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Abstract
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh

movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media
by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh
has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving
multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For
problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available.
An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial
formulations produce the same results in the limit of zero time-step size.

Nomenclature

[Φ] state-transition matrix

[Θ] convolution integral of [Φ]

α angle of attack

¯̄τ stress tensor

¯̄F flux tensor

¯̄I identity tensor

δ structural displacement

F̂a generalized aerodynamic force

n̂ unit (normal) vector

Ω rotation vector

Q control-volume average of q

q vector of conserved variables or generalized coor-
dinates

R radial vector

u mesh point displacement

W control volume face velocity

xi = (q, q̇)T vector of generalized displacements and ve-
locities, ith mode

ν Poisson’s ratio

ωi natural frequency of ith mode

φi(x) ith mode shape

φn coefficients for backward time differencing

E Young’s modulus

R residual

t nondimensional time

V control volume

[Tm] 4x4 transform matrix

CG center of gravity

GCL Geometric Conservation Law

Introduction
The simulation of flows involving moving geometries is becoming increasingly practical as computer performance in-

creases. The range of applications in which moving geometries are essential is quite broad; a very short list includes store
separation,1 rotorcraft,2 flutter analysis,3 and maneuvering aircraft.4 Depending on the particular application, different
types of mesh motion schemes within the CFD solver may be needed. For example, analysis of a rigid aircraft in spin is
most efficiently done with a mesh in which all points move as a rigid body along with the aircraft. For flutter analysis
however, the geometry must be allowed to deform, and this in turn requires that the surrounding mesh deform to accommo-
date the changes in the surface. Store separation analysis usually involves large relative motion; without remeshing, mesh
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deformation schemes typically fail (resulting in collapsed cells) when the motion is too large. Remeshing can eliminate the
collapsed cells, but this adds extra computational cost, and remeshing is not easily made compatible with the backward-
time integration schemes used in many flow solvers. Overset meshes pose no difficulties for backward-time integration
and enable large relative motion between components. Rotorcraft simulations present a particularly challenging problem,
because the rotor blades, in addition to rotational motion and pitch changes, are inherently aeroelastic. In addition, there is
large relative motion between the blades and the fuselage. For these simulations, deforming overset meshes are used.

This paper describes recent work to extend the mesh motion capabilities in the FUN3D unstructured-mesh, Navier-
Stokes flow solver to allow a broad range of moving-geometry applications. Previously, FUN3D only addressed rigid mesh
motion of the entire domain,5 which limited the range of applications. The general formulation for temporal integration
on moving and deforming meshes is presented in detail, as is the linear elasticity analogy used to deform meshes when
required. The transform matrix approach used for moving either a rigid grid or a rigid surface immersed in a deforming grid
is described. For a specialized class of applications, a noninertial reference frame in which the body is stationary leads to
a more efficient solution than the general mesh motion approach. The similarity of this particular noninertial formulation
to the moving-mesh formulation is discussed. Finally, the mode-shape based, linear-structures model implemented for
aeroelastic problems is briefly described. Several example calculations are shown to illustrate some of the applications
now possible with the FUN3D solver, including dynamic pitching of a blended-wing aircraft, flutter of a thin wing, and
store separation with overset grids. An isolated rotor in hover is used to illustrate the noninertial formulation. The same
example is used to verify that the noninertial frame and the inertial-frame, moving mesh formulations produce the same
result as the time step tends to zero in the inertial frame.

Governing Equations
The unsteady Navier-Stokes equations, representing the conservation laws as seen by an observer in an inertial reference

frame, may be written in integral form for either a moving or stationary control volume as

∂

∂t

∫
V

q dV +
∮

∂V

( ¯̄F∗ − ¯̄Fv) · n̂ dS = 0

where V is the control volume, bounded by control surface ∂V , with local control volume face velocity W. The vector q
represents the conserved variables; the tensors ¯̄F∗ and ¯̄Fv represent the convective and diffusive fluxes of the conserved
variables, respectively. For the case of a moving control volume, the convective fluxes must account for the relative
reduction or enhancement of the flux through the control surface owing to the local control surface speed. The flux through
the moving control volume is therefore ¯̄F∗ = ¯̄F − qWT, where ¯̄F is the usual flux tensor associated with a stationary
control volume. This is often referred to as the Arbitrary Lagrangian-Eulerian (ALE)6 formulation; the special cases of
W = 0 and W = (u, v, w)T (fluid velocity) lead to the classical Eulerian and Lagrangian descriptions, respectively.

Introducing a volume average of q

Q =

∫
V

q dV

V

the conservation equations are

∂(QV )
∂t

+
∮

∂V

( ¯̄F∗ − ¯̄Fv) · n̂ dS = 0 (1)

where for compressible flow the conserved variables, inviscid flux vectors, and viscous flux vectors are, respectively,

q =


ρ
ρu
ρv
ρw
E



¯̄F∗ =


ρ(u−Wx)

ρu(u−Wx) + p
ρv(u−Wx)
ρw(u−Wx)

(E + p)(u−Wx) + Wxp

 î +


ρ(v −Wy)
ρu(v −Wy)

ρv(v −Wy) + p
ρw(v −Wy)

(E + p)(v −Wy) + Wyp

 ĵ +


ρ(w −Wz)
ρu(w −Wz)
ρv(w −Wz)

ρw(w −Wz) + p
(E + p)(w −Wz) + Wzp

 k̂
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¯̄Fv =


0

τxx

τyx

τzx

uτxx + vτxy + wτxz − kTx

 î +


0

τxy

τyy

τzy

uτyx + vτyy + wτyz − kTy

 ĵ +


0

τxz

τyz

τzz

uτzx + vτzy + wτzz − kTz

 k̂

In the above equations, the velocity field given by u = (u, v, w)T is measured relative to the inertial frame. The mean flow
equations are closed by the equation of state for a perfect gas

p = (γ − 1)(E − ρ
(u2 + v2 + w2)

2
)

The detailed components of the stress tensor, heat flux vector, and auxiliary closure equations are given in Reference
5 and are not repeated here. The effects of turbulence are incorporated via a turbulent eddy viscosity determined from a
suitable turbulence model.

It is worth noting at this point that for the special case of a spatially and temporally constant state vector, e.g. q =
(1, 0, 0, 0, 0)T , the governing equations reduce to the “Geometric Conservation Law” (GCL)7

∂V

∂t
=

∮
∂V

WT · n̂ dS (2)

Solution Algorithm
The unstructured mesh solver used for this study is FUN3D.8 Within the code, Equation 1 is discretized over the median

dual volume surrounding each mesh point, balancing the time rate of change of the averaged conserved variables in each
dual volume with the flux of mass, momentum and energy through the instantaneous surface of the control volume.

Spatial Discretization
Details of the spatial discretization have been presented in Reference 8, and will only be summarized here. Within

FUN3D, the convective fluxes are computed with a flux-splitting scheme, and for second order accuracy the values at
dual-cell interfaces are reconstructed using gradients at mesh nodes computed with a least-squares technique. Limiting
of the reconstructed values may be employed for flows with strong shocks. For all results presented in this paper, the
convective flux scheme used is Roe’s flux difference splitting9 with second order unlimited reconstruction. For tetrahedral
meshes, the full viscous fluxes are discretized using a finite-volume formulation in which the required velocity gradients
on the dual faces are computed using the Green-Gauss theorem. On tetrahedral meshes this is equivalent to a Galerkin type
approximation. For non-tetrahedral meshes, the same Green-Gauss approach can lead to odd-even decoupling. A pure
edge-based approach can be used to circumvent the odd-even decoupling issue, but yields only approximate viscous terms.
Thus for non-tetrahedral meshes, the edge-based gradients are combined with Green-Gauss gradients, which improves the
h-ellipticity of the operator, and allows the complete viscous stresses to be evaluated. For turbulent flows, both the one-
equation model of Spalart and Allmaras10 (SA) and the two-equation SST model of Menter11 are available. The SA model
may be solved loosely coupled to the mean-flow equations or tightly coupled to the mean-flow equations. For all results
presented in this paper, the one equation SA model is employed, solved in a loosely coupled fashion.

Few modifications are needed to the spatial discretization summarized above to handle moving meshes. Specifically,
the dual face speeds need to be included in the convective flux routines for both the mean flow and turbulence equations
(including boundary routines); the diffusive flux routines remain unaltered. For viscous flows, the no-slip condition at the
wall is satisfied by setting the fluid velocity equal to the velocity of the wall itself.

Temporal Discretization
The time-advancement scheme in FUN3D is described in some detail below. The basic steps follow the derivation

given by Reference 5 for the rigid-mesh case, with extensions to allow for the more general deforming mesh case.
Equation 1 may be written as

∂(QV )
∂t

= R

Evaluating this equation at time level n+1, and writing the time derivative as a series expansion of successive levels
backward in time gives

1
∆t

[φn+1(QV )n+1 + φn(QV )n + φn−1(QV )n−1 + φn−2(QV )n−2 + . . .] = R(Qn+1) ≡ Rn+1 (3)
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Similarly, the Geometric Conservation Law may be discretized as

1
∆t

[φn+1V
n+1 + φnV n + φn−1V

n−1 + φn−2V
n−2 + . . .] = Rn+1

GCL (4)

The sequence { φn } defines a family of backward difference formulae (BDF). The particular choice of { φn } governs the
accuracy of the temporal discretization; several choices are described in Reference 5. For consistency, the sequence must
satisfy the requirement Σφn = 0, and the discretization of the time derivative term in the GCL must use the same sequence
as the conservation equations. Equation 3 may be written as

1
∆t

[Qn(φn+1V
n+1 + φnV n + φn−1V

n−1 + φn−2V
n−2 + . . .)

+φn+1(Qn+1 −Qn)V n+1 + φn−1(Qn−1 −Qn)V n−1 + φn−2(Qn−2 −Qn)V n−2 + . . .] = Rn+1 (5)

Following Morton et al.,12 the discrete GCL (Equation 4), can be used to rewrite Equation 5 as

QnRn+1
GCL +

1
∆t

[φn+1(Qn+1 −Qn)V n+1 + φn−1(Qn−1 −Qn)V n−1 + φn−2(Qn−2 −Qn)V n−2 + . . .] = Rn+1 (6)

At this stage the right-hand side of Equation 6 could be linearized about time level n, resulting in an implicit scheme for
∆Qn = Qn+1 −Qn. However, the linearization introduces an additional error into the result that is time-step dependent.
Furthermore, the nonlinear residual R(Q) is difficult to linearize exactly, so that in practice approximate linearizations are
often used, introducing another level of error.

To mitigate these linearization errors, as in Reference 13, a pseudo-time term is added to Equation 6

(V
∂Q
∂τ

)n+1 + QnRn+1
GCL +

1
∆t

[φn+1(Qn+1 −Qn)V n+1 + φn−1(Qn−1 −Qn)V n−1

+φn−2(Qn−2 −Qn)V n−2 + . . .] = Rn+1

where the pseudo time is denoted by τ and 0 < τ < ∞ during each physical time step. By construction, Q is now a
function of t and τ while V remains a function only of t. Provided that ∂Q/∂τ vanishes for large τ , during each time step,
Equation 6 is recovered. Discretizing this term with a first-order backward difference about pseudo-time level m + 1, and
noting that previous values of the solution (Qn, Qn−1, etc) do not depend on the current pseudo-time level gives

V n+1 (Qn+1,m+1 −Qn+1,m)
∆τ

+ QnRn+1
GCL +

1
∆t

[φn+1(Qn+1,m+1 −Qn)V n+1 + φn−1(Qn−1 −Qn)V n−1

+φn−2(Qn−2 −Qn)V n−2 + . . .] = Rn+1,m+1

It should be noted that there is no particular advantage to using a higher-order discretization of the pseudo-time term,
just as first-order temporal discretization is typically used with local-time stepping methods to advance time-independent
problems to a steady state. In fact, the use of pseudo time is completely analogous to local-time stepping for steady flows.

The nonlinear residual at the m + 1 pseudo-time level may be linearized about the mth level as

Rn+1,m+1 = Rn+1,m + (Qn+1,m+1 −Qn+1,m)
∂Rn+1,m

∂Q

Subtracting V n+1φn+1Qn+1,m/∆t from both sides and defining ∆Qn+1,m = Qn+1,m+1 − Qn+1,m, gives, after rear-
rangement, the final form

[(
V n+1

∆τ
+

V n+1φn+1

∆t

)
I− ∂Rn+1,m

∂Q

]
∆Qn+1,m = Rn+1,m −QnRn+1

GCL − V n+1 φn+1

∆t
(Qn+1,m −Qn)

−V n−1 φn−1

∆t
(Qn−1 −Qn)− V n−2 φn−2

∆t
(Qn−2 −Qn)− . . . (7)

Equation 7 is the means by which the solution is advanced in time in FUN3D; with the physical time step ∆t set to
∞, and for a stationary mesh, Equation 7 reverts to the standard ”steady state” scheme described in Reference 8. At
each subiteration m, the linear system represented by Equation 7 is iteratively solved using a user-specified number of
Gauss-Seidel sweeps with multi-color ordering. Within the non-linear iteration process between time steps, the equations
are advanced in pseudo time with local time stepping (spatially varying time step ∆τ based on a specified constant CFL
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number) to accelerate the solution to a steady state in pseudo time, with the physical time step ∆t being held constant over
the entire mesh. The CFL number may be ramped during the subiterations to accelerate the convergence in pseudo time.
To reduce computational time, the evaluation of the flux Jacobian ∂Rm/∂Q is periodically frozen during pseudo-time
stepping.

The Rn+1
GCL term appearing in Equation 7 is evaluated as follows. Given coordinates for each point in the grid at time

levels n + 1, n, n − 1, . . ., velocities at each point are calculated using the same backward difference formula as used to
discretize the time term in Equation 7 (i.e. the same sequence { φn } is used). These grid-point velocities are then averaged
to the locations that define the dual face, and the required integration over each face of the dual cell is carried out via the
midpoint rule

RGCL =
∮

∂V

WT · n̂ dS ∼=
nfaces∑

i=1

(W avg
x Sx + W avg

y Sy + W avg
z Sz)

where Sx, Sy, Sz are the directed areas of the dual face. The procedure is analogous to the one used to define the dual
volumes. Note that if W was specified exactly, then evaluating the surface integral with the midpoint rule would result
in a local error of order ∆h∆S ∼ ∆h3, where ∆h is a characteristic dimension of the control-surface face. However,
within the flow solver, mesh-point velocities are evaluated using the same N th-order backward-difference formula that
is used to discretize the flow equations in time. Note that mesh-point velocities could be evaluated analytically for rigid
meshes, but finite differences are used for consistency with deforming meshes. Thus the midpoint velocities are known
only to O(∆tN ), which results in a additional local error of O(∆tN∆S) = O(∆tN∆h2). Consequently the local error
in evaluating RGCL is O(∆h3,∆tN∆h2). In particular, when evaluated on rigidly moving meshes (for which the cell
volumes remain unchanged), RGCL will be zero only to within local truncation error.

Temporal Error Control
The subiterative scheme outlined above has been implemented in a number of flow solvers. One issue that consistently

arises is the choice of the number of subiterations to use. Converging the subiteration residual (given by the right-hand
side of Equation 7) at each time step to machine zero is generally prohibitive in terms of computational cost. So the issue
becomes one of striking a balance between computational cost and accuracy, i.e. to perform just enough subiterations
to obtain a result that is essentially unchanged by additional subiterations. For the BDF schemes, one can estimate the
temporal error incurred at each time step by examining the difference in residual contribution with two different levels
of approximations of time derivatives.14 The temporal error norm can be used as an exit criteria for terminating the
subiteration loop of the dual time stepping process. Basically, the subiteration process is terminated when the residuals
drop below a specified fraction of the temporal error norm. Such a strategy results in uniform temporal accuracy for all
time steps, and eliminates the guess work for selecting iteration count or preselected residual reduction.

Mesh Deformation
A number of methods for deforming a given mesh to accommodate a changing boundary shape/orientation have been

proposed. An excellent comparison of the various methods is given in Reference 15. The difficulty with mesh deformation
is that negative volumes within the field may be generated for arbitrary displacements of the boundary. Treating the mesh
deformation problem as analogous to a linear elasticity problem has been found in practice to be the most robust method,
and is the approach used in FUN3D. In the absence of body forces, the linear elasticity equations in differential form are

∇ · ¯̄σ = 0 (8)

where ¯̄σ is the stress tensor given by

¯̄σ = λTr(¯̄ε)¯̄I + 2µ¯̄ε

where Tr is the trace, ¯̄I the identity tensor, λ and µ are material properties of the elastic material (Lamè constants), and ¯̄ε
is the strain tensor

¯̄ε =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
with u = (u1, u2, u3)T being the displacement vector.

Equation 8 may be cast in finite-volume form by integrating around a control volume and using Gauss’ Theorem to
give

Rel(u) =
∮

∂V

λ
∂ui

∂xi

¯̄I·n̂ dS +
∮

∂V

µ

(
∂ui

∂xj
+

∂uj

∂xi

)
· n̂ dS = 0 (9)
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The terms appearing in Equation 9 are evaluated in the same manner as the viscous terms in Equation 1.
Given an initial guess, u0, write the displacement as u = u0 + ∆u. Substitution into Equation 9 gives rise to the

following system of linear equations for ∆u

∂Rel

∂u
∆u = −Rel(u0) (10)

Since Equation 9 is linear, the Jacobian ∂Rel/∂u does not depend on u, and need be evaluated only once. Equation 10
is solved using the generalized minimum residual (GMRES) method.16 The initial guess u0 for the displacements is by
default taken as zero; optionally u0 may be taken from the mesh at the previous time step. For periodic motion of the
boundary, starting from u0 = 0 each time step guarantees the deformed mesh will be periodic as well. However, starting
from the displacement field from the previous time step typically results in faster convergence of the elasticity equations.
Dirchlet boundary conditions are specified on non-symmetry boundaries to reflect the current boundary position/shape. On
symmetry boundaries, the mesh motion is constrained to the plane.

The material properties λ and µ are related to Young’s modulus E and Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
Young’s modulus is a positive quantity that indicates the stiffness of the material; larger values correspond to stiffer ma-
terials. Poisson’s ratio indicates the relative amount that a material shrinks in transverse directions as it is extended in the
axial direction. Physical materials have −1 < ν < 1

2 , with cork having a value of approximately 0. To close the elasticity
equations, two of the four parameters λ, µ, E, ν must be specified. Following Reference 15, E is taken as either inversely
proportional to the dual-cell volume or inversely proportional to the distance from the nearest solid boundary. As volumes
in a typical CFD mesh are smallest near the surface, both means of specifying E have the effect that cells near a boundary
are stiffer than those further away, and thus move without significant distortion as the boundary is moved. Larger/more
distant cells are thus relegated to accommodating larger deformations, but since they are larger, they are better able to
tolerate the deformation without negative volumes. The Poisson ratio is given a uniform value of zero; limited numerical
experiments showed little sensitivity to other constant values of ν. It should be noted that an earlier implementation of the
elasticity equations in the FUN3D suite, aimed at design applications,17 used a different paradigm wherein E was taken
as a constant and Poisson’s ratio was taken as inversely proportional to the cell aspect ratio. The current formulation has
proven to be considerably more robust.

Motion Specification
The initial implementation of time-varying meshes within the FUN3D code was restricted to translation or rotation

of the entire mesh as a solid body, with relatively limited options for motion specification.5 The motion driver has been
substantially revamped in order to increase generality, as well as to be able to handle overset and deforming meshes.
Towards this end, the focus of motion specification has shifted from mesh motion to body motion; mesh motion is now
a secondary specification tied to body motion. A body is defined by one or more solid boundaries within the mesh.
Multiple bodies in relative motion can be accommodated, although some types of associated mesh motion preclude this.
For example, a non-overset, rigid mesh cannot support bodies in relative motion; however, a non-overset, deforming mesh
can support relative motion provided the motion is not too large. Overset meshes (rigid or deforming) can support arbitrarily
large relative motion.

Within the code, motion is handled via application of a 4x4 transform matrix that contains both translation and or-
thonormal rotation components. Given a point at an initial position (x, y, z)T , application of the transform matrix moves
the point to its new position (x′, y′, z′)T

x′

y′

z′

1

 =


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1




x
y
z
1


Application of the inverse transform matrix moves the point back to the initial position; the inverse is computed using the
method outlined in Reference 18, which has been found to provide an accurate inverse of the transform matrix.
Two often encountered transforms are a pure translation from the origin to a point (x0, y0, z0)T and a pure rotation θ in the
direction n̂ (unit vector) about the origin

[T0] =


1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1


6
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[R0] =


(1− cosθ)nx

2 + cosθ (1− cosθ)nxny − nzsinθ (1− cosθ)nxnz + nysinθ 0
(1− cosθ)nxny + nzsinθ (1− cosθ)ny

2 + cosθ (1− cosθ)nynz − nxsinθ 0
(1− cosθ)nxnz − nysinθ (1− cosθ)nynz + nxsinθ (1− cosθ)nz

2 + cosθ 0
0 0 0 1


where the right-hand rule in the direction of n̂ has been used to define the sense of θ. Other rotation matrices may arise
depending on how the motion is specified, e.g. rotations specified terms of three Euler angles rather than a single rotation
angle and direction (Euler axis) as above. An extremely useful feature of the transform matrix approach is that multiple
transformations telescope via matrix multiplication. Thus, rotation about a point (x0, y0, z0)T , by an angle θ, in the
direction n̂ is effected by first translating to the origin, performing the rotation, and then translating back to (x0, y0, z0)T ,
which is accomplished via three matrix multiplications to give the complete transform matrix [Tm]

[Tm] = [T0][R0][T0]−1

The telescoping property of the transform matrices is also useful for tracking motions of one body relative to another.
For example, a wing may be translating up and down, while at the same time, a flap may be pitching about a hinge line
fixed on the wing. It is natural to describe the pitching motion of the flap in its own coordinate system, which at t=0 (say)
is the same as the wing coordinate system. If the transform matrix describing the plunging of the wing relative to its initial
position in an inertial reference frame is given by [Tm]wing, and the transform matrix of the pitching motion of the flap
relative to a hinge line defined in the flap coordinate system is given by [Tm]flap, then the position of the flap, relative to
the inertial frame, may by computed using the composite transform

[Tm] = [Tm]wing[Tm]flap

The order of matrix multiplication is important: post multiplication of the parent transform takes coordinates from the
child system into the parent system, which is then moved relative to the inertial frame according to the parent transform.
The example above is for a simple, one-generation (parent-child) composite motion, but the concept may be extended to
any number of generations.

Rotating Noninertial Reference Frame
The moving-body infrastructure described above is quite general and can be applied to a large class of problems. There

are however, specialized situations where the general approach is not the most efficient approach. A very common scenario
is the analysis of a single body rotating in isolation. Examples include helicopter rotors in hover and propellers in forward
flight, assuming fuselage interactions can be neglected. In such situations, the problem can be formulated in a noninertial
reference frame rotating with the body. If the problem is steady in the noninertial frame, then a significant reduction in
computation time can be achieved over the time required to solve the problem in the inertial frame, where a time-dependent
problem must be solved.

In the following, it is assumed that the body angular velocity Ω is constant and that the mesh is rigid. Furthermore,
in the FUN3D implementation, it is assumed that the reference frame undergoes no motion other than rotation. Although
the noninertial-frame formulation could be generalized to accommodate arbitrary motions and deforming meshes, any sig-
nificant advantage over the time-dependent inertial formulation would disappear. A more general treatment of noninertial
frames is given in Reference 19.

The form of the equations for the noninertial formulation depends on whether the equations are written in terms of
absolute velocity (velocity relative to the inertial frame) or velocity relative to the noninertial frame. Let ur be the fluid
velocity relative to the rotating frame, and u be the absolute velocity. The two are related by

u = ur + Ω×R (11)

where R is the distance from the axis of rotation.
The unsteady Navier-Stokes equations for the relative velocity in a frame rotating with constant angular velocity, in the

absence of eternally-applied forces or heat addition, are given by (see for example, Hirsch20)

∂ρ

∂t
+∇ · [ρur] = 0

∂(ρur)
∂t

+∇ ·
[
ρurur + p¯̄I− ¯̄τ

]
= −2ρ(Ω×ur)− ρΩ×(Ω×R) (12)

∂Er

∂t
+∇ · [ur(Er + p) + k∇T − ¯̄τ · ur] = 0
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where the first term on the right-hand side of the momentum equations is the Coriolis force per unit volume, the second
term is the centrifugal force per unit volume. In the energy equation, Er = p/(γ − 1) + 1

2ρ |ur|2 − 1
2ρ |(Ω×R)|2 =

E − ρur · (Ω×R) is the total energy per unit volume in the rotating frame. These are the conservation laws seen by
an observer in the rotating frame, and ur is the velocity field observed relative to the rotating frame. An alternate set
of equations is obtained by substituting the expression for ur from Equation 11 into Equations 12 and using the identity
∇ · (Ω×R) = 0 to give

∂ρ

∂t
+∇ · [ρ(u−Ω×R)] = 0

∂(ρu)
∂t

+∇ ·
[
ρu(u−Ω×R) + p¯̄I− ¯̄τ

]
= −ρ(Ω×u) (13)

∂E

∂t
+∇ · [(u−Ω×R)(E + p) + (Ω×R)p + k∇T − ¯̄τ · u] = 0

Equations 13 are the governing equations, in terms of absolute velocity, in a reference frame rotating with a constant
angular velocity Ω. It is easily verified that stress tensor ¯̄τ is invariant with the change from relative to absolute velocities.
Reference 21 states that using the absolute-velocity formulation allows for more accurate evaluation of the fluxes in a
finite-volume scheme. Limited experience with the relative-velocity formulation in FUN3D prior to adopting the absolute-
velocity formulation suggests that is indeed the case.

Although Equations 13 are in differential form while Equations 1 are in control-volume form, inspection shows that
apart from the source term on the right-hand side of the momentum equations in the noninertial formulation, the individual
terms are nearly identical, with the frame velocity Ω×R replacing the grid velocity W. Thus, the coding infrastructure
to evaluate the relative flux through a control volume for moving meshes can be utilized for noninertial reference-frame
problems. Using Equations 13 for the absolute velocity requires no modification in the flow solver to either the far-field
reference state or the relation between conserved energy and pressure. A single initial evaluation of Ω×R throughout the
field is performed, without having to recompute face speeds, grid normals or volumes at each time step as required in the
moving-grid formulation. However, since the source terms are a function of the velocity field, they must be evaluated each
time step/iteration. Although the noninertial-frame formulation is anticipated to be applied to steady (in the noninertial
frame) problems, the governing equations are implemented in time-dependent form, since the baseline solver marches
in (pseudo) time to a steady state. Furthermore, this allows for a time-accurate simulation in the noninertial frame if
desired/required.

It should be noted that within the assumptions of the specific noninertial frame considered here (pure rotation with
constant Ω), the far field conditions are not completely arbitrary. For example, consider a typical situation in which the
absolute velocity in the far field is constant, u∞, with corresponding constant conditions ρ∞ and p∞. In that case the
continuity and energy equations are satisfied identically in the far field, but the momentum equation requires

Ω×u∞ = 0

which requires either 1) u∞ = 0 or 2) u∞ parallel to Ω. In terms of an application scenario, if a helicopter blade
rotates about (say) the vertical axis, then the noninertial formulation above is only applicable for hover (condition 1) or
ascending/descending flight (condition 2).

Overset Grids
Deforming meshes can accommodate moderately large surface motions within a single mesh system, but if the motion

becomes too large, negative cell volumes can result. To overcome this, overset meshes can be used for applications
involving large motions; rotorcraft and store separation are two examples. The overset method was first implemented
in the FUN3D solver by O’Brien.22 The implementation uses the Donor interpolation/Receptor Transaction library23

(DiRTlib) to facilitate the use of overset grids in a parallel environment without extensive modification to the flow solver.
As for non-overset meshes, the flow solver continues to operate on a single mesh (partitioned for multiple processors). For
overset meshes, points are flagged with an identifier for the particular component mesh with which they are associated.
With a few simple calls within the flow solver, DiRTlib handles the equation blanking and solution interpolation required
for the overset method. Linear interpolation of the solution between points associated with different component meshes is
used with two layers of donor points, consistent with the underlying second-order spatial accuracy of the baseline solver.
Points within holes (blanked regions) are assigned solution values by averaging the solution at neighboring points. This
also helps ensure that for moving mesh problems, points that were blanked at previous time steps do not suddenly become
unblanked with initial freestream values. Orphan points (points without valid donors), if any, are assigned solution values
in the same manner as hole points.
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DiRTlib does not perform composite grid assembly, cut holes (establish blanking), or determine the requisite interpola-
tion coefficients. For that, the Structured, Unstructured, and Generalized overset Grid AssembleR24 (SUGGAR) program
is employed. SUGGAR may be compiled as a stand-alone executable or as a callable library. In a preprocessing step
prior to the initial flow-solver execution, SUGGAR reads two or more component meshes and creates a single composite
mesh with the configuration in the initial position, along with a file (a DCI file in SUGGAR/DiRTlib parlance) identifying
points corresponding to each component mesh, blanked points, and interpolation coefficients. This composite mesh is then
partitioned for execution on multiple processors, after which the flow-solver execution may begin. The current usage of
SUGGAR within the FUN3D solver is as a library,25 with one processor devoted to the SUGGAR task. When called upon,
this processor receives updated grid information from the other processors, computes the new overset connectivity data,
and then sends that data back to the flow-solve processors. A new DCI file containing the updated connectivity data is also
written out for subsequent reuse, if desired. Currently, only a single processor runs the SUGGAR task, since SUGGAR
does not parallelize well. An updated version of SUGGAR, SUGGAR++, is due to be released soon and is expected to
offer significantly better parallel performance than its predecessor. The current FUN3D parallel-processing implementa-
tion supports multiple MPI (Message Passing Interface) communicators, and will be able to take advantage of multiple
processors running SUGGAR++ when that code is available.

In applications involving overset deforming meshes, the situation may occur where large parts of the mesh undergo no
deformation. In this case some efficiency is lost because the linear elasticity solver, by default, operates on all points of
the mesh. Thus, for overset deforming meshes, the non-deforming points are masked from solution in the linear elasticity
equations. In rotorcraft applications, this means that points in the fuselage/background mesh are masked; these points
may in fact be the majority of the points in the mesh. Simply masking the points is typically not sufficient to achieve
increased efficiency. During the preprocessing step of mesh partitioning for parallel execution, the deforming points need
to be weighted so that an equal number of deforming points are given to each processor.

Structural Dynamics
For applications in which motion of the structure is an important component of the simulation, for example, the predic-

tion of wing flutter, a linear structural dynamics model has been added. The formulation and implementation in FUN3D is
the same as that used in both the CAP-TSD26 transonic small disturbance solver and the CFL3D27 structured-grid Navier-
Stokes solver. The formulation is briefly described below.

The coupled linear structural dynamics equations can be written as

[M]δ̈ + [D]δ̇ + [K]δ = Fa (14)

where [M] is the mass matrix, [D] the damping matrix, [K] the stiffness matrix, δ(x, t) the displacement, and [Fa(t)] the
loading, here assumed to be from aerodynamic forces only. The displacements are written as an expansion in terms of
natural vibration modes { φi(x) }

δ =
Nmodes∑

i=1

qi(t)φi(x)

where the coefficients of the series, {qi}, are referred to as the generalized coordinates. The vibration modes have asso-
ciated natural frequencies {ωi} and are orthonormalized with the mass matrix, so that φT [M]φ = [I]. Substitution of the
series representation into Equation 14 and multiplying by φT yields

q̈ + [ζ]q̇ + [ω]q = φT Fa = F̂a (15)

where F̂a is the generalized aerodynamic force and [ζ] = φT [D]φ and [ω] = φT [K]φ both are diagonal matrices, so that
Equation 15 is an uncoupled system. For the ith mode, the element of [ω] is ωi

2 and the element of [ζ] is 2ωiζi. Since the
equations are now decoupled, they can be written as a sequence of scalar equations, and it is convenient to transform these
scalar second-order equations to a system of first-order equations through the substitution xi = (qi, q̇i)T to yield[

ẋi1

ẋi2

]
+

[
0 1

ωi
2 2ωiζi

] [
xi1

xi2

]
=

[
0

F̂ai

]
The structural equations are integrated in time following Reference 28. In this approach, the system of first-order

equations is integrated via a predictor-corrector scheme via

predictor : x̃n+1 = [Φ]xn +
1
2
[Θ](3F̂a

n
− F̂a

n−1
)

corrector : xn+1 = [Φ]xn +
1
2
[Θ](F̂a

n+1
+ F̂a

n
)
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where [Φ] is the state-transition matrix and [Θ] is a convolution integral of [Φ].
The linear structural model described above is adequate for applications with relatively small deflections, such as the

prediction of the onset of flutter (as opposed to large deflections that occur as flutter progresses). For cases in which
deflections are large enough to require a nonlinear structural model, provision is made in the flow solver to read in new
surface shapes as the solution evolves, and to output distributed normal force and shear force distributions on the surface.
The new surface shape could be provided by a nonlinear finite element model (FEM) together with appropriate middleware
(not part of the FUN3D software suite) to transfer the deflections from the FEM grid points to the CFD grid points, and to
transfer the normal and shear forces from the CFD grid points to the FEM grid points. An example of coupling FUN3D to
a nonlinear structural model, for the specialized case of flexible helicopter rotor blades, is given in Reference 29.

6DOF Motion
The mesh motion in FUN3D has been coupled with the six-degree-of-freedom (6DOF) library described in Reference

30. Together with the overset methodology, this greatly expands the range of problems able to be addressed by the flow
solver. An extensive range of subroutine calls are available in the library for initialization, addition and deletion of both
aerodynamic forces and imposed forces, and time advancement. The library has the ability to track parent/child motion.
Currently the motion description in the library is limited to rigid bodies.

Results
Freestream Preservation

To demonstrate the necessity of including the GCL in deforming mesh solutions, the 2D airfoil shown in Figure 1 is
pitched up and down with an amplitude of 40◦. The flow field is initialized as uniform, and Riemann boundary conditions
are set on all boundaries, with the external state taken as the same uniform flow. Thus, the solution should remain as the
initial uniform state for all time, resulting in zero residual for all time, regardless of the mesh deformation. As seen in
Figure 2, if the GCL is included in Equation 7, the residual remains zero to machine precision. However, if the GCL term
is not included in Equation 7, the residual does not remain zero (although it is small), indicating that the solution departs
from freestream as the mesh is deformed.

Order Property Verification
Verification that the temporal discretization of Equation 7 achieves design order is carried out for both rigid and deform-

ing meshes. In particular, the 2nd-order accurate integration scheme referred to as BDF2opt14 is verified. The BDF2opt
scheme results from a blend of 2nd and 3rd order BDF schemes. Although formally second-order accurate, BDF2opt
has a smaller coefficient for the error term than the standard 2nd-order BDF scheme, and retains both A- and L-stability
properties of the standard 2nd-order BDF scheme. In contrast, the standard 3rd-order BDF scheme exhibits a small region
of instability and so can be unreliable in use. Three-dimensional laminar flow over a pitching wing is computed on very
coarse mesh consisting of approximately 16,000 nodes and 91,000 tetrahedra. The wing pitched about the root quarter
chord according to θ = θmsin(2πkt) where θm = 4◦, k = 0.01, and t is the nondimensional time. Figure 3 depicts the
wing surface and symmetry-plane mesh for the wing at the minimum and maximum pitch angles for the deforming-mesh
case. In both cases the ”exact” solution is taken as the solution obtained using 3200 time steps per pitch cycle. For the
deforming-mesh case the elasticity equations are solved to machine zero at each time step. In both cases the temporal error
controller is used to insure the residual is converged to two orders of magnitude below the estimated temporal error. Errors
in normal force and pitching moment relative to the ”exact” solutions are plotted in Figure 4 for time steps corresponding
to 100, 200, 400, 800, and 1600 steps per pitch cycle. For both rigid and deforming mesh motion, the design order of 2 is
achieved consistent with the BDF2opt scheme.

Forced Pitching
Next, the mesh deformation capability is employed for the simulation of a Blended Wing Body (BWB) configuration

undergoing forced pitching. Figure 5 shows a 3 percent-scale model of this configuration mounted for testing in the NASA
Langley 14- × 22-Foot Subsonic Wind Tunnel. This configuration was previously analyzed in References 5 and 31 using
rigid mesh motion. Here, results for both rigid mesh motion and mesh deformation are compared for the case of a mean
angle of attack of 8◦ and a pitch amplitude of 5◦. In both cases the initial mesh is the same, consisting of approximately 4.9
million nodes and 29.2 million tetrahedral cells. The computational grid shown in Figure 6 and used for the pitch analysis
was a ”free-air” mesh that did not include either the wind-tunnel walls or the mounting apparatus for the test article. Time
steps corresponding to 1600 steps per pitch cycle were used. The results for pitching-moment and normal-force variation
with angle of attack are shown in Figures 7 and 8, respectively. In both cases the experimentally-measured values are shown
for reference. The two mesh-motion schemes are seen to give virtually identical results. Compared to the experimentally-
measured moment and force data, the computations reproduce the overall shapes of the response curves, though there is
an offset from the data. The offset is especially pronounced in pitching moment. In Reference 31 a series of static-grid
computations were performed on this configuration with a mesh that included the mounting apparatus (but not the tunnel
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walls). The computed static pitching moment and normal force coefficients from Reference 31, with the mounting post
present in the grid, are included in Figures 7 and 8. Also included are the corresponding static data computed using the
free-air mesh and the static data from the experiment. Including the mounting post results in considerably better agreement
between computation and experiment for the static pitching-moment. The predicted static normal-force coefficient is also
slightly improved compared to the data when the experimental setup is more faithfully reproduced. Although the post was
not modeled in the dynamic pitching computations, the static force and moment results suggest that doing so would reduce
the offset between computation and experiment.

Noninertial Frame vs. Inertial Frame
The noninertial and moving grid capabilities are demonstrated and compared by simulating an isolated rotor in hover.

The rotor used for the computations is the Tilt Rotor Aeroacoustic Model (TRAM),32, 33 and shown installed for testing
in the Duits-Nederlandse Windtunnel Large Low-speed Facility (DNW-LLF) in Figure 9. The TRAM is a quarter-scale
model of the V-22 rotor and nacelle, although the blade root fairing is different than that on the V-22 rotor. For the results
presented here, the collective pitch is 14◦, with a tip Mach number of 0.62. The grid employed for these calculations
was a coarse mesh consisting of approximately 1.2 million nodes and 7.2 million tetrahedra; the nacelle is not modeled.
Computations using finer meshes, together with detailed comparison with experimental data are the subject of a future
paper. A relatively coarse mesh is sufficient here to illustrate the consistency of the rotating, noninertial reference-frame
formulation and the inertial frame, moving-grid formulation.

First a converged, steady-state solution using the noninertial formulation was obtained. For expediency, time-accurate,
moving-grid computations using the coarsest time step were restarted from the noninertial results, and the solution was
continued until fully converged thrust and torque coefficients were again obtained, after approximately two rotor revolu-
tions. Subsequent time-step refinements were restarted from the preceding time-step result. Time-accurate results were
obtained using a 2nd-order accurate (in time) integration scheme referred to as BDF2opt,14 with time steps corresponding
to 1◦, 1/2◦, 1/4◦, 1/8◦ and 1/16◦ azimuth change of the rotor per time step. The results for the computed thrust and torque
coefficients are shown in Table 1. For the purposes of this time-step refinement study, the noninertial values are taken as the
”exact” values on the given grid. Time-step refinement for the time-accurate, moving-grid formulation shows that indeed
the time-accurate results approach the noninertial results as the step size tends toward zero.

CQ ×102 CT ×101

Noninertial 0.1842731 0.1464749
1◦ / step 0.1848883 0.1469585

(0.334) (0.330)
1/2◦ / step 0.1844665 0.1466321

(0.105) (0.107)
1/4◦ / step 0.1843304 0.1465230

(0.031) (0.033)
1/8◦ / step 0.1842875 0.1464866

(0.0078) (0.0080)
1/16◦ / step 0.1842745 0.1464772

(0.0008) (0.0016)

Table 1 Convergence of thrust and torque coefficients toward noninertial frame values with time-step refinement. Numbers in
parentheses indicate per-cent error compared to the noninertial values.

The results tabulated above are also plotted in Figure 11. The BDF2opt scheme is formally second order, and it
is observed that this order property is indeed achieved for the smaller time steps; for the smallest time step the torque
coefficient appears to converge with a higher order. The errors in the moving grid results for engineering quantities such
as the thrust and torque coefficients, even for the largest time steps, are fairly small - less than one-half percent. A
more discriminating indicator of the convergence of the time-accurate, moving-grid formulation toward the noninertial
formulation is indicated by surface-restricted streamlines, as shown in Figure 12. The streamlines are based on the relative
velocity field near the surface as seen by an observer moving with the rotor, i.e. Equation 11 has been applied to the absolute
velocities obtained from both the noninertial and moving-grid solutions. The gross features of the inboard separation region
that extends aft from roughly the 50% chord position are captured using the largest time step corresponding to 1◦. However,
some details are noticeably different from the noninertial streamlines, particularly the outward turning of the streamlines
outboard of the separation region. This suggests that the largest time steps are not adequate to resolve the balance between
the centrifugal, centripetal, pressure and viscous forces in this region, and to keep the streamlines moving in the chordwise
direction. As the time step is reduced, all details of the streamlines from the two formulations coalesce as expected.
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Flutter Onset
To demonstrate the structural dynamics model, transonic flow over the AGARD 445.6 Aeroelastic Wing34is examined.

This geometry is widely used to validate computational aeroelastic tools. The 445.6 wing has a 45◦ swept planform with a
taper ratio of 0.658 and an aspect ratio of 1.65, with a NACA 65A004 airfoil section. The wing was structurally weakened
to enhance its tendency to flutter. The first four natural vibration modes are used in the structural-dynamics model for the
results presented here, and are depicted in Figure 13. The modes have natural frequencies of 9.60, 38.2, 48.35 and 91.54
Hz. Inviscid results for Mach 0.9 at an angle of attack of 0◦ are presented here; zero structural damping was assumed. A
tetrahedral mesh containing 430,000 nodes was used, and is shown in Figure 14. The aeroelastic simulations are begun
from a steady-state, rigid-wing solution. The solution is then continued in a time-accurate manner, with the modal velocities
being given a small initial value. The structural response is then observed to see if the initial transient grows, decays, or is
undamped. Normally, for aeroelastic simulations a steady, static-aeroelastic solution is first obtained, but since the 445.6
wing has a symmetrical section, the static-aeroelastic deflection at α = 0 is zero.

Figure 15 shows the computed response for the four modes at a dynamic pressure of 75.0 psf. The response is essentially
undamped following the initial transient, indicating this dynamic pressure is at or very close to the neutral stability point.
In contrast, Figure 16 shows the computed response for a dynamic pressure of 89.3 psf. The response of mode 1 (first
bending) is clearly divergent, indicating this dynamic pressure is above the flutter boundary. These responses agree well
with the corresponding results presented in Reference 3, which were obtained using CFL3D and a structured mesh of
comparable size.

Overset/6DOF
The final demonstration problem is the 6DOF motion of an under-wing store. Overset grids are used to handle the

relative motion between two rigid bodies. The mass properties of the store and the test conditions are chosen to match the
test described in Reference 35. The grid used here for illustrative purposes is a very coarse mesh taken from SUGGAR
training materials and is intended for demonstrating the basic overset mesh techniques, not for accurate CFD simulation.
The geometry in the grid is significantly modified in two respects compared to the test article: 1) the large-diameter
mounting sting projecting aft behind the store is removed and replaced with an aerodynamically-shaped boattail and 2) the
under-wing pylon is removed entirely.

Because of the aforementioned geometry compromises, computed forces and moments on the store, even in steady
state at the stowed position, are significantly different from the measured values. Therefore, for the current purpose of
demonstrating the mechanics of linking the flow solver and 6DOF module, the force and moment coefficients computed
by the solver are replaced by the experimentally-measured values before the 6DOF motion equations are integrated. In all
other aspects this demonstration is of the complete CFD/6DOF system: given force and moment coefficients, the equations
of motion for a rigid body are integrated forward in time via a call to the 6DOF library, the resulting CG position and
body-orientation data are used within the flow solver to move the store and its surrounding mesh to the new position, and
new overset connectivity information is then computed by a call to SUGGAR, a new flow solution is computed, and the
process repeated. Figure 17 shows the configuration at t=0 together with a slice through the overset mesh, illustrating
the holes cut in the meshes, as well as the overlap regions. The coarseness of the mesh is evident. Figure 18 shows the
corresponding configuration at t=0.3 seconds, positioned via the computed 6DOF motion. Figures 19 and 20 show the
computed CG velocity and store rotational velocity as functions of time along with the experimentally measured data. The
computed linear velocities are in excellent agreement with the measured data. There are small differences between the
computed and measured angular velocities, but these quantities are known to be quite sensitive to uncertainties in ejector
forces and inertia properties.

Summary
A Navier-Stokes solver for unstructured grids has been extended to allow a wide range of applications involving moving

geometries and unsteady flows. Rigid, deforming, or overset grids may be used, allowing the most appropriate/efficient
grid motion scheme to be employed for the problem. The importance of satisfying the Geometric Conservation Law has
been demonstrated for a deforming-mesh problem. Design-order properties of the modified solver have been verified for
one particular choice of the time-advancement scheme (BDF2opt). Example cases have been presented to show some of
the potential applications, including aeroelastic analysis and 6DOF motion; many more are possible.
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Fig. 1 Deforming mesh used in GCL test with airfoil at maxi-
mum pitch angle.

Iteration

L
o
g
(R
)

0 200 400 600 800 1000
10

-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

With GCL

Without GCL

Fig. 2 Effect of GCL on the maintenance of uniform freestream
flow with mesh deformation.

Fig. 3 Wing used for temporal-error verification at minimum
and maximum pitch angles; deforming mesh.
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Fig. 4 Error reduction with decreasing time step on rigid and
deforming moving meshes; reference slopes for 1st and 2nd or-
der convergence are shown.
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Fig. 5 Blended Wing Body model mounted in NASA-Langley
14- × 22-Foot Subsonic Wind Tunnel.

Fig. 6 Symmetry plane of grid used for dynamic Blended Wing
Body calculations
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Fig. 7 Comparison of measured and predicted pitching-moment
coefficient variation during forced pitch oscillation of a Blended
Wing Body model using rigid and deforming meshes.
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Fig. 8 Comparison of measured and predicted normal force
coefficient variation during forced pitch oscillation of a Blended
Wing Body model using rigid and deforming meshes.
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Fig. 9 Tilt Rotor Aeroacoustic Model mounted in the Duits-
Nederlandse Windtunnel Large Low-speed Facility; helicopter
mode.

Fig. 10 Mesh used for the isolated TRAM rotor; surface grid in
black, slice through field grid near tip of rotor in blue.
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Fig. 11 Error reduction (relative to the noninertial formula-
tion) in torque and thrust with decreasing time-step size for the
isolated TRAM rotor; reference slopes for 1st and 2nd order
convergence are shown.
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Fig. 12 Convergence, with decreasing time step, of surface-restricted streamlines from the time-
accurate, moving grid formulation toward streamlines from the noninertial formulation. Streamlines
are as viewed by an observer in a reference frame rotating with the blades; color contours indicate
pressure.
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Fig. 13 First four natural mode shapes for AGARD 445.6 wing. Fig. 14 Mesh used for AGARD 445.6 wing aeroelastic calcula-
tions.
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Fig. 15 Aeroelastic response at M = 0.9, q∞ = 75.0 psf.
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Fig. 16 Aeroelastic response at M = 0.9, q∞ = 89.3 psf.
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Fig. 17 Wing-store configuration at t=0, with slice through over-
set mesh.

Fig. 18 Wing-store configuration at t=0.3 seconds, with slice
through overset mesh.
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Fig. 19 Computed and measured velocity components of the
store center-of-gravity.
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Fig. 20 Computed and measured angular rates of the store
body-axis system.
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