

Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

Darin C. Flynn Nalin A. Ratnayake Michael Frederick NASA DFRC Aerodynamics and Propulsion Research Branch

01/08/2009

Outline

- Propulsion Flight Test Fixture (PFTF) Overview
- Rake Airflow Gage Experiment (RAGE) description
- Aerodynamic loads estimates and stress analysis
- Wind tunnel test
- Calibration
- Summary

•

Propulsion Flight Test Fixture

- (unfueled) and "hot" (fueled) experiments
- Flown on NASA DFRC F-15B testbed
 - PFTF Attaches to F-15B centerline pylon
- Fixture has Mach 2 capability
- Integrated 6-component force balance

Force Balance Measurement Limits			
Fx (lbs)	Fy (lbs)	Fz (lbs)	
2000	500	1500	
Mx (in-lbs)	My (in-lbs)	Mz (in-lbs)	
8520	55080	10080	

- Highly instrumented
- Large internal space for fuel/pressure tanks, instrumentation, etc

Experiment Adapter

Experiment

PFTF

Contains ESP modules and other experiment instrumentation

Past PFTF Experiments

- Previous PFTF Flight Test
 - Cone Drag Experiment (CDE)
 - Envelope expansion of the PFTF with the CDE installed up to Mach 2.0
 - Flutter clearance, handling qualities, force balance checkout

- Local Mach Investigation (LMI)
 - Utilized NACA air data boom to characterize the flow field (Mach, alpha, and beta) at a single point in front of the PFTF

Rake Airflow Gauge Experiment

- RAGE consists of a flowfield survey rake, boom, and conecylinder
- Attached to PFTF
- Objective is to characterize flowfield at aerodynamic interface plane of experimental inlet
- Flowfield data will be used for CFD and performance modeling of the inlet

RAGE Flowfield Rake

- Array of nine 5-hole probes
- Two-piece design, with internals designed for sensors and pressure plumbing
- AL 7075-T6
- Probes manufactured by Aeroprobe Corp.
 - 60° included angle
 - 4 static pressure ports, 1 total pressure port per probe

Probe pressure port layout

RAGE flowfield rake

Rake Aerodynamic Loads

- Rake aerodynamic loads were estimated for wind tunnel testing
 - Wind tunnel dynamic pressure 30% greater than flight
- CFD and empirical solutions
 - WIND-US2 code
 - 2D, viscous solver
 - NACA TN 2712 Lifting wedges in supersonic flow
- Mach 1.6, hp = 30,000 ft
- AOA of 20° is 2x greater than max expected

Aerodynamic load predictions

Quantity	NACA	CFD
F _n /I	255 lb/ft	328 lb/ft
F _t /I	13 lb/ft	33 lb/ft
W/I	n.a.	28 lb
c.p.	45%	41%

Rake Cross Section

Mach Contours M = 1.6 alpha = 20 deg.

Rake Stress Analysis

a) COSMOSWorks mesh.

b) Boundary conditions looking from fore to aft.

- SolidWorks/COSMOSWORKS finite element solver (95672 nodes)
- CFD estimated aerodynamic loading used for normal and axial forces
- σ_{max} = 13.5 ksi, minimum FOS of 4.4

RAGE Assembly CFD

- Aerodynamic loads estimate of entire assembly necessary to ensure PFTF force balance isn't overloaded
- RAGE assembly aerodynamic forces and moments were predicted using CFD
- Air Vehicles Unstructured Solver (AVUS) from AFRL
- 3D unstructured tetrahedron mesh
- 8 zones, 3.36 million points, 17.8 million cells, with 1 plane of symmetry
- Simulated *PFTF local* flight condition: M 1.6 @ 29,500 ft
- Steady-state, inviscid computation

Density Contours 0° AOA

Density Contours 10° AOA

CFD Results: Forces

- M = 1.6, hp = 30,000 ft
- Geometry is symmetric in lateral and normal directions
- Axial load significantly less than PFTF force balance limit
- Force balance side load limit hit around 1.8° β at highest dynamic pressure

CFD Results: Moments

• M = 1.6, hp = 30,000 ft

- Moments corrected to load test reference frame
- Lateral (roll/yaw) moments limits are hit at around 2.5 to 3.5 deg. β at highest dynamic pressure

- Probe aerodynamic loads were estimated using CFD and empirical methods
 - CFD estimated loads were extracted from RAGE assembly CFD
 - Gudmundson/Torngren -Supersonic wind tunnel tests of ogive cylinders
- Analytical stress analysis with worst case load predictions
 - σ_{max} = 9.95 ksi, minimum FOS of 2.59

Probe Normal Force Coefficient

- F_n = 131 lb, F_a = 49.3 lb
- SolidWorks/COSMOSWORKS FEM used for stress analysis (107785 nodes)
- Minimum FOS of 15.3

Wind Tunnel Calibration

- Calibration data were generated in the Boeing Polysonic Wind Tunnel (blowdown tunnel)
- Rake was attached to a sting that could be rotated in roll and pitch to achieve specific angles of attack and sideslip
 - Alpha and beta were varied from +/- 10 degrees
- Four different flow conditions were tested
 - Mach = 1.461, 1,508, 1.611 corresponding to Re = 6.2, 6.7, 6.2 million/ft
 - Additional run at Mach = 1.508, Re = 5.7 million/ft to check for Reynolds number effects
 - Dynamic pressure range of 1260 1497
 psf

Wind Tunnel Setup

Shadowgraph Image M = 1.461

Calibration Data Reduction

- Wind tunnel data was reduced and calibration algorithm was developed based on the method given in NACA-TN-3967, "Characteristics of a 40 Degree Cone for Measuring Mach Number, Total Pressure, and Flow Angles at Supersonic Speeds"
 - Iterative procedure calculates the local Mach, total pressure, and flow angles using calibration maps in conjunction with normal shock and isentropic relations
 - Local Mach is calculated using the ratio of the mean of the 4 static ports to the pitot pressure and is corrected based on flow angularity
 - Angles of attack and sideslip are determined using pressure differences across diametrically opposed pressure ports

Misalignment Correction

- Wind tunnel data was corrected for misalignment and tunnel stream angularity
- Vertical pressure coefficient defined using vertical pressure ports:

$$Cp_{\theta} = \frac{p_3 - p_5}{q}$$

- Vertical pressure coefficient for roll angles of 0° and -180° was plotted versus pitch angle. Intersection of two curves represents the vertical misalignment angle θ_0
- θ₀ = -0.56°, -0.42°, and -0.15° at Mach 1.461, 1.508, and 1.611
- Horizontal misalignment angle couldn't be determined due to absence of data at a roll angle of 90°

Mach Calibration Maps

- Mach number is determined from the ratio of the mean of the four static pressures to the pitot pressure (p_a / p_{t2})
- Lookup table created for p_a / p_{t2} at zero flow inclination as a function of Mach
- Ratio of pitot to total pressure in front of shock (p_{t2} / p_{t1}) plotted to check for sensitivity to flow inclination

Pitot pressure decreased by only 0.5% at the maximum pitch angle making it
 unnecessary to correct measured pitot pressure for flow inclination

Mach Calibration Maps

Change in p_a / p_{t_2} due to flow inclination (M = 1.461) Probe 1, Roll Angle = -135 deg. 1.15 1.1 $p_a p_{t_2}$ 1.05 p_a p_{t2} 0.95 0.9 0.85 0.8 └ -15 -10 10 -5 0 5 15 Pitch Angle (deg.)

Map 2. Correction factor to p_a / p_{t2} due to flow inclination (M = 1.461)

- In general, p_a / p_{t2} must be corrected for flow inclination
- p_a / p_{t2} plotted as a function of pitch angle for all 21 different roll angles
- 3-D calibration maps that provide a correction factor to p_a / p_{t2} were generated from data for all 21 distinct roll angles

Flow Angle Calibration Maps

 Angle of attack and angle of sideslip pressure coefficients were defined as:

Map 4. Angle of sideslip calibration map (M = 1.461)

Map 3. Angle of attack calibration map (M = 1.461)

• Wind tunnel data was used to create 3-D calibration maps for $\alpha \, \text{and} \, \beta$

 $-\alpha$ and β are looked up using computed $\text{Cp}_{\alpha} \text{ and } \text{Cp}_{\beta}$

Calibration Algorithm

RAGE Flight Test

- Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC's F-15B airplane
- Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity
- Calibration data were generated through wind tunnel testing of the rake
- Calibration algorithm was developed to determine the local Mach and flow angularity at each probe
- RAGE was flown November, 2008. Data is currently being analyzed

