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ABSTRACT 
 
A key objective of NASA’s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris 
environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit.  Knowledge 
of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at 
specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity 
measurement of an object in the GEO regime, a 0.175 albedo is assumed currently.  However, identification of specific 
material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece.  
Using spectroscopy, it is possible to determine the surface materials of space objects.  The study described herein used 
the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight 
catalogued space objects.  For comparison, all of the objects observed were in GEO or near-GEO.  The eight objects 
consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces.  Two of the debris pieces 
stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054.  The reflectance spectra of the Titan 
3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features.  The COSMOS 
debris spectrum is flat and has no absorption features.  In contrast, the intact spacecraft show classic absorption features 
due to solar cells with a strong band gap feature near 1 micron.  The two spacecraft were spin-stabilized objects and 
therefore have solar panels surrounding the outer surface.  Two of the three rocket bodies are inertial upper stage (IUS) 
rocket bodies and have similar looking spectra.  The slopes flatten out near 1.5 microns with absorption features in the 
near-infrared that are similar to that of white paint.  The third rocket body has a similar flattening of slope but with 
fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study 
shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and 
therefore are not believed to be solar panel material or pristine white paint.  Further investigation is necessary in order to 
eliminate materials as possible choices for the debris pieces. 
 
INTRODUCTION 
 
One of the roles of the NASA’s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the 
debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit.  
Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard 
probability at specific GEO altitudes and aid predictions of the future environment. Currently, an optical size is 
calculated using an assumed albedo for an object and its intensity measurement.  However, identification of specific 
material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece.  
Using spectroscopy, it is possible to determine the surface materials of space objects.   
 
DATA COLLECTION AND REDUCTION 
 
Sophisticated characterization of orbital debris is required to adequately constrain these bodies’ physical characteristics 
(e.g., material type, mass, density, and size).  The capabilities of the 3.0 meter NASA Infrared Telescope Facility 
(IRTF) provide the high signal-to-noise spectra with appropriate spectral coverage and resolution needed for these types 
of detailed investigations.  The 4200 m altitude of Mauna Kea permits an adequate flux of photons through the 
atmospheric water vapor bands, which are located in visible and near-infrared wavelength regions associated with 
features common to orbital debris materials [1]. In addition, atmospheric seeing at Mauna Kea is generally excellent 
(0.8 arcseconds or better on average) due to the summit’s high elevation and laminar airflow over the Hawai’ian 
Islands.  Hence, these factors make the observatories located on Mauna Kea more attractive for detailed visible and 
near-infrared spectral studies than other observatories at lower elevations. 
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The detector used for this investigation is the SpeX instrument, which is a near-infrared spectrograph developed for the 
NASA IRTF by the Institute for Astronomy [2].  All of the SpeX data presented here were obtained on two different 
observing runs (June 2007 and May 2008) while the detector was in the low-resolution mode at the NASA IRTF with a 
0.8 arcsecond wide slit.  In this configuration, the instrument provides a spectral resolution (λ/Δλ) of ~93 across the 
entire 0.7 to 2.5 µm wavelength range.  Signal-to-noise values of the data obtained by SpeX are contingent on the 
brightness of the object at the time of observation, the total integration time, and the atmospheric conditions at the 
summit.  The signal-to-noise values for most objects observed with this instrument are attainable in excess of 80 to 100 
given good viewing conditions. 
 
Typical observations obtained via SpeX are of objects at low airmass (< 1.4) and as bright as visual magnitude (V-Mag) 
= 9.0 or as faint as V-Mag = 17.5.   Most detailed spectroscopic investigations require the observations to be taken in 
groups of 6 to 10 with individual integration times of 15 to 120 seconds each.  The brighter the object, the shorter the 
required integration times to attain a desired signal-to-noise ratio.  An integration time of 120 seconds is the 
recommended maximum as longer exposures risk saturation of the object signal by the OH sky background [2].  Several 
spectra are collected in groups (or sets) to ensure adequate signal-to-noise in the event that one or more spectra become 
unusable for analysis as a result of rapid changes in atmospheric conditions or instrument irregularities.   
The spectra taken via SpeX for such spectral studies are always taken in pairs, A and B.  The letters correspond to the 
particular “beam” or light path of the instrument observing cycle that the telescope has on the object at the time.  The 
observing cycle involves chopping from one beam to the other, and moves the instrument slit in a North-South 
orientation ~15 arcseconds relative to the background sky after each spectrum is collected.  The object remains in the 
slit, but its spectrum is stored on two different portions of SpeX’s charge couple device (CCD).  This allows for a better 
sky background subtraction during data reduction, as each observation is subtracted from the other, and removes only 
the sky portion of the individual observation.  The object spectrum is unaffected and remains behind. 
In addition to observations of the object to be studied, observations of local standard stars are obtained over similar 
airmass ranges in order to model the atmosphere at Mauna Kea during each night.  Local standard stars are chosen as 
close to the object as possible and should be no more than a few degrees away.  For detailed spectroscopic studies, the 
standard star observations should bracket the object observations in terms of airmass.  This allows for a more accurate 
determination of extinction coefficients over the entire spectral interval obtained by the SpeX instrument.  Without this 
type of correction, the spectra may contain spurious artifacts due to strong telluric water vapor features, especially at ~ 
1.4 and ~ 1.9 µm.  
 
Ideally, the stars chosen as local standards are spectral G-type stars and have similar spectral responses to that of the 
Sun.  Often, the local standard may have a close spectral match to that of the Sun, but may have some differences in 
spectral response.  Given that the flux from orbital debris surfaces is reflected sunlight, the spectra must be ratioed to a 
solar-type spectrum in order to remove the effects of the Sun.  Solar analogues such as SAO 93936 (Hyades 64) are 
observed over the same airmass ranges as both the object and local standard to correct for any slight variations of the 
local standard stars’ spectrum from that of the Sun [3, 4].  Therefore, in a single night of observations at the NASA 
IRTF, spectra of target objects, local standard stars, and solar analogue stars are obtained.  The reflectance spectra of the 
orbital debris objects are reduced and can be shown schematically as follows: 
 
Object/Solar Analog Star = (Object/Local Standard)/(Solar Analog/Local Standard) 
 
When taking data in a laboratory, a white reference is measured and compared to the material spectrum such that the 
resulting spectrum is called an absolute reflectance measurement that is on the scale of zero to one.  However, there is 
not such an absolute reflectance standard at the same distance and orientation of each of the satellites.  Therefore, the 
data is considered a relative reflectance.  In these cases, the shape of the spectrum and the location and strength of the 
absorption features are used to determine material and not the percent reflectivity.  To be able to compare measurements 
from two different objects, it may be necessary to scale to the reflectance so that both objects fit on one plot.  When this 
practice was done, it will be noted. 
 
OBJECTS ACQUIRED 
 
The data were collected on two nights: one in June 2007 and one in May 2008.  Eight objects were collected during the 
two observing runs: three debris objects, two uncontrolled spacecraft and three rocket bodies.  Two of the three debris 
objects stemmed from the Titan 3C Transtage breakup and the third was from the COSMOS 2054 debris release.  The 
material types of these objects are known.  The two spacecraft are both Hughes 376 bus types, which are cylindrical 



satellites with a de-spun dish.  These spacecraft are covered with solar cells around the body.  Solar panels consist of 
solar cells and mounting materials, but the spectrum as seen in space is dominated by the reflectance of the solar cells. 
The final three objects are rocket bodies, two of which are IUS upper-stages and the other is an SL-12 rocket body.  IUS 
upper-stages outer surfaces consist of white paint, multi-layer insulation, and carbon.  The surface properties of the SL-
12 are unknown prior to the writing of this paper.  
 
RESULTS 
 
Debris Objects 
 
The three debris spectra are compared below in Fig. 1.  The two Titan debris pieces have similar slopes and features, 
and are believed to be the same material.  The slopes of the Titan debris are less beyond 1.7 microns with the “a” piece 
having a neutral slope between 1.9 and 2.4 microns. The COSMOS debris piece has a flat, noisy spectrum.  Laboratory 
data has been compared to the debris data, however, at the point of this printing, no match has been found due to the 
lack of absorption features and in the case of the COSMOS piece, the lack of slope.  However, it can be determined that 
the two Titan pieces are of similar material and coating.  This material and coating is very different from the COSMOS 
debris piece. With more data collected on debris targets, it maybe possible to detect differences between the two break-
ups.  However, at this time due to the small number of objects observed, the only conclusion that can be made is that 
these two pieces of the Titan break-up have a similar shape, which is significantly different from the COSMOS debris." 
 

Fig. 1. Comparison of Debris Spectra.  The flat, but noisy, spectrum is from the COSMOS debris, while the two 
similar spectra are from the Titan 3C debris. 



 
Spacecraft 
 
The two spacecraft have the same bus type and prior to the observations, the hypothesis was that the spectra would be 
similar in shape, slope, and absorption features.  Fig. 2 shows the two spectra, where the data stemming from the SBS 2 
has a higher starting reflectance while the data from the Galaxy 1R has a lower starting point.  The Galaxy 1R has a 
spectrum that is very similar to that of solar cells tested in the laboratory.  The strong upturn in reflectance near 1 
micron is called a band gap, and this specific band gap is similar in strength and location to the band gap found in solar 
cells measured in the laboratory.  The SBS 2 has a similar band gap although at a longer wavelength.  The absorption 
features near 2.2 – 2.3 microns are in similar locations and in a similar location to those of the solar cells measured in 
the laboratory.  These absorption features are attributed to the C-H bonds in the solar cell materials [1]. 
 

Fig. 2. Spectral comparison of SBS 2 and Galaxy 1R.  Both spacecraft are currently uncontrolled, but were 
originally spin-stabilized with solar cells surrounding the body.  These spectra are scaled to one at 1.6 microns. 



Rocket Bodies 
 
Spectra on three rocket bodies were collected for this project, two IUS upper-stages and one SL-12 rocket body, and are 
shown in Fig. 3.  The material type of the IUS is known and consists of white paint, multi-layer insulation (MLI), and 
carbon-carbon epoxy while the surface properties of the SL-12 are unknown [5].  All three rocket bodies show a similar 
slope through all wavelengths; however, the two IUS rocket bodies show a C-H absorption feature near 2.3 microns that 
is consistent with white paint [1].  The SL-12 spectrum does not have this feature as is seen in Fig. 4.  That would 
indicate that either the SL-12 was not covered with white paint or the paint has changed its surface properties due to 
aging.  

Fig. 3.  Spectral comparison of two IUS rocket bodies and one SL-12 rocket body.  The SL-12 spectrum has a 
similar slope to one of the IUS objects, however, has fewer features.  The two IUS rocket bodies both have C-H 
features near 1.65 and 2.25 microns.  These spectra are scaled to one at 1.6 microns. 
 



Fig. 4. Unscaled spectral reflectance of the rocket bodies with a smaller range to show that the SL-12 does not 
appear to have an absorption feature near 2.5 microns like the IUS R/B. 
 
Combined Results 
 
One object in each of the classes discussed above is shown for comparison in Fig 5.  Although the dataset is limited at 
this time, the figure demonstrates that spectra can be potentially used to discriminate between the classes of objects in 
the orbital population.  Each of the three classes of objects (spacecraft, rocket bodies, Titan debris) has a distinct 
spectrum.  The rocket body and the debris both have increasing slopes through 1.5 microns; however, the rocket body 
spectra tends to flatten out at longer wavelengths, while the debris object spectra continues to increase with wavelength.  
The spacecraft spectrum has a distinct band gap near 1 micron, a feature which the other two objects do not have 
present in their spectra.  The intact objects both show evidence of C-H absorption features at approximately 2.3 microns 
[1].  The C-H absorption feature is due to white paint in the case of the IUS and due to C-H bonds in the solar cell 
material believed to be in the substrate.  However, their centers are slightly shifted from one another.  This shift is also 
seen in the spectra of laboratory samples of white paint and solar cells, and is therefore not an effect of the space 
environment. 
 
 



Fig. 5. Spectral comparison of a rocket body, spacecraft, and debris.  Each has distinct features and components.  
These spectra are scaled to one at 1.6 microns. 
 
CONCLUSIONS 
 
By collecting data on different classes of objects, it is shown that the spectra can be used to determine the basic material 
types of the objects.  Although the material type is still unknown for the debris pieces, it was shown that we can 
discriminate between debris from two different spacecraft. The spectra of the two Titan pieces have similar shapes, but 
they are very different compared to the COSMOS spectrum. Satellites with similar bus types have similar absorption 
features and spectral shape, although the solar panel band gap may be found at slightly different wavelengths.  The 
rocket body spectra collected in this preliminary study showed similar slopes and shapes for both types of rocket bodies.  
However, the SL-12 did not appear to show evidence of white paint while the IUS had features consistent with this 
material.  Therefore by comparing the slopes, shapes and absorption features of the spectra for each class of object 
observed, one can discriminate between the different classes of objects and even identify similarities between individual 
types of objects. Overall this project proved to be a success in its goal to determine the basic material type of the objects 
studied.  Future work includes collecting more laboratory data in the infrared and the visible regime such that a larger 
database of remote spectral responses is available to compare to the orbital debris population spectra.  If more materials 
are known, it will be easier to determine the material of a specific rocket body, spacecraft, or debris piece.  
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