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FULLY AUTOMATED SINGLE-ZONE ELLIPTIC GRID GENERATION 
FOR MARS SCIENCE LABORATORY (MSL) AEROSHELL AND 

CANOPY GEOMETRIES 
 
 

Upender K. KaulTP

1
PT 

 
Ames Research Center 

 
 

ABSTRACT 
 

A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic 
grid generationTP

2
PTP

,
T

3
TP has been demonstrated here for the Mars Science Laboratory (MSL) geometries 

such as aeroshell and canopy, and it has been incorporated in the software. The procedure obviates 
the need for generating multizone grids for such geometries, as reported in the literature. This has 
been possible because the enhanced elliptic grid generator automatically generates clustered grids 
without manual prescription of decay parameters needed with the conventional approach. In fact, 
these decay parameters are calculated as decay functions as part of the solution, and they are not 
constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal 
grids near any arbitrary boundary can be clustered automatically without having to break up the 
boundaries and the corresponding interior domains into various zones for grid generation. 
 
 

1.  INTRODUCTION 
 

A smooth and orthogonal grid around arbitrary geometries is invariably generated using grid genera-
tion techniques based on the solution of partial differential equations. One such powerful technique 
is based on the solution of elliptic partial differential equations.  Elliptic grid generation methods 
are generally used to create smooth grids on which accurate numerical solutions (ref. 1) to a given 
physical problem are obtained. This involves the numerical solution of inhomogeneous elliptic par-
tial differential equations. The inclusion of inhomogeneous terms in these equations allows a grid 
to satisfy clustering and orthogonality properties in the vicinity of specific surfaces in three dimen-
sions, and in the vicinity of specific lines in two dimensions. Elliptic grids yield more accurate pre-
dictions, in general, as compared with other grid generation techniques (ref. 1). 
 
 

2.  FORMULATION 
 

Two-dimensional (2-D) form of the inhomogeneous elliptic partial differential equations (PDES) 
for grid generation was first proposedP

 
Pby Thompson et al. (ref. 2). These 2-D PDES contained four 

explicit parameters that need to be prescribed by the user.  Later, Steger and Sorenson (ref. 3)  
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prescribed a semi-automatic scheme that reduced the requirement for explicit prescription of these  
parameters to the two parameters, called decay parameters. In a subsequent study (ref. 4), the author 
further enhanced this methodology to fully automate the elliptic grid generation process that com-
pletely eliminated the need for the explicit user prescription of decay parameters. 
 
Additionally, in the enhanced fully automated methodology (ref. 4), the decay parameters are no 
longer a specified set of constants chosen manually for the four boundaries for 2-D applications, but 
four decay functions, each a function of one independent coordinate variable over a given boundary, 
which are calculated as part of the solution process. This feature makes it possible to cluster a grid 
normal to any arbitrarily shaped boundary.  
 
Below, a three-dimensional (3-D) analog of the earlier 2-D methodology (ref. 2) is given. Then, the 
development of the semi-automatic (ref. 3) and the enhanced fully automated (ref. 4) methodologies 
is briefly discussed. Finally, the extension of the fully automated methodology (ref. 4) for 3-D appli-
cations is discussed. 
 
Three-dimensional governing equations for elliptic grid generation are expressed as: 
 

ξ BxxB + ξByyB + ξ BzzB = P(ξ,η,ζ) = -aBi PB

.
Psgn(ξ – ξ Bi B) exp{-bBi B|ξ – ξBi B|}, (1) 

η BxxB + ηByyB + η BzzB = Q(ξ,η,ζ) = -cBi PB

.
Psgn(η – ηBi B) exp{-dBi B|η – ηBi B|}, (2) 

ζ BxxB + ζ ByyB + ζ BzzB = R(ξ,η,ζ) = -eBi PB

.
Psgn(ζ – ζ Bi B) exp{-fBi B|ζ – ζ Bi B|}, (3) 

 
where ξ, η and ζ are generalized curvilinear coordinates, x, y and z are Cartesian coordinates, and 
P(ξ,η,ζ), Q(ξ,η,ζ), and R(ξ,η,ζ), are inhomogeneous terms;  a Bi B, bBi B, c Bi B, dBi B, e Bi B and fBi B are manually  
selected constants, and the subscript “i” refers to a particular boundary component associated with 
the problem. 
 
A simplified 2-D form of equations (1–3) is written as (ref. 3) 
 

 ξ BxxB + ξByyB  =  -aBi PB

.
Psgn(η – η Bi B) exp{-dBi B|η – η Bi B|}, (4) 

η BxxB + ηByyB  =  -cBi PB

.
Psgn(η – η Bi B) exp{-dBi B|η – η Bi B|}, (5) 

 
Equations (4) and (5) were used by the authors to semi-automatically generate the 2-D grids with 
appropriate clustering and orthogonality at the walls. However, the decay parameter, dBi B, needed to be 
set manually, for a given boundary, ηBi B. 
 
As mentioned previously, the present fully automatic boundary procedure was proposed (ref. 4) to 
eliminate the need for manual selection of the decay parameters for each boundary. Also, these  
decay functions, no longer constants, but functions of the independent coordinate variables along a 
given boundary, were calculated as part of the solution process. This fully automatic boundary pro-
cedure has been used successfully for various 2-D complex geometries (ref. 4). 
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In this paper, extension of the formulation for this automatic procedure for 3-D applications is pre-
sented. Geometries chosen here are the geometries for the Mars Science Laboratory (MSL) aeroshell 
and canopy. The present procedure makes it possible to generate single-zone grids for the aeroshell 
and canopy geometries. 
 
Using the fully automated approach (ref. 4), for a given boundary, ζ Bi B (ζ>ζ Bi B), for example, equations 
(1), (2), and (3) are modified here in the context of equations (4) and (5) and are written in the fol-
lowing form. 
 

ξ BxxB + ξByyB + ξ BzzB = p B3 B(ξ,η,ζ)  (6) 
 
where,  p B3B(ξ,η,ζ) = -aB3,i B(ξ,η) sgn(ζ – ζ Bi B) exp{- fBi B(ξ,η)|ζ – ζ Bi B|} 
  ≈ (-aB3,i B(ξ,η) + a B3,i B(ξ,η) fBi B(ξ,η) (ζ – ζ Bi B)) sgn(ζ – ζ Bi B)  
 

η BxxB + ηByyB + η BzzB = q B3B(ξ,η,ζ),  (7) 
 
where,  qB3B(ξ,η,ζ) = -cB3,i B(ξ,η) sgn(ζ – ζ Bi B) exp{- fBiB(ξ,η)|ζ – ζ Bi B|} 

 ≈ (-cB3,i B(ξ,η) + c B3,i B(ξ,η) fBi B(ξ,η) (ζ – ζ Bi B)) sgn(ζ – ζ Bi B)  
 

ζ BxxB + ζ ByyB + ζ BzzB = r B3B(ξ,η,ζ),  (8) 
 
where,  rB3B(ξ,η,ζ) = -eB3,i B(ξ,η) sgn(ζ – ζ Bi B) exp{- fBiB(ξ,η)|ζ – ζ Bi B|}, 

 ≈ (-eB3,i B(ξ,η) + e B3,i B(ξ,η) fBi B(ξ,η) (ζ – ζ Bi B)) sgn(ζ – ζ Bi B) 
 
and, where aBk,i B = a Bk,i B(ξ,η), cBk,i B = cBk,i B(ξ,η), and eBk,i B = e Bk,i B(ξ,η) and where k = 3 corresponds to the 
ζ boundary, under consideration. 
 
Similar expressions hold for the inhomogeneous terms for the ξ (k=1) and η (k=2)  boundaries. 
 
The positive decay parameters, b Bi B, dBi B and fBi B, for the corresponding boundaries, ξ, η and ζ, respec-
tively, are expressed as parameter functions, bBi B(η,ζ), dBi B(ξ,ζ), and fBi B(ξ,η) in the present approach, and 
the corresponding terms, aB2,i B(ξ,ζ), cB2,i B(ξ,ζ), eB2,i B(ξ,ζ) and aB1,i B(η,ζ), cB1,i B(η,ζ), eB1,i B(η,ζ), hold for η and 
ξ boundaries respectively. 
 
Without loss of generality, one can consider the neighborhood of a given ζ-boundary segment i,  
ζ - ζ Bi B ≥ 0. It can be shown that in a selected region on one side of this boundary segment, where 
fBi B(ξ,η)(ζ – ζ Bi B) << 1, the governing equations and the inhomogeneous terms have the limiting formsP

 
Pas 

given in reference 4. 
 
Treatment of a boundary segment, (ζ – ζ Bi B) < 0, is analogous. Similar PDES hold for regions close to 
ξ-boundary and η-boundary segments. 
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Rewriting, the limiting governing equations near a ζ boundary become (ref. 4) 
 

ξ BxxB + ξByyB + ξ BzzB   – a B3,i B(ξ,η) fBi B(ξ,η) (ζ – ζ Bi B) =  -aB3,i B(ξ,η)   
η BxxB + ηByyB + η BzzB  – c B3,i B(ξ,η) fBi B(ξ,η) (ζ – ζ Bi B) =  -cB3,i B(ξ,η)   
ζ BxxB + ζ ByyB + ζ Bzz   B – e B3,i B(ξ,η) fBi B(ξ,η) (ζ – ζ Bi B) =  -eB3,i B(ξ,η)   

 
It can be easily seen that the PDES shown previously represent a self-adjoint operator of the form, 
 

L(θ) = div(k grad(θ)) − qθ 
 
and, therefore, boundary constraints, valid in the neighborhood of each of the six boundary seg-
ments, are incorporated by applying Green’s theorem in three dimensions. For example, for the 
ζ boundary, the constraint will be given by 
 
 ∫ BS B (∂θ/∂n) dσ = ∫ BVB {-e B3,i B(ξ,η) sgn(ζ – ζ Bi B) + eB3,i B(ξ,η) fBi B(ξ,η) θ}} dτ, (9) 
 
where θ = (ξ,η,ζ), dσ is a differential area element, dτ is a differential volume element, n refers to a 
direction that is locally normal to a bounding surface S representing a totality of six surfaces includ-
ing the boundary segments of interest, and V is a volume enclosed by S. This integral-type boundary 
constraint can be used to calculate the decay parameter analog, e B3,i B(η,ζ)fBi B(ξ,η). Similar constraints 
can be used to calculate the decay parameter analogs, aB1,i B(η,ζ)bBi B(η,ζ), and c B2,i B(η,ζ)dBi B(ξ,ζ).  When  
expressed in terms of the generalized coordinate, ζ, the boundary constraint given in equation (9) 
can be written as follows. 
 
 ∫ BS BI dσ = ∫ BS B (∂θ/∂n) dσ = ∫ BS B (∂ζ/∂n) dσ    (10) 

 
The integral ∫ BS BI dσ in equation (10) can be written as an algebraic sum of six integrals, evaluated 
over the indicated boundary segments: 
 
 ∫ BS BI dσ = ∫ Bξmax BI dσ + ∫ Bηmax BI dσ + ∫ Bζmax BI dσ  

- ∫ Bξmin BI dσ - ∫ Bηmin BI dσ - ∫ Bζmin BI dσ   (11) 
 
where the surface configurations ξmax, ξmin, etc. represent the corresponding boundary segments 
that together make up the surface S.  For the first and fourth integral pair, the second and fifth inte-
gral pair, and the third and sixth integral pair in equation (11), the following respective relations are 
derived. 
 

∫ BξBI dσ = ∫ BξB (1/J√αB11 B) αB13 B[(xBηPB

2
P + y BηPB

2
P  + z BηPB

2
P) (xBζ PB

2
P + y Bζ PB

2
P  + zBζ PB

2
P)]P

1/2
P dζ dη. (12) 

∫ Bη BI dσ = ∫ BηB (1/J√αB22B) αB23 B [(xBξPB

2
P + y BξPB

2
P  + z BηPB

2
P) (xBζ PB

2
P + y Bζ PB

2
P + z Bζ PB

2
P)]P

1/2
P dξ dζ, (13) 

∫ Bζ BI dσ = ∫ Bζ B (1/J) [αB33 B (xBηPB

2
P + y BηPB

2
P  + zBηPB

2
P) (xBξPB

2
P + y BξPB

2
P  + z BξPB

2
P)]P

1/2
P dη dξ,  (14) 

 
αB11B = J P

2
P(ξBx PB

2
P + ξByPB

2
P + ξ BzPB

2
P),    

αB22B = J P

2
P(ηBx PB

2
P + ηByPB

2
P + η BzPB

2
P),   

αB33B = J P

2
P(ζ Bx PB

2
P + ζ ByPB

2
P + ζ BzPB

2
P),   
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αB12B = J P

2
P( ξBx BηBx B + ξByBη ByB + ξ BzBη BzB),   

αB13B = J P

2
P( ξBx BζBx B + ξByBζ ByB + ξ BzBζ BzB),   

αB23B = J P

2
P( ηBx BζBx B + ηByBζ ByB + η BzBζ BzB),  

 
where J = J((x,y,z)/(ξ,η,ζ)) is a Jacobian of the transformation (x,y,z) --> (ξ,η,ζ).   
 
Equations (12)–(14) can be used to express the boundary constraints in the computational space 
(generalized variables).  The following governing equations in computational space are solved, sub-
ject to the boundary constraints derived above. 
 
 αB11B xBi,ξξB + αB22 B xBi,ηηB + αB33 B xBi,ζζ B + 2{αB12B xBi,ξηB + αB13 B xBi,ξζ B + αB23B xBi,ηζ B) =  
  -JP

2
P{ pB3 B xBi,ξB + q B3 B xBi,ηB + r B3B xBi,ζ B },   

 x Bi B = x, y or z.  
 
A decay parameter analog, such as eB3,i B(ξ,η)fBi B(ξ,η), may vary with one or more of the generalized  
coordinates, such as (ξ,η), rather than being constant; and this variation is determined as part of the 
solution of the grid problem, rather than being prescribed initially by the user. This grid solution can 
be determined for either a static grid or a dynamically changing grid. Hence, dynamically changing 
grids can be generated automatically without the user intervention. 
 
The preceding analysis has focused on the neighborhoods of the grid boundary segments. As noted 
in the preceding, in an interior region, far from the grid boundary segments, the defining partial dif-
ferential equations become homogeneous, and an orthogonal and uniform grid cell distribution is 
obtained which smoothly transitions from the interior to the boundaries. 
 
 

3.  RESULTS  
 

Some key elements of enhanced elliptic grid generation methodology are demonstrated through a 
few selected computational grid generation examples. The geometries for planetary entry descent 
and landing systems, such as an aeroshell and a canopy for the Mars Science Laboratory (MSL), are 
considered here. Single-zone grids are generated with the present grid generation procedure which 
are uniformly clustered at the body. With the conventional elliptic grid generation methodology,  
decay parameters are prescribed by the user as constants over a boundary. If the boundary slope is 
discontinuous, then this prescription fails to generate uniformly clustered grids around sharp corners 
and high curvature regions. To avoid this problem in the conventional approach, grids are typically 
decomposed into multiple zones and the grids are generated separately for these zones.  
 
In the present methodology, decay parameters are automatically calculated as decay functions, as 
part of the solution. Thus, a uniformly clustered grid is generated over an arbitrarily shaped bound-
ary as a single zone grid. The grid over the MSL aeroshell geometry, shown in figure 1, is generated 
as a single-zone 51x72x61 grid; 72 points in the meridional direction, 51 points in the streamwise 
direction, and 61 points in the direction normal to the body. An axisymmetric cross-section, 51x61, 
of the volume grid around the aeroshell is shown in figure 2. This grid is shown to be clustered at the  
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aeroshell wall. Away from the aeroshell, the grid uniformly stretches to the farfield boundary. No 
clustering requirement is enforced at the farfield boundary. As shown, the grid generated is orthogo-
nal and uniformly clustered at the aeroshell surface.  
 
Figure 3 shows the elliptic grid around the aeroshell bounded by a tunnel wall. Therefore, the grid is 
clustered at both the aeroshell and tunnel walls showing uniform clustering at the tunnel wall corner 
points. Conventional methods fail to enforce clustering in the neighborhood of these discontinuities. 
A 3-D slice through the volume grid including the aeroshell surface is shown in figure 4. 
 
One of the key elements of the enhanced elliptic grid generation procedure is that since the decay 
function varies over the body surface, it can automatically resolve the curvature of the surface in  
accordance with the clustering requirement. It is clearly not possible to prescribe such a decay func-
tion manually that is required with the conventional elliptic grid generation schemes. 
 
As an example, a low speed turbulent flow calculation at a Reynolds number of 2x10P

7
P was carried 

out with the k-ε turbulence model (refs. 5, 6), and the corresponding pressure contours over the 
aeroshell are shown in figure 5. The flow solver (ref. 7) used for this calculation is a low speed flow 
solver. 
 
Another grid calculation was carried out for the MSL disk-band-gap canopy, and the grid over the 
canopy geometry is shown in figure 6. Again, the grid shown in figure 5 represents a single-zone 
grid. Pressure contours over the canopy in low speed laminar flow are shown in figure 7. 
 
 

4.  CONCLUDING REMARKS 
 
A fully automated 3-D elliptic grid generation method has been developed and demonstrated for 
the 3-D MSL geometries such as the aeroshell and canopy. Clustered body-orthogonal grids for the 
MSL aeroshell and the canopy were generated automatically without any user intervention to  
enforce the clustering properties. This makes the 3-D enhanced elliptic grid generator a powerful 
tool for generation of the volume grids around complex geometries, especially the deforming grids 
about the deploying geometries such as MSL canopies and the inflatable aerodynamic decelerators. 
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6.  FIGURES 
 
 
 

 
Figure 1.  Grid over the MSL aeroshell geometry. 
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a)  Clustering around the aeroshell wall  

 
 

 
b)  Enlarged close to the aeroshell  

Figure 2. Cross-section of the elliptic grid around the MSL aeroshell; outer boundary is farfield. 
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a)  Clustering around the aeroshell and the wind-tunnel wall 

 
 

 
 

b)  Enlarged close to the aeroshell c)  Enlarged close to the tunnel wall 

Figure 3. Cross-section of the elliptic grid around the MSL aeroshell and the wind-tunnel wall. 
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Figure 4. A 3-D slice of the grid in the vicinity of the aeroshell. 

 
 

 
Figure 5. Axisymmetric pressure contours about the aeroshell in low speed  

turbulent flow, Re = 10P

7
P. 
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Figure 6. A continuous single-zone grid over the MSL disk-band-gap canopy geometry. 

 
 
 

 
Figure 7. Pressure contours over the MSL canopy in low speed laminar flow. 
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lated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay
functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically
without having to break up the boundaries and the corresponding interior domains into various zones for grid
generation.

Enhanced elliptic grid generation, decay functions, grid clustering, single-zone grids, Mars Science Laboratory (MSL),
canopy and aeroshell grids, inflatable aerodynamic decelerator (IAD)
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