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Cross-linked silica aerogel with rigid 
structure

BTMSH Integration
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Cross-linked silica aerogel with more 
flexible structure with addition of 
BTMSH4

DI-ISOCYANATE CROSSLINKED AEROGELS WITH 1, 6-BIS (TRIMETHOXYSILYL) HEXANE 
INCORPORATED IN SILICA BACKBONE

Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal 
polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times.  Even with 
vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of 
the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6- 
bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked 
with di-isocyanate.  Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels.4 In our study, 
we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and 
the strength of the aerogels.
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Precursors & Procedure

Tetramethylorthosilicate 
(TMOS)

3-Aminopropyltriethoxysilane 
(APTES)
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Polymer cross-linking of the porous secondary particles strengthens the neck  
region which increases overall strength by 2 orders of magnitude, while only 
doubling the density1,2.

Di-isocyanate Cross-linking
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Primary particles 
bond through 
surface chemistry to 
form secondary 
porous particles Acknowledgement: We thank Linda McCorkle (OAI) for SEM photos and Dan Scheiman (QSS) for running 
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•Preliminary results show that BTMSH imparts flexibility to the aerogels
Dry aerogels show greater recovery after compression 
Wet gels bend instead of breaking—should improve manufacturability
Greater recovery at higher Si concentrations 

•Density and porosity are unaffected by BTMSH concentration

Results/Conclusions
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Compression (Stress vs Strain)
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Samples were compressed to 25 % strain, twice. In 
graph at right, red curves from sample with 67 mol% 
BTMSH show more elastic recovery compared to 45 
mol% BTMSH (black curves).  Both samples had  
similar ranges of silicon concentration, density and 
morphology as shown below with the scanning  
electron micrographs. Lower density samples (low  
total Si concentration) exhibit much less elastic 
recovery.

Mechanical Testing

LOAD / UNLOAD

Modulus is calculated from  
the initial slope of the  
stress/strain curve. Results 
show that Si concentration  
has the greatest affect on 
modulus.  Modulus also  
decreases with increasing  
BTMSH especially at high  
total Si concentration.

COMPRESSION
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Low BTMSH High BTMSH

67% BTMSH      Density= 0.190 g/cc 
Porosity = 85.17%
Surface Area = 166m2/g
Modulus of Elasticity = 4.27Mpa

45% BTMSH   Density = 0.157 g/cc
Porosity = 88.27%
Surface Area = 202m2/g
Modulus of Elasticity =3.7Mpa

Incorporation of the hexane linked precursor exhibits flexibility upon extraction. Cross- 
linked wet gel can be bent and re-bent with out fracturing.

Preliminary Results

Surface area shows slight decrease 
with increased BTMSH while pore  
size increases with increasing  
BTMSH especially at lower polymer  
concentrations.
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Total Si concentration has the greatest 
affect on density and porosity since it  
controls both amount of Si and amount 
of APTES available for cross-linking. 
BTMSH mol % only slight effect.
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Empirical models
Data was collected and modeled using statistical design 
software and graphed with sigma plot 10.  Figure to the right 
shows experimental runs in study in which silicon  
concentration, mol % of silicon from BTMSH and di- 
isocyanate concentration by weight percent were varied.

Further Study
Current research is investigating the use of a more cost efficient silica precursor 
(tetraethylorthosilicate-TEOS) in place of TMOS, and extending model to include 
higher silicon concentration and different concentrations of APTES.

Bulk density and skeletal density derived from helium pycnometry was used to  
calculate porosity. Pore size and surface area were measured by BET nitrogen  
adsorption-desorption.
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