
 
 

Characterization of a New Phase and Its Effect on the Work 
Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 
High-Temperature Shape Memory Alloy (HTSMA) 

 
 
A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been 
characterized using transmission electron microscopy and 3-D atom probe tomography.  This phase forms 
homogenously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant 
increase in the martensitic transformation temperature of the base alloy.  Although the structure of this phase 
typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m 
point group) with ao~1.28 nm and co~1.4 nm.  Precipitation of this phase increases the microhardness of the 
alloy substantially over that of the solution treated and quenched single-phase material.  The effect of 
precipitation strengthening on the work characteristics of the alloy has been explored through load-biased 
strain-temperature testing in the solution-treated condition and after aging at 500 ºC for times ranging from 
1 to 256 hours.  Work output was found to increase in the aged alloy as a result of an increase in 
transformation strain, but was not very sensitive to aging time.  The amount of permanent deformation that 
occurred during thermal cycling under load was small but increased with increasing aging time and stress.  
Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making 
it a potentially useful material for high-temperature actuator applications.  (Support by the NASA Fundamental 
Aeronautics Program, Supersonics Project and the analytical facilities at the Center for Advanced Research and 
Technology at the University of North Texas are gratefully acknowledged.)  
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High-Temperature Shape Memory Alloys are an enabling 
technology to a host of “smart” structures in jet engines

• High force per volume/weight - compact, lightweight
• Solid State - eliminates hydraulics, pneumatics, mechanical systems

simple, frictionless, quiet, maintenance free
• Passive control - eliminates sensors, electronics
• Can be actively controlled for high-force, precision movements

Advantages of HTSMA



Effect of Pt on Transformation
Temperatures

10 J/cm3 is equivalent to a 44 mil rod, 25” long, lifting a 110 lb weight 0.5”
4 J/cm3 is equivalent to a 44 mil rod, 25” long, lifting a 44 lb weight 0.5”

Transformation Temperature (oC)
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Work Behavior of HTSMA

Introduction

Ni50-x Ptx Ti



• Alloys vacuum induction melted in graphite crucibles. 

• Ingots homogenized and then canned and extruded.

• Compositional analysis  (at.%) – 30.09Ni-19.33Pt-49.76Ti-0.46C- 
0.29O-0.03N-0.01Cu-0.03Fe.

• Thermal analysis (DSC/DTA)

• Microstructural Analysis (SEM, TEM, 3DAP, HAADF, HRTEM)

• Mechanical properties (hardness, load biased thermal cycling 
tests, etc).

Experimental
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Microstructure: Alloy aged at 500oC/1024h  
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250nm

Fine phase, P
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DTA Scan: Ext. 13 sample annealed 500o C/1024h

• The low temperature peaks (A,A’) are due to the austenite-to- 
martensite and the reverse transformation.

• The higher temperature peaks (B,B’) are likely due to the fine 
phase P.

• Quenching from 800°C results in elimination of the fine phase P. 

B’
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HAADF Imaging of the precipitates – contrast proportional to Z2

(ZPt =78, ZNi =28, ZTi =22)

(100)B2

(110)B2

γ ∼100°100 nm

• Observation of precipitate in the “cubic” [110] orientation.
• HAADF contrast dominated by dumbbell-like motif represents two       

closely positioned Pt rich columns.
• 2D projection has oblique symmetry a ~ 3.7Å, b ~ 6.9Å, γ  ~100°.
• Fourier transform consistent with diffraction pattern G, [110]cubic.

1 nm

P



Hypothesis: Fine Phase P is
• Trigonal based on a B2 crystal structure where Ni and Pt 

substitute each other on the Ni sub-lattice.
• In addition, there is an ordering of Pt on the Ni sub-lattice 

of B2 structure.
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3D Atom Probe Analysis: 
Fine phase is rich in Ni and slightly depleted in Pt

Pt

Ni

Ti

Matrix PP

P
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Aging Time at 500 oC (hrs) 
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Transformation Temperatures: Effect of Aging 
Time at 500oC on the Stress-Free Trans. Temp.

Time (hrs) Ap As Af Ms Mf Mp

0 267 255 283 229 200 214
4 279 267 294 239 211 225

64 298 285 313 260 232 245
256 303 289 318 266 237 251

1024 326 311 339 288 256 273

Transformation Temperatures

Alloy Soln. Treated 800oC/30min
+ WQ + Aged 500oC/(0-1024h)



Load Biased Thermal Cycling in Compression to Determine 
Shape Memory Response Under Load (For Actuator Type 

Applications)

Temperature (oC)
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• Indicated for each curve is the 
Applied stress level and the 
equivalent work output ( = 
transformation strain x applied 
stress).

• Definition of properties 
determined from load-biased 
thermal cycling under a constant 
load.
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Transformation Strain vs. Stress after Aging 
for Various Times at 500 °C

• Aging increases the amount of transformation strain.



Work Output vs. Stress after Aging for Various 
Times at 500 °C

• Work output ( proportional to transformation strain) increases 
with increasing stress and is independent of aging time.
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Permanent Deformation vs. Stress after Aging 
for Various Times at 500°C

• Aging at times longer than 4 hr causes an increase in the 
amount of dimensional instability (equivalent to permanent 
deformation) that occurs with each load-biased thermal cycle
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• A new phase has been identified in a Ni30 Pt20 Ti50 alloy. 
• The new phase is Ni rich and slightly Pt lean (lower Z 

contrast).
• The crystal structure appears to be Trigonal (3m).  Atom 

positions are based on the B2 structure but with ordering of 
Pt on Ni sites. 

• Aging increases the transformation temperatures for the 
material

–Enhancing the optimum use temperature of the material.
• Aging also results in an increase in the transformation 

strain, and hence work performed at a given stress level, 
compared to the precipitate-free material. 

• Unfortunately, aging does increase the amount of 
permanent deformation that occurs at a given stress level, 
however the effect is minimal at aging times of 1-4 hrs.

For use in high-temperature actuator applications or adaptive 
structures – the optimum condition for the Ni30 Pt20 Ti50 (at.%) 
alloy is a solution treatment and water quench followed by 
aging 1-4 hrs at 500 °C

Summary
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