_TEMP$NAME)

* The raw sensor data stored in G_COUNTER represents the vehicle rate
* of rotation about a specific axis. The sensor data is
* stored in a modified sign magnitude format. The lower 14-bits
* represent the magnitude of the rotation and the most significant
* bit (bit 15) represents the sign. Bit 14 is not used. A
* positive value of G_COUNTER indicates a positive rotation about
* the vehicle axis consistent with a right handed coordinate system,
* while a negative value indicates a negative rotation consistent
* with a right handed coordinate system.

C-64

 temp = (G3 * ATMOSPHERIC_TEMP) + (G4 * ATMOSPHERIC_TEMP**2)

 do 100 i = 1, 3

*** convert the raw sensor ***

* Convert the raw sensor data from the modified sign magnitude
* format into an appropriate format for use by the target CPU, in
* this case two's complement. Positive values are represented in
* the same fashion in sign magnitude and two's complement, however,
* negative sensor values must be massaged.
*
* Transfer the magitude of the rotation from G_COUNTER to the local
* data element named counter by masking bits 14 and 15 from
* G_COUNTER. If G_COUNTER bit 15 is clear, the data element counter
* now contains the properly converted value. If G_COUNTER bit 15 is
* set, the value of data element counter must be negated.

*** clear the two most significant bits (bits 15,14) ***

 counter = IAND(G_COUNTER(i), '3FFF'X)

*** if the bit was set, then convert value to two's complement ***

 if (BTEST(G_COUNTER(i), 15) .EQ. .TRUE.) then
 counter = 0 - counter
 end if

*** now, compute the vehicle rotation from the sensor data ***

 G_ROTATION(i, 0) = G_OFFSET(i) +
 & (G_GAIN_0(i) + temp) * counter

 100 continue

 return
 end

***** end of module GSP.FOR ***

C-65

**
* Module: GUIDANCE_STATE.FOR
* Facility: Pluto
* Abstract:
* This module contains the data definitions for the
* global common data store named GUIDANCE_STATE.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

**** COMMON block definition ***

 COMMON /GUIDANCE_STATE/
 & A_STATUS,
 & AE_STATUS,
 & AE_SWITCH,
 & AE_TEMP,
 & AR_STATUS,
 & C_STATUS,
 & CL,
 & CONTOUR_CROSSED,
 & FRAME_BEAM_UNLOCKED,
 & FRAME_ENGINES_IGNITED,
 & G_STATUS,
 & GP_ALTITUDE,
 & GP_ATTITUDE,
 & GP_PHASE,
 & GP_ROTATION,
 & GP_VELOCITY,
 & INTERNAL_CMD,
 & K_ALT,
 & K_MATRIX,
 & PE_INTEGRAL,
 & RE_STATUS,
 & RE_SWITCH,
 & TDLR_STATE,
 & TDLR_STATUS,
 & TDS_STATUS,
 & TE_INTEGRAL,
 & TE_LIMIT,
 & THETA,
 & TS_STATUS,
 & VELOCITY_ERROR,
 & YE_INTEGRAL

*** data type declarations ***

 logical*1 A_STATUS(1:3, 0:3)
 logical*1 AE_STATUS
 logical*1 AE_SWITCH

C-66

 integer*2 AE_TEMP
 logical*1 AR_STATUS(0:4)
 logical*1 C_STATUS
 integer*2 CL
 logical*1 CONTOUR_CROSSED
 integer*4 FRAME_BEAM_UNLOCKED(1:4)
 integer*4 FRAME_ENGINES_IGNITED
 logical*1 G_STATUS
 real*8 GP_ALTITUDE(0:4)
 real*8 GP_ATTITUDE(1:3, 1:3, 0:4)
 integer*4 GP_PHASE
 real*8 GP_ROTATION(1:3, 1:3)
 real*8 GP_VELOCITY(1:3, 0:4)
 real*8 INTERNAL_CMD(1:3)
 integer*4 K_ALT(0:4)
 integer*4 K_MATRIX(1:3, 1:3, 0:4)
 real*8 PE_INTEGRAL
 logical*1 RE_STATUS
 logical*1 RE_SWITCH
 logical*1 TDLR_STATE(1:4)
 logical*1 TDLR_STATUS(1:4)
 logical*1 TDS_STATUS
 real*8 TE_INTEGRAL
 real*8 TE_LIMIT
 real*8 THETA
 logical*1 TS_STATUS(1:2)
 real*8 VELOCITY_ERROR
 real*8 YE_INTEGRAL

***** end of module GUIDANCE_STATE.FOR **********************************

C-67

**
* Module: PLUTO.FOR
* Facility: Pluto
* P-Spec: 0
* Abstract:
* This module contains the main routine for the Pluto
* implementation.
*
* List of Routines:
* program Pluto
**

**
* Title: PLUTO
* Facility: Pluto
* Abstract:
* This is the main routine for the Pluto implementation.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
* v2 15-Feb-1995 Philip Morris (PEM)
**

 program PLUTO

 implicit none

*** include the global common stores ***

 include 'guidance_state.for'

*** execution begins here ***

* Simply loop through the three subframes until done

* v2 Changes for AR#26. Item 2. Remove dead code.

* 100 continue

* v2 Changes for AR#26. End Change.

* v1 Changes for AR#23. Item 6&7. Added DO WHILE loop to remove gotos

C-68

*** stop when gp_phase = 5 ***

 do while (GP_PHASE .NE. 5)

*** execute the sensor processing subframe ***

 call SPSF

*** execute the guidance processing subframe ***

 call GPSF

*** execute the control law processing subframe ***

 call CLPSF

 end do

* v1 Changes for AR#23. End Change.

 stop
 end

***** end of module PLUTO.FOR ***

C-69

**
* Module: RECLP.FOR
* Facility: Pluto
* P-Spec: 3.4
* Abstract:
* This module contains the implementation of the functional
* requirements for RECLP.
*
* List of Routines:
* subroutine RECLP
**

**
* Title: RECLP
* Facility: Pluto
* Abstract:
* 1) determine the current operational status of the roll engines.
* 2) generate the appropriate roll engine command.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

 subroutine RECLP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

* 1) Determine the current operational status of the roll engines.

 RE_STATUS = K$HEALTHY

* 2) Generate the appropriate roll engine command.

 if (RE_SWITCH .EQ. K$ROLL_ENGINES_ARE_OFF) then

C-70

 RE_CMD = K$OFF + K$CW
 else

*** range check the x-axis vehicle rotation rate ***

 call RANGE_CHECK(G_ROTATION(1, 0), K$G_ROTATION$LB,
 & K$G_ROTATION$UB, 'RECLP', K$G_ROTATION$NAME)

*** range check the x-axis vehicle rotation displacement ***

 call RANGE_CHECK(THETA, K$THETA$LB,
 & K$THETA$UB, 'RECLP', K$THETA$NAME)

* The roll engine command consists of two components: an
* intensity, and a direction. Taking into account the command data
* encoding, the possible intensities are: Off (0), Minimum (2),
* Intermediate (4), and Maximum (6), and the possible directions
* are CounterClockwise (0) and Clockwise (1).
*
* Both roll engine command components are determined from the
* current value of the vehicle's roll rate and rotational
* displacement about the x-axis.
*
* Employing Euler's method for differential equations, compute the
* current x-axis angular displacement, theta.

 THETA = THETA + G_ROTATION(1, 0) * DELTA_T

*** range check the theta again before use ***

 call RANGE_CHECK(THETA, K$THETA$LB,
 & K$THETA$UB, 'RECLP', K$THETA$NAME)

* From figure 5.2 "Graph for Deriving Roll Engine Commands" of the
* GCS development specifications, determine the appropriate roll
* engine intensity and direction.

*** check case when theta = 0 ***

 if (THETA .EQ. 0) then
 if (G_ROTATION(1, 0) .GT. P4) then
 RE_CMD = K$MAXIMUM + K$CW
 else if (G_ROTATION(1, 0) .LT. -P4) then
 RE_CMD = K$MAXIMUM + K$CCW
 else
 RE_CMD = K$OFF + K$CW
 end if

C-71

*** check first and fourth quadrants ***

 else if (THETA .GT. 0) then
 if (THETA .LE. THETA1) then

 if (G_ROTATION(1, 0) .GT. P2) then
 RE_CMD = K$MAXIMUM + K$CW
 else if (G_ROTATION(1, 0) .GT. P1) then
 RE_CMD = K$INTERMEDIATE + K$CW
 else if (G_ROTATION(1, 0) .GE. -P4) then
 RE_CMD = K$OFF + K$CW
 else
 RE_CMD = K$MAXIMUM + K$CCW
 end if

 else if (THETA .LE. THETA2) then

 if (G_ROTATION(1, 0) .GT. P2) then
 RE_CMD = K$MAXIMUM + K$CW
 else if (G_ROTATION(1, 0) .GT. P1) then
 RE_CMD = K$INTERMEDIATE + K$CW
 else if (G_ROTATION(1, 0) .GT. 0.0) then
 RE_CMD = K$MINIMUM + K$CW
 else if (G_ROTATION(1, 0) .GE. -P4) then
 RE_CMD = K$OFF + K$CW
 else
 RE_CMD = K$MAXIMUM + K$CCW
 end if

 else
* THETA > THETA2

 if (G_ROTATION(1, 0) .GT. -P3) then
 RE_CMD = K$MAXIMUM + K$CW
 else if (G_ROTATION(1, 0) .GE. -P4) then
 RE_CMD = K$OFF + K$CW
 else
 RE_CMD = K$MAXIMUM + K$CCW
 end if

 end if

*** check second and third quadrants ***

 else
* THETA .LT. 0
 if (THETA .GE. -THETA1) then

 if (G_ROTATION(1, 0) .GT. p4) then
 RE_CMD = K$MAXIMUM + K$CW

C-72

 else if (G_ROTATION(1, 0) .GE. -P1) then
 RE_CMD = K$OFF + K$CW
 else if (G_ROTATION(1, 0) .GE. -P2) then
 RE_CMD = K$INTERMEDIATE + K$CCW
 else
 RE_CMD = K$MAXIMUM + K$CCW
 end if

 else if (THETA .GE. -THETA2) then

 if (G_ROTATION(1, 0) .GT. P4) then
 RE_CMD = K$MAXIMUM + K$CW
 else if (G_ROTATION(1, 0) .GE. 0.0) then
 RE_CMD = K$OFF + K$CW
 else if (G_ROTATION(1, 0) .GE. -P1) then
 RE_CMD = K$MINIMUM + K$CCW
 else if (G_ROTATION(1, 0) .GE. -P2) then
 RE_CMD = K$INTERMEDIATE + K$CCW
 else
 RE_CMD = K$MAXIMUM + K$CCW
 end if

 else
* THETA < -THETA2

 if (G_ROTATION(1, 0) .GT. P4) then
 RE_CMD = K$MAXIMUM + K$CW
 else if (G_ROTATION(1, 0) .GE. P3) then
 RE_CMD = K$OFF + K$CW
 else
 RE_CMD = K$MAXIMUM + K$CCW
 end if

 end if
 end if
 end if

 return

 end

***** end of module RECLP.FOR ***

C-73

**
* Module: RUN_PARAMETERS.FOR
* Facility: Pluto
* Abstract:
* This module contains the data definitions for the
* global common data store named RUN_PARAMETERS.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

*** COMMON block definition ***

 COMMON /RUN_PARAMETERS/
 & A_BIAS,
 & A_GAIN_0,
 & A_SCALE,
 & ALPHA_MATRIX,
 & AR_FREQUENCY,
 & COMM_SYNC_PATTERN,
 & CONTOUR_ALTITUDE,
 & CONTOUR_VELOCITY,
 & DELTA_T,
 & DROP_HEIGHT,
 & DROP_SPEED,
 & ENGINES_ON_ALTITUDE,
 & FULL_UP_TIME,
 & G1,
 & G2,
 & G3,
 & G4,
 & G_GAIN_0,
 & G_OFFSET,
 & GA,
 & GAX,
 & GP1,
 & GP2,
 & GPY,
 & GQ,
 & GR,
 & GRAVITY,
 & GV,
 & GVE,
 & GVEI,
 & GVI,
 & GW,
 & GWI,
 & M1,
 & M2,
 & M3,
 & M4,

C-74

 & MAX_NORMAL_VELOCITY,
 & OMEGA,
 & P1,
 & P2,
 & P3,
 & P4,
 & PE_MAX,
 & PE_MIN,
 & T1,
 & T2,
 & T3,
 & T4,
 & TDLR_ANGLES,
 & TDLR_GAIN,
 & TDLR_LOCK_TIME,
 & TDLR_OFFSET,
 & TE_DROP,
 & TE_INIT,
 & TE_MAX,
 & TE_MIN,
 & THETA1,
 & THETA2,
 & YE_MAX,
 & YE_MIN

*** data type declarations ***

 real*8 A_BIAS(1:3)
 real*8 A_GAIN_0(1:3)
 integer*4 A_SCALE
 real*8 ALPHA_MATRIX(1:3, 1:3)
 real*8 AR_FREQUENCY
 integer*2 COMM_SYNC_PATTERN
 real*8 CONTOUR_ALTITUDE(1:100)
 real*8 CONTOUR_VELOCITY(1:100)
 real*8 DELTA_T
 real*8 DROP_HEIGHT
 real*8 DROP_SPEED
 real*8 ENGINES_ON_ALTITUDE
 real*8 FULL_UP_TIME
 real*8 G1
 real*8 G2
 real*8 G3
 real*8 G4
 real*8 G_GAIN_0(1:3)
 real*8 G_OFFSET(1:3)
 real*8 GA
 real*8 GAX
 real*8 GP1
 real*8 GP2
 real*8 GPY

C-75

 real*8 GQ(1:2)
 real*8 GR(1:2)
 real*8 GRAVITY
 real*8 GV(1:2)
 real*8 GVE
 real*8 GVEI(1:2)
 real*8 GVI(1:2)
 real*8 GW(1:2)
 real*8 GWI(1:2)
 integer*2 M1
 integer*2 M2
 integer*2 M3
 integer*2 M4
 real*8 MAX_NORMAL_VELOCITY
 real*8 OMEGA
 real*8 P1
 real*8 P2
 real*8 P3
 real*8 P4
 real*8 PE_MAX(1:2)
 real*8 PE_MIN(1:2)
 real*8 T1
 real*8 T2
 real*8 T3
 real*8 T4
 real*8 TDLR_ANGLES(1:3)
 real*8 TDLR_GAIN
 real*8 TDLR_LOCK_TIME
 real*8 TDLR_OFFSET
 real*8 TE_DROP
 real*8 TE_INIT
 real*8 TE_MAX(1:2)
 real*8 TE_MIN(1:2)
 real*8 THETA1
 real*8 THETA2
 real*8 YE_MAX(1:2)
 real*8 YE_MIN(1:2)

***** end of module RUN_PARAMETERS.FOR **********************************

C-76

* Module: SENSOR_OUTPUT.FOR
* Facility: Pluto
* Abstract:
* This module contains the data definitions for the
* global common data store named EXTERNAL.
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.

*** COMMON block definition ***

 COMMON /SENSOR_OUTPUT/
 & A_ACCELERATION,
 & AR_ALTITUDE,
 & ATMOSPHERIC_TEMP,
 & G_ROTATION,
 & TD_SENSED,
 & TDLR_VELOCITY

*** data type declarations ***

 real*8 A_ACCELERATION(1:3, 0:4)
 real*8 AR_ALTITUDE(0:4)
 real*8 ATMOSPHERIC_TEMP
 real*8 G_ROTATION(1:3, 0:4)
 logical*1 TD_SENSED
 real*8 TDLR_VELOCITY(1:3, 0:4)

***** end of module SENSOR_OUTPUT.FOR ***********************************

C-77

**
* Module: SPSF.FOR
* Facility: Pluto
* Abstract:
* This module contains the entry for the sensor processing
* subframe.
*
* List of Routines:
* subroutine SPSF
**

**
* Title: SPSF
* Facility: Pluto
* Abstract:
* This routine provides control of the Sensor Processing SubFrame
* processing.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

 subroutine SPSF

 implicit none

*** execution begins here ***

 call GCS_SIM_RENDEZVOUS
 call TSP
 call ARSP
 call ASP
 call GSP
 call TDLRSP
 call TDSP
 call CP

 return
 end

***** end of module SPSF.FOR **

C-78

**
* Module: TDLRSP.FOR
* Facility: Pluto
* P-Spec: 1.5
* Abstract:
* This module contains the implementation of the functional
* requirements for TDLRSP.
*
* List of Routines:
* subroutine TDLRSP
**

**
* Title: TDLRSP
* Facility: Pluto
* Abstract:
* 1) Maintain the history of the vehicle velocities and the
* velocity computation indicator
* 2) Determine the operational status of touch down landing radar
* sensor
* 3) Report the current vehicle velocities along each of the
* vehicle's three axes
* 4) Report the velocity computation indicators.
*
* Arguments: None
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
* v2 10-JAN-1995 Philip Morris (PEM)
**

 subroutine TDLRSP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local variables ***

 integer*4 i

 real*8 b(4)

C-79

 real*8 pbvX
 real*8 pbvY
 real*8 pbvZ

 real*8 elapsed_time

**
* 1) Maintain the history of the vehicle velocities and the
* velocity computation indicator by "rotating variables." The data
**

 TDLR_VELOCITY(1, 4) = TDLR_VELOCITY(1, 3)
 TDLR_VELOCITY(1, 3) = TDLR_VELOCITY(1, 2)
 TDLR_VELOCITY(1, 2) = TDLR_VELOCITY(1, 1)
 TDLR_VELOCITY(1, 1) = TDLR_VELOCITY(1, 0)

 TDLR_VELOCITY(2, 4) = TDLR_VELOCITY(2, 3)
 TDLR_VELOCITY(2, 3) = TDLR_VELOCITY(2, 2)
 TDLR_VELOCITY(2, 2) = TDLR_VELOCITY(2, 1)
 TDLR_VELOCITY(2, 1) = TDLR_VELOCITY(2, 0)

 TDLR_VELOCITY(3, 4) = TDLR_VELOCITY(3, 3)
 TDLR_VELOCITY(3, 3) = TDLR_VELOCITY(3, 2)
 TDLR_VELOCITY(3, 2) = TDLR_VELOCITY(3, 1)
 TDLR_VELOCITY(3, 1) = TDLR_VELOCITY(3, 0)

 K_MATRIX(1, 1, 4) = K_MATRIX(1, 1, 3)
 K_MATRIX(1, 2, 4) = K_MATRIX(1, 2, 3)
 K_MATRIX(1, 3, 4) = K_MATRIX(1, 3, 3)
 K_MATRIX(2, 1, 4) = K_MATRIX(2, 1, 3)
 K_MATRIX(2, 2, 4) = K_MATRIX(2, 2, 3)
 K_MATRIX(2, 3, 4) = K_MATRIX(2, 3, 3)
 K_MATRIX(3, 1, 4) = K_MATRIX(3, 1, 3)
 K_MATRIX(3, 2, 4) = K_MATRIX(3, 2, 3)
 K_MATRIX(3, 3, 4) = K_MATRIX(3, 3, 3)

 K_MATRIX(1, 1, 3) = K_MATRIX(1, 1, 2)
 K_MATRIX(1, 2, 3) = K_MATRIX(1, 2, 2)
 K_MATRIX(1, 3, 3) = K_MATRIX(1, 3, 2)
 K_MATRIX(2, 1, 3) = K_MATRIX(2, 1, 2)
 K_MATRIX(2, 2, 3) = K_MATRIX(2, 2, 2)
 K_MATRIX(2, 3, 3) = K_MATRIX(2, 3, 2)
 K_MATRIX(3, 1, 3) = K_MATRIX(3, 1, 2)
 K_MATRIX(3, 2, 3) = K_MATRIX(3, 2, 2)
 K_MATRIX(3, 3, 3) = K_MATRIX(3, 3, 2)

 K_MATRIX(1, 1, 2) = K_MATRIX(1, 1, 1)
 K_MATRIX(1, 2, 2) = K_MATRIX(1, 2, 1)
 K_MATRIX(1, 3, 2) = K_MATRIX(1, 3, 1)
 K_MATRIX(2, 1, 2) = K_MATRIX(2, 1, 1)
 K_MATRIX(2, 2, 2) = K_MATRIX(2, 2, 1)

C-80

 K_MATRIX(2, 3, 2) = K_MATRIX(2, 3, 1)
 K_MATRIX(3, 1, 2) = K_MATRIX(3, 1, 1)
 K_MATRIX(3, 2, 2) = K_MATRIX(3, 2, 1)
 K_MATRIX(3, 3, 2) = K_MATRIX(3, 3, 1)

 K_MATRIX(1, 1, 1) = K_MATRIX(1, 1, 0)
 K_MATRIX(1, 2, 1) = K_MATRIX(1, 2, 0)
 K_MATRIX(1, 3, 1) = K_MATRIX(1, 3, 0)
 K_MATRIX(2, 1, 1) = K_MATRIX(2, 1, 0)
 K_MATRIX(2, 2, 1) = K_MATRIX(2, 2, 0)
 K_MATRIX(2, 3, 1) = K_MATRIX(2, 3, 0)
 K_MATRIX(3, 1, 1) = K_MATRIX(3, 1, 0)
 K_MATRIX(3, 2, 1) = K_MATRIX(3, 2, 0)
 K_MATRIX(3, 3, 1) = K_MATRIX(3, 3, 0)

**
* 2) Determine the operational status of touch down landing radar sensor.
**

 TDLR_STATUS(1) = K$HEALTHY
 TDLR_STATUS(2) = K$HEALTHY
 TDLR_STATUS(3) = K$HEALTHY
 TDLR_STATUS(4) = K$HEALTHY

**
* 3) Reporting the current vehicle velocities along each of the
* vehicle's three axes and reporting the velocity computation
* indicators.
**

**
* 3A) Determine the state of the four radar beams.
*
* The data element TDLR_STATE contains the state of the radar
* beams.
*
* Valid radar beam states are "locked" (value 1) and "unlocked"
* (value 0). The present state of a radar beam is determined from
* the current value of the sensor data and the previous state of
* the radar beam. A sensor measurement of zero indicates that the
* radar beam echo was not received and the radar beam is considered
* to be "unlocked." A non-zero sensor measurement indicates that a
* radar beam echo was received, but does not imply a radar beam
* state of "locked." Because, once a radar beam is declared
* "unlocked," it is rendered unusable (remains "unlocked"
* regardless of the sensor data value) for a specified period of
* time. This waiting period must be implemented in the software.
*
* A beam is deemed "locked" when 1) the current sensor value
* contains a non-zero value and the beam's previous state was
* "locked"; or 2) the current sensor value contains a non-zero

C-81

* value and the beam's previous state was "unlocked" and the
* elapsed time since the beam was determined "unlocked" is greater
* than or equal to the sensor recovery period.
*
* The data element TDLR_LOCK_TIME specifies the unlocked sensor
* recovery (waiting) period. The data element FRAME_BEAM_UNLOCKED
* is updated with the value of the FRAME_COUNTER during the frame
* in which a radar beam state is first determined as "unlocked."
* The data element DELTA_T specifies in seconds the duration of a
* single frame. Thus the elapsed time since a radar beam was
* declared "unlocked" can be determined by subtracting the present
* value of FRAME_COUNTER from the value of FRAME_BEAM_UNLOCKED and
* multipling the result by the value of DELTA_T.
**

**** process each radar beam ***

 do 100 i=1,4

 if (TDLR_COUNTER(i) .EQ. 0) then

 if (TDLR_STATE(i) .EQ. K$BEAM_LOCKED) then
 TDLR_STATE(i) = K$BEAM_UNLOCKED
 FRAME_BEAM_UNLOCKED(i) = FRAME_COUNTER

* v2 Changes for AR#24. Item 7. Added else if.

* else
 elseif (TDLR_STATE(i) .EQ. K$BEAM_UNLOCKED) then

* v2 Changes for AR#24. End Change.

* the beam was unlocked
 elapsed_time = DELTA_T *
 & (FRAME_COUNTER - FRAME_BEAM_UNLOCKED(i))

 if (elapsed_time .GE. TDLR_LOCK_TIME) then
 FRAME_BEAM_UNLOCKED(i) = FRAME_COUNTER
 end if
 end if

 else
* the sensor measurement != 0

 if (TDLR_STATE(i) .EQ. K$BEAM_UNLOCKED) then
 elapsed_time = DELTA_T *
 & (FRAME_COUNTER - FRAME_BEAM_UNLOCKED(i))

 if (elapsed_time .GE. TDLR_LOCK_TIME) then
 TDLR_STATE(i) = K$BEAM_LOCKED

C-82

 end if
 end if
 end if
 100 continue

**
* 3B) Determine the beam velocities.
**

 do 200 i=1,4
 b(i) = TDLR_OFFSET + TDLR_GAIN * TDLR_COUNTER(i)
 200 continue

**
* 3C) Determine the "processed" beam velocities, and
* 4) Determine the velocity computation indicators.
**
**
* Compute a "processed" beam velocity for each of the three axes as
* specified by the following table:
*
* Beams | PROCESSED BEAM VELOCITIES | K-MATRIX | Case
* in lock | pbvX pbvY pbvZ | X Y Z | Number
* --------|---------------|---------------|---------------|----------------
* none | 0 | 0 | 0 | 0 | 0 | 0 | 0
* 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1
* 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2
* 3 | 0 | 0 | 0 | 0 | 0 | 0 | 4
* 4 | 0 | 0 | 0 | 0 | 0 | 0 | 8
* --------|---------------|---------------|---------------|----------------
* 1,2 | 0 | (b(1)-b(2))/2 | 0 | 0 | 1 | 0 | 3
* 1,3 | (b(1)+b(3))/2 | 0 | 0 | 1 | 0 | 0 | 5
* 1,4 | 0 | 0 | (b(1)-b(4))/2 | 0 | 0 | 1 | 9
* 2,3 | 0 | 0 | (b(2)-b(3))/2 | 0 | 0 | 1 | 6
* 2,4 | (b(2)+b(4))/2 | 0 | 0 | 1 | 0 | 0 | 10
* 3,4 | 0 | (b(4)-b(3))/2 | 0 | 0 | 1 | 0 | 12
* --------|---------------|---------------|---------------|----------------
* 1,2,3 | (b(1)+b(3))/2 | (b(1)-b(2))/2 | (b(2)-b(3))/2 | 1 | 1 | 1 | 7
* 1,2,4 | (b(2)+b(4))/2 | (b(1)-b(2))/2 | (b(1)-b(4))/2 | 1 | 1 | 1 | 11
* 1,3,4 | (b(1)+b(3))/2 | (b(4)-b(3))/2 | (b(1)-b(4))/2 | 1 | 1 | 1 | 13
* 2,3,4 | (b(2)+b(4))/2 | (b(4)-b(3))/2 | (b(2)-b(3))/2 | 1 | 1 | 1 | 14
* --------|---------------|---------------|---------------|----------------
* 1,2,3,4 | a | b | c | 1 | 1 | 1 | 15
*
* a) (b(1)+b(2)+b(3)+b(4))/4
* b) (b(1)-b(2)-b(3)+b(4))/4
* c) (b(1)+b(2)-b(3)-b(4))/4
*
* Each of the 16 possible cases has been assigned a case number to
* facilitate the description of the necessary processing. The case
* number is found in the column labled "Case Number" in the table

C-83

* above.
*
* Determine the case number value for the current processing.
* Each of the four radar beams' state has been assigned a weight
* value: beam 1: 1, beam 2: 2, beam 3: 4, beam 4: 8. The "case
* number" is computed by summing the radar beams multiplied by their
* their weight factors.
**

* v1 Changes for AR#23. Item 24. Default goto 2000 added.

 go to (1000,1000,1000,1010,1000,1020,1040,1070,
 & 1000,1030,1050,1080,1060,1090,1100,1110),
 & TDLR_STATE(1) + 2*TDLR_STATE(2) +
 & 4*TDLR_STATE(3) + 8*TDLR_STATE(4) + 1
 go to 2000

* v1 Changes for AR#23. End Change.

*** cases 0, 1, 2, 4, 8 ***

 1000 pbvX = 0.0
 pbvY = 0.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 3 ***

 1010 pbvX = 0.0
 pbvY = (b(1) - b(2)) / 2.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 5 ***

 1020 pbvX = (b(1) + b(3)) / 2.0
 pbvY = 0.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 0

C-84

 go to 2000

*** case 9 ***

 1030 pbvX = 0.0
 pbvY = 0.0
 pbvZ = (b(1) - b(4)) / 2.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 6 ***

* v1 Changes for AR#23. Item 25. Goto 2000 added to finish the case properly

 1040 pbvX = 0.0
 pbvY = 0.0
 pbvZ = (b(2) - b(3)) / 2.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 1
 go to 2000

* v1 Changes for AR#23. End Change.

*** case 10 ***

 1050 pbvX = (b(2) + b(4)) / 2.0
 pbvY = 0.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 12 ***

 1060 pbvX = 0.0
 pbvY = (b(4) - b(3)) / 2.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 0
 go to 2000

C-85

*** case 7 ***

 1070 pbvX = (b(1) + b(3)) / 2.0
 pbvY = (b(1) - b(2)) / 2.0
 pbvZ = (b(2) - b(3)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 11 ***

 1080 pbvX = (b(2) + b(4)) / 2.0
 pbvY = (b(1) - b(2)) / 2.0
 pbvZ = (b(1) - b(4)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 13 ***

 1090 pbvX = (b(1) + b(3)) / 2.0
 pbvY = (b(4) - b(3)) / 2.0
 pbvZ = (b(1) - b(4)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 14 ***

 1100 pbvX = (b(2) + b(4)) / 2.0
 pbvY = (b(4) - b(3)) / 2.0
 pbvZ = (b(2) - b(3)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 15 ***

 1110 pbvX = (b(1) + b(2) + b(3) + b(4)) / 4.0
 pbvY = (b(1) - b(2) - b(3) + b(4)) / 4.0
 pbvZ = (b(1) + b(2) - b(3) - b(4)) / 4.0

 K_MATRIX(1, 1, 0) = 1

C-86

 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1

 2000 continue

**
* 3D) Convert "processed" beam velocities into body velocites.
**

 TDLR_VELOCITY(1, 0) = pbvX / COS(TDLR_ANGLES(1))
 TDLR_VELOCITY(2, 0) = pbvY / COS(TDLR_ANGLES(2))
 TDLR_VELOCITY(3, 0) = pbvZ / COS(TDLR_ANGLES(3))

 return
 end

***** end of module tdlrsp.for ***

C-87

**
* Module: TDSP.FOR
* Facility: Pluto
* P-Spec: 1.6
* Abstract:
* This module contains the implementation of the functional
* requirements for CRCP.
*
* List of Routines:
* subroutine TDSP
**

**
* Title: TDSP
* Facility: Pluto
* Abstract:
* 1) Determine the operational status of the touch down sensor
* 2) determine if touch down has been sensed.
*
* Arguments: None
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
**

 subroutine TDSP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'

*** include constant definitions ***

 include 'constants.for'

* 1) Determine the operational status of the touch down sensor.
* 2) determine if touch down has been sensed.
*
* The data element TD_COUNTER represents the sensor's measurement.
* There are only two valid sensor measurements: A) all bits set
* (value -1) which indicates touch down is sensed, and B) all bits
* clear (value 0) which indicates touch down is not sensed. If a valid
* sensor value exists, then the operation status of the touch down sensor
* is reported as "healthy" (value 0). Any other value of TD_COUNTER
* indicates a faulty sensor in which case the touch down sensor
* status is reported as "failed" (value 1).

C-88

*
* Note, once the touch down sensor has been determined to be
* faulty, it is considered to be failed for the duration of the
* mission -- no processing occurs once the sensor has failed.

 if (TDS_STATUS .EQ. K$HEALTHY) then

 if (TD_COUNTER .EQ. 0) then
 TD_SENSED = K$TOUCH_DOWN_NOT_SENSED

 else if (TD_COUNTER .EQ. -1) then
 TD_SENSED = K$TOUCH_DOWN_SENSED
* faulty sensor
 else
 TD_SENSED = K$TOUCH_DOWN_NOT_SENSED
 TDS_STATUS = K$FAILED

 end if

 end if

 return
 end

***** end of module TDSP.FOR **

C-89

**
* Module: TSP.FOR
* Facility: Pluto
* P-Spec: 1.7
* Abstract:
* This module contains the implementation of the functional
* requirements for TSP.
*
* List of Routines:
* subroutine TSP
* function LOWER_PARABOLIC_FUNCTION
* function UPPER_PARABOLIC_FUNCTION
**

**
* Title: TSP
* Facility: Pluto
* Abstract:
*
* Purpose:
* 1) Ascertain the operational status of the temperature sensors.
* 2) Determine the current atmospheric temperature based on the
* measurements provided by two on-board temperature sensors.
*
* Arguments: None
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
* v2 10-JAN-1995 Philip Morris (PEM)
**

 subroutine TSP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local functions ***

 real*8 LOWER_PARABOLIC_FUNCTION
 real*8 UPPER_PARABOLIC_FUNCTION

C-90

*** declare local variables ***

 real*8 slope
 real*8 solid_state_temp
 real*8 lower_parabolic_temp_limit
 real*8 upper_parabolic_temp_limit
 real*8 para_M2_M1
 real*8 REAL_THERMO_TEMP

* 1) Determine the operational status of the temperature sensors

 TS_STATUS(1) = K$HEALTHY
 TS_STATUS(2) = K$HEALTHY

* 2A) Compute the temperature based on the solid state sensor

* v1 Changes for AR#23. Item 26. Added variable to cast M2-M1 to a real

 para_M2_M1 = M2-m1
 call ZERO_CHECK(para_M2_M1, 'TSP')

* v1 Changes for AR#23. End Change.

 slope = (T2 - T1)/(M2 - M1)

 solid_state_temp = slope * SS_TEMP + T1 - slope * M1

* 2B) Determine if the temperature is within the valid range of the
* TC sensor;

* Once the function describing the parabola has been determined, the
* temperature representing the lower limit of the parabolic region can
* be determined. The lower limit of the lower parabolic region is
* specified as 15% of the difference of the two calibration
* measurements less than the lower calibration point.

* v1 Changes for AR#23. Item 2. "D0" added to 0.15

 lower_parabolic_temp_limit =
 & LOWER_PARABOLIC_FUNCTION(M3 - 0.15D0*(M4 - M3))

C-91

* v1 Changes for AR#23. End Change.

* Once the function describing the parabola has been determined, the
* temperature representing the upper limit of the parabolic region can
* be determined. The upper limit of the upper parabolic region is
* specified as 15% of the difference of the two calibration
* measurements greater than the upper calibration point.

* v1 Changes for AR#23. Item 2. "D0" added to 0.15

 upper_parabolic_temp_limit =
 & UPPER_PARABOLIC_FUNCTION(M4 + 0.15D0*(M4 - M3))

* v1 Changes for AR#23. End Change.

* Now determine sensor temperature measurement to report

 if ((solid_state_temp .LT. lower_parabolic_temp_limit) .OR.
 & (solid_state_temp .GT. upper_parabolic_temp_limit)) then

*** the atmospheric temp is beyond the valid range of the TC sensor ***
*** so return the solid_state_temp ***

 ATMOSPHERIC_TEMP = solid_state_temp
 else

* 2C) Compute the temperature based on the TC sensor

 if (THERMO_TEMP .LT. M3) then

*** the atmospheric temp resides within the TC lower parabolic region ***

* v2 Changes for AR#24. Item 6. Added variable to cast to a real

 REAL_THERMO_TEMP=THERMO_TEMP

 ATMOSPHERIC_TEMP =
LOWER_PARABOLIC_FUNCTION(REAL_THERMO_TEMP)
* ATMOSPHERIC_TEMP = LOWER_PARABOLIC_FUNCTION(THERMO_TEMP)

C-92

 else if (THERMO_TEMP .GT. M4) then

*** the atmospheric temp resides within the TC upper parabolic region ***

 REAL_THERMO_TEMP=THERMO_TEMP

 ATMOSPHERIC_TEMP =
UPPER_PARABOLIC_FUNCTION(REAL_THERMO_TEMP)
* ATMOSPHERIC_TEMP = UPPER_PARABOLIC_FUNCTION(THERMO_TEMP)

* v2 Changes for AR#24. End Change.

 else

*** The temperature resides within the TC sensor linear region ***
*** compute the temperature from the TC linear region ***

 slope = (T4 - T3)/(M4 - M3)

 ATMOSPHERIC_TEMP =
 & slope * THERMO_TEMP + T3 - slope * M3
 end if
 end if

 return
 end

***** end of subroutine TSP ***

**
* Title: LOWER_PARABOLIC_FUNCTION
* Facility: Pluto
* Abstract:
* This routine represents the function of the lower parabolic
* curve of the TC temperature sensor. Given an 'X' value,
* return the corresponding 'Y' value.
*
* Arguments:
* real*8 x -- the 'X' value of interest
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
**

 real*8 function LOWER_PARABOLIC_FUNCTION(x)

 implicit none

*** define the arguments ***

C-93

 real*8 x

*** include the global common stores ***

 include 'run_parameters.for'

*** local variables ***

 real*8 half_slope

*** execution begins here ***

 half_slope = ((T4 - T3)/(M4 - M3)) / 2.0

* v1 Changes for AR#23. Item 27. "M3 + half" changed "M3 - half"

 LOWER_PARABOLIC_FUNCTION =
 & -(x - M3 - half_slope)**2 + T3 + half_slope**2

* v1 Changes for AR#23. End Change.

 return
 end

***** end of function LOWER_PARABOLIC_FUNCTION **************************

* Title: UPPER_PARABOLIC_FUNCTION
* Facility: Pluto
* Abstract:
* This routine represents the function of the upper parabolic
* curve of the TC temperature sensor. Given an 'X' value,
* return the corresponding 'Y' value.
*
* Arguments:
* real*8 x -- the 'X' value of interest
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Originial.
* v1 30-Nov-1994 Philip Morris (PEM)

 real*8 function UPPER_PARABOLIC_FUNCTION(x)

 implicit none

*** define the arguments ***

C-94

 real*8 x

*** include the global common stores ***

 include 'run_parameters.for'

*** local variables ***

 real*8 half_slope

*** execution begins here ***

 half_slope = ((T4 - T3)/(M4 - M3)) / 2.0

* v1 Changes for AR#23. Item 28. Algebra Problem fixed.

 UPPER_PARABOLIC_FUNCTION =
 & (x - M4 + half_slope)**2 + T4 - half_slope**2

* v1 Changes for AR#23. End Change.

 return
 end

***** end of function UPPER_PARABOLIC_FUNCTION **************************

***** end of module TSP.FOR ***

C-95

**
* Module: UTILITY.FOR
* Facility: Pluto
* Abstract:
* A collection of utility routines for Pluto.
*
* List of Routines:
* subroutine RANGE_CHECK
* subroutine NEG_VALUE_CHECK
* subroutine ZERO_CHECK
**

**
* Title: RANGE_CHECK
* Facility: Pluto
* Abstract:
* Given a real*8 data element and it's lower and upper bounds,
* determine if the data element exceeds the lower or upper
* bound. If the element exceeds one of the bounds, then display
* an error message.
*
* Arguments:
* source real*8 The value to check.
* lower_bound real*8 The lower bound
* upper_bound real*8 The upper bound
* module_text character*(*) The module name for error msg
* variable_text character*(*) The data name for error msg
*
* Notes:
* The upper bound >= lower_bound
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
**

 subroutine RANGE_CHECK(source, lower_bound, upper_bound,
 & module_text,variable_text)

 implicit none

*** define the subroutine arguments ***

 real*8 source
 real*8 lower_bound
 real*8 upper_bound
 character*(*) module_text
 character*(*) variable_text

*** include a global common store ***

C-96

 include 'external.for'

*** format statements ***

* v1 Changes for AR#23. Item 29. "x" added before "I4".

 10 format (x,'%EXCEPTIONAL-CONDITION-GCS-LOWER_LIMIT_EXCEEDED')
 20 format (x,'%EXCEPTIONAL-CONDITION-GCS-UPPER_LIMIT_EXCEEDED')
 30 format (x, A6, X, A32, x,I4)
 40 format (x, A32, E23.14)

* v1 Changes for AR#23. End Change.

*** execution begins here ***

 if (source .LT. lower_bound) then
 write (6, 10)
 write (6, 30) module_text, module_text, FRAME_COUNTER
 write (6, 40) variable_text, source
 else if (source .GT. upper_bound) then
 write (6, 20)
 write (6, 30) module_text, module_text, FRAME_COUNTER
 write (6, 40) variable_text, source
 end if

 return
 end

*** end of RANGE_CHECK **

* Title: NEG_VALUE_CHECK
* Facility: Pluto
* Abstract:
* Given a real*8 data element determine if the data element
* has a value of less then zero. If the value is less than zero,
* then display an error message.
*
* Arguments:
* source real*8 The value to check.
* module_text character*(*) The module name for error msg
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)

 subroutine NEG_VALUE_CHECK(source, module_text)

C-97

 implicit none

*** define the subroutine arguments ***

 real*8 source
 character*(*) module_text

*** include a global common store ***

 include 'external.for'

*** format statements ***

* v1 Changes for AR#23. Item 29. "x" added before "I4".

 10 format (' ','%EXCEPTIONAL-CONDITION-GCS-NEGATIVE_SQUARE_ROOT')
 30 format (x, A6, X, A32, x,I4)
 40 format (x, E23.14)

* v1 Changes for AR#23. End Change.

*** execution begins here ***

 if (source .LT. 0) then
 write (6, 10)
 write (6, 30) module_text, module_text, FRAME_COUNTER
 write (6, 40) source
 end if

 return
 end

*** end of NEG_VALUE_CHECK **

* Title: ZERO_CHECK
* Facility: Pluto
* Abstract:
* Given a real*8 data element determine if the data element
* has a value of zero. If the value is zero, then display
* an error message.
*
* Arguments:
* source real*8 The value to check.
* module_text character*(*) The module name for error msg
*
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)

C-98

 subroutine ZERO_CHECK(source, module_text)

 implicit none

*** define the subroutine arguments ***

 real*8 source
 character*(*) module_text

*** include a global common store ***

 include 'external.for'

*** format statements ***

* v1 Changes for AR#23. Item 29. "x" added before "I4".

 10 format (x,'%EXCEPTIONAL-CONDITION-GCS-DIVIDE-BY-ZERO')
 30 format (x, A6, X, A32, x,I4)

* v1 Changes for AR#23. End Change.

*** execution begins here ***

 if (source .EQ. 0) then
 write (6, 10)
 write (6, 30) module_text, module_text, FRAME_COUNTER
 end if

 return
 end

*** end of ZERO_CHECK ***

***** end of module UTILITY.FOR ***

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
Guidance and Control Software Project Data - Volume 2: Development
Documents

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Hayhurst, Kelly J. (Editor)

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19549

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT
The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977
and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of
the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was
developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil
aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements,
design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this
information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public
availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project,
describes the 4-volume set of documents and the role they are playing in training, and includes the development documents from the GCS project.

15. SUBJECT TERMS
Software engineering; Computer programming; Software reliability; DO-178B

18. NUMBER
 OF
 PAGES

380
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

457280.02.07.07.06.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2008-215551

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
12 - 200801-

