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Introduction

 Overview of Altair Lunar Lander
 Goals and Background 
 Modeling with Aspen Custom Modeler
 Lander model
 Astronaut model

 Initial Parametric Study
 Final Modeling
 Conclusions and Summary



Altair Mission Overview

http://external.jsc.nasa.gov/events/lsspo/



The Altair Lunar Lander

Crew Module

Airlock

http://external.jsc.nasa.gov/events/lsspo/



Goals and Background

 Control of cabin conditions is vital to insuring crew 
comfort. Includes:
 Comfortable Relative Humidity (RH) range
 Cabin ppCO2 below threshold limit
 Avoiding/minimizing condensation

 Aim to minimize mass/power/resource impacts
 Determine best operating parameters and sizing to maintain 

comfortable environment while maximizing mass savings. 



Impact of mass savings

 Reduced mass → Reduced propulsion 
 Requirements for lift

 Reduced mass → Reduced costs
 Cost of delivering payload to LEO ~ $10k/lb1

 Reduced mass provides flexibility for additional 
modifications

1Nix, M.B. and William J.D. Escher (1999). “Spaceliner Class System Operability Gains via Combined Airbreathing/Rocket Propulsion: Summarizing an 
Operational Assessment of Highly Reusable Space Transports”, Paper # 99-2355, 35th AIAA/ASME/SAE/ASEE/ Joint Propulsion Conference and 
Exhibit, Los Angeles CA.



Altair CO2 & Humidity Control System Model
Dual-loop configuration with higher flow cabin loop for primary heat 
removal and lower flow suit loop for carbon dioxide and humidity 
control in both open cabin and suited configurations.

2 PSA units control 
CO2 and humidity

Blowers control total air 
flow within the Air 
Revitalization (ARS) loop

Astronauts modeled 
within Hierarchy block



The Astronaut Model

 CO2 and humidity production based on activity 
level

 O2 consumption based on activity level
 4 crew members

 2 crew on EVA
 2 stay in the vehicle (exercise)

 Activity profiles modeled using switch statements 
and various loop structures

2 CM leave for EVA 2 CM return from EVACM exercise

0:00 6:00 22:0017:009:00 24:00



Modeling Strategy

 Understand how PSA parameters affect CO2, 
Humidity levels
 Cycle time
 Flow rate

 Consider bed size effect



Parametric Study of ARS architecture



Flow rate analysis

 Constant cycle time
 2 units (CEV-sized beds) operating in parallel
 Cabin temp controlled by Cabin HX
 Varies coolant flow rate to control cabin temperature



2 CM leave for EVA 2 CM return from EVACM exercise

0:00 6:00 22:0017:009:00 24:00

Cabin atmosphere dynamics vs. flow rate 



Cycle time analysis

 Constant flow rate – air pulled through loop by 
ARS fan

 2 units (CEV-sized beds) operating in parallel
 Cabin temp controlled by Cabin HX
 Varies coolant flow rate to control cabin temperature



Cabin atmosphere dynamics vs. cycle time

2 CM leave for EVA 2 CM return from EVACM exercise

0:00 6:00 22:0017:009:00 24:00



Summary of results: Parametric Analysis

 Flow exerts a greater effect on ARS 
performance than cycle time

 Conflict between regulating humidity and CO2
 High flows necessary to regulate CO2 during high 

activity periods (exercise, EVA prep)
 These flow rates dry out the cabin during sleep 

periods
 Variable air flow is necessary for control
 Dependent on activity level

 By-pass valve is a simple solution



Updated control scheme
Cabin dew point controls 
PSA bypass flow



24-hour Cabin ppCO2 & humidity profiles

2 CM leave for EVA 2 CM return from EVACM exercise

0:00 6:00 22:0017:009:00 24:00



Bed sizing analysis

 2 CM exercising 2 CM EVA
 Constant cycle time and flow rate
 Cabin temp controlled by Cabin HX
 Varies coolant flow rate to control cabin temperature



24-hr relative humidity profiles



24-hr ppCO2 profiles



24-hr condensate production profiles



Opportunities for Mass Reduction

 Reducing bed size shows limited impact upon 
removal efficiency

 None of the design requirements are violated



Conclusions

 ACM for design ARS Altair Lunar Lander
 Proposed variable flow rate architecture 
 Defining target operating parameters 
 Sizing PSA units

 Demonstrated opportunities for mass reduction
 Cost savings
 Flexibility
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