CONDITIONING OF THE STABLE, DISCRETE-TIME LYAPUNOV OPERATOR*

MICHAEL K. TIPPETT[†], STEPHEN E. COHN[‡], RICARDO TODLING[§], AND DAN MARCHESIN[¶]

Abstract. The Schatten p-norm condition of the discrete-time Lyapunov operator \mathcal{L}_A defined on matrices $P \in \mathbb{R}^{n \times n}$ by $\mathcal{L}_A P \equiv P - APA^T$ is studied for stable matrices $A \in \mathbb{R}^{n \times n}$. Bounds are obtained for the norm of \mathcal{L}_A and its inverse that depend on the spectrum, singular values and radius of stability of A. Since the solution P of the the discrete-time algebraic Lyapunov equation (DALE) $\mathcal{L}_A P = Q$ can be ill-conditioned only when either \mathcal{L}_A or Q is ill-conditioned, these bounds are useful in determining whether P admits a low-rank approximation, which is important in the numerical solution of the DALE for large n.

Key words. Lyapunov matrix equation, condition estimates, large-scale systems, radius of stability.

AMS subject classifications. 15A12, 93C55, 93A15, 47B65

1. Introduction. Properties of the solution P of the discrete algebraic Lyapunov equation (DALE), $P = APA^T + Q$, are closely related to the stability properties of A. For instance, the DALE has a unique solution $P = P^T > 0$ for any $Q = Q^T > 0$ if A is stable [11], a fact also true in infinite-dimensional Hilbert spaces [18]. In the setting treated here with A, Q, $P \in \mathbb{R}^{n \times n}$, A is stable if its eigenvalues $\lambda_i(A)$, $i = 1, \ldots, n$, lie inside the unit circle; the eigenvalues are ordered so that $|\lambda_1(A)| \geq |\lambda_2(A)| \geq \cdots \geq |\lambda_n(A)|$. Here A is always assumed to be stable.

In applications where the dimension n is very large, direct solution of the DALE or even storage of P is impractical or impossible. For instance, in numerical weather prediction applications A is the matrix that evolves atmospheric state perturbations. The DALE and its continuous-time analogs can be solved directly for simplified atmospheric models [6, 23], but in realistic models n is about $10^6 - 10^7$ and even the storage of P is impossible. Krylov subspace [5] and Monte Carlo [9] methods have been used to find low-rank approximations of the right-hand side of the DALE and of the solution of the DALE [10].

The solution P of the DALE can be well approximated by a rank-deficient matrix if P has some small singular values. Therefore, it is useful to identify properties of A or Q that lead to P being ill-conditioned. If A is normal then

$$\frac{\lambda_1(P)}{\lambda_n(P)} \le \frac{\lambda_1(Q)}{\lambda_n(Q)} \frac{1 - |\lambda_n(A)|^2}{1 - |\lambda_1(A)|^2}; \tag{1.1}$$

the conditioning of P is controlled by that of Q and by the spectrum of A. In the general case, the conditioning of Q and of the discrete-time Lyapunov operator \mathcal{L}_A defined by $\mathcal{L}_A P \equiv P - APA^T$ determine when P may be ill-conditioned.

THEOREM 1.1. Let A be a stable matrix and suppose that $\mathcal{L}_A P = Q$ for $Q = Q^T > 0$. Then

$$||P||_p ||P^{-1}||_p \le ||\mathcal{L}_A||_p ||\mathcal{L}_A^{-1}||_p ||Q||_p ||Q^{-1}||_p, \qquad p = \infty,$$
(1.2)

^{*} This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grants 91.0029/95-4, 381737/97-7 and 30.0204/83-3, Financiadora de Estudos e Projetos (FINEP) Grant 77.97.0315.00, and the NASA EOS Interdisciplinary Project on Data Assimilation.

[†]IRI, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000, USA (tippett@iri.ldeo.columbia.edu). This work was done while the author was with the Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, SP, Brazil.

[‡]Data Assimilation Office, Code 910.3, NASA/GSFC, Greenbelt, MD 20771, USA (cohn@dao.gsfc.nasa.gov). [§]General Sciences Corp./SAIC, Code 910.3, NASA/GSFC/DAO, Greenbelt, MD 20771, USA (todling@dao.gsfc.nasa.gov).

[¶]Instituto de Matemtica Pura e Aplicada, Rio de Janeiro, RJ, Brazil (marchesi@impa.br).

where $\|\cdot\|_p$ is the Schatten p-norm (see Eq. 2.2).

Theorem 1.1 (see proof in Appendix) follows from \mathcal{L}_A^{-1} and its adjoint being positive operators. Therefore the same connection between rank-deficient approximate solutions and operator conditioning exists for matrix equations such as the continuous algebraic Lyapunov equation. We note that Theorem 1.1 also holds for $1 \leq p < \infty$ if either A is singular or $\sigma_1^2(A) \geq 2$; $\sigma_1(A)$ is the largest singular value of A.

Here we characterize the Schatten p-norm condition of \mathcal{L}_A . The main results are the following. Theorem 3.1 bounds $\|\mathcal{L}_A\|_p$ in terms of the singular values of A. A lower bound for $\|\mathcal{L}_A^{-1}\|_p$ depending on $\lambda_1(A)$ is presented in Theorem 4.1, generalizing results of [7]. Theorem 4.2 gives lower bounds for $\|\mathcal{L}_A^{-1}\|_1$ and $\|\mathcal{L}_A^{-1}\|_p$ in terms of the singular values of A. Theorem 4.6 gives an upper bound for $\|\mathcal{L}_A^{-1}\|_p$ depending on the radius of stability of A and generalizes results in [20]. Three examples illustrating the results are included. The issue of whether \mathcal{L}_A and \mathcal{L}_A^{-1} achieve their norms on symmetric, positive definite matrices is addressed in the concluding remarks.

2. Preliminaries. We investigate the condition number $\kappa(\mathcal{L}_A) = \|\mathcal{L}_A\| \|\mathcal{L}_A^{-1}\|$, where $\|\cdot\|$ is a norm on $\mathbb{R}^{n^2 \times n^2}$ induced by a matrix norm on $\mathbb{R}^{n \times n}$. Specifically, for $\mathcal{M} \in \mathbb{R}^{n^2 \times n^2}$ we consider norms defined by

$$\|\mathcal{M}\|_{p} = \max_{S \neq 0 \in \mathbb{R}^{n \times n}} \frac{\|\mathcal{M}S\|_{p}}{\|S\|_{p}}, \quad 1 \leq p \leq \infty,$$
 (2.1)

where the Schatten matrix p-norm for $S \in \mathbb{R}^{n \times n}$ is defined by

$$||S||_p = \left(\sum_{i=1}^n \left(\sigma_i(S)\right)^p\right)^{1/p};$$
 (2.2)

 $\sigma_i(S)$ are the singular values of S with ordering $\sigma_1(S) \geq \sigma_2(S) \geq \cdots \geq \sigma_n(S) \geq 0$. On $\mathbb{R}^{n \times n}$, $\|\cdot\|_2$ is the Frobenius norm and $\|\cdot\|_{\infty} = \sigma_1(\cdot)$. If $S = S^T \geq 0$ then $\|S\|_1 = \operatorname{tr} S$. The following lemma about the Schatten p-norms follows from their being unitarily invariant [1, p. 94].

LEMMA 2.1. For any three matrices X, Y and $Z \in \mathbb{R}^{n \times n}$,

$$||XYZ||_p \le ||X||_{\infty} ||Y||_p ||Z||_{\infty}, \quad 1 \le p \le \infty.$$
 (2.3)

The p=2 Schatten norm on $\mathbb{R}^{n\times n}$ is equivalently defined as $\|S\|_2^2=(S,S)$, where (\cdot,\cdot) is the inner product on $\mathbb{R}^{n\times n}$ defined by $(S_1,S_2)=\operatorname{tr} S_1^TS_2$. This norm corresponds to the usual Euclidean norm on \mathbb{R}^{n^2} since $\|S\|_2^2$ is equal to the sum of the squares of the entries of S. As a consequence $\kappa_2(\mathcal{L}_A)=\sigma_1(\mathcal{L}_A)/\sigma_{n^2}(\mathcal{L}_A)$, where $\sigma_1(\mathcal{L}_A)$ and $\sigma_{n^2}(\mathcal{L}_A)$ are respectively the largest and smallest singular values of \mathcal{L}_A . The adjoint of \mathcal{L}_A is given by $\mathcal{L}_A^*S=\mathcal{L}_{A^T}S=S-A^TSA$.

We now state some lemmas about mappings $\mathcal{M} \in \mathbb{R}^{n^2 \times n^2}$ and about the spectra of \mathcal{L}_A and A.

Lemma 2.2 ((15) of [2]). $\|\mathcal{M}\|_p \le \|\mathcal{M}\|_1^{1/p} \|\mathcal{M}\|_{\infty}^{1-1/p}, \quad 1 \le p \le \infty.$

LEMMA 2.3. $||\mathcal{M}||_1 = ||\mathcal{M}^*||_{\infty}$.

LEMMA 2.4 (See proof of Theorem 1, [2]). If MS > 0 for all $S \in \mathbb{R}^{n \times n}$ such that S > 0, then $||M||_{\infty} = ||MI||_{\infty}$.

LEMMA 2.5 ([13, 14]). The n^2 eigenvalues of \mathcal{L}_A are $1 - \lambda_i(A)\overline{\lambda_j(A)}$, $1 \leq i, j \leq n$.

3. The norm of the Lyapunov operator. If A is normal, then \mathcal{L}_A is normal, and its conditioning in the p=2 Schatten norm depends only on its eigenvalues. Therefore when A is normal,

$$\|\mathcal{L}_{A}^{-1}\|_{2} = \frac{1}{\sigma_{n^{2}}(\mathcal{L}_{A})} = \frac{1}{|\lambda_{n^{2}}(\mathcal{L}_{A})|} = \frac{1}{1 - |\lambda_{1}(A)|^{2}},$$
(3.1)

and

$$\|\mathcal{L}_A\|_2 = \sigma_1(\mathcal{L}_A) = |\lambda_1(\mathcal{L}_A)| = \max_{i,j} |1 - \lambda_i(A)\overline{\lambda_j(A)}|. \tag{3.2}$$

For general A, the following theorem bounds $||\mathcal{L}_A||_p$ in terms of the singular values of A. THEOREM 3.1.

$$|1 - \sigma_1^2(A)| \le \max_j |1 - \sigma_j^2(A)| \le ||\mathcal{L}_A||_p \le 1 + \sigma_1^2(A), \quad 1 \le p \le \infty.$$
 (3.3)

Proof. Note that $\mathcal{L}_A v_j v_j^T = v_j v_j^T - \sigma_j^2 u_j u_j^T$, where u_j and v_j are respectively the j-th left and right singular vectors of A such that $Av_j = \sigma_j u_j$. The lower bound follows from $||u_j u_j^T||_p = ||v_j v_j^T||_p = 1$ and

$$\|\mathcal{L}_A\|_p \ge \|v_j v_j^T - \sigma_j^2 u_j u_j^T\|_p \ge \left| \|v_j v_j^T\|_p - \|\sigma_j^2 u_j u_j^T\|_p \right| = \left| 1 - \sigma_j^2 \right|. \tag{3.4}$$

The upper bound follows from

$$\|\mathcal{L}_A P\|_p \le \|P\|_p + \|APA^T\|_p \le \|P\|_p + \|A\|_{\infty}^2 \|P\|_p. \qquad \Box$$
 (3.5)

If A is normal, $\sigma_j(A)$ can be replaced by $|\lambda_j(A)|$ in Theorem 3.1, and $\|\mathcal{L}_A\|_p \leq 1 + |\lambda_1(A)|^2$. If A is normal and $(-\overline{\lambda_1(A)})$ is an eigenvalue of A, then $1 + |\lambda_1(A)|^2$ is an eigenvalue of \mathcal{L}_A and $\|\mathcal{L}_A\|_p = 1 + |\lambda_1(A)|^2$.

Theorem 3.1 shows that $\|\mathcal{L}_A\|_p$ is large and contributes to ill-conditioning if and only if $\sigma_1(A)$ is large, a situation that occurs in various applications [3, 22]. If $\sigma_1(A) \gg 1$ and $|\lambda_1(A)| < 1$, A is highly nonnormal [8, p. 314] and as Corollary 4.8 will show, close to an unstable matrix.

4. The norm of the inverse Lyapunov operator. We first show that a sufficient condition for $\|\mathcal{L}_A^{-1}\|_p$ to be large is that $\lambda_1(A)$ be near the unit circle. The condition is necessary when A is normal.

THEOREM 4.1. Let A be a stable matrix. Then

$$\|\mathcal{L}_A^{-1}\|_p \ge \frac{1}{1 - |\lambda_1(A)|^2}, \qquad 1 \le p \le \infty,$$
 (4.1)

with equality holding if A is normal.

Proof. To obtain the lower bound, let z_1 be the leading eigenvector of A, $Az_1 = \lambda_1(A)z_1$, and note that $\mathcal{L}_A z_1 z_1^H = (1 - |\lambda_1(A)|^2) z_1 z_1^H$ where $(\cdot)^H$ denotes conjugate transpose. Either $\operatorname{Re} z_1 z_1^H \neq 0$ or $\operatorname{Im} z_1 z_1^H \neq 0$ is an eigenvector of \mathcal{L}_A , and it follows that $\|\mathcal{L}_A^{-1}\|_p \geq (1 - |\lambda_1(A)|^2)^{-1}$. Finally, if A is normal, then

$$\mathcal{L}_{A^{T}}^{-1}I = \mathcal{L}_{A}^{-1}I = \sum_{i=1}^{n} \frac{1}{1 - |\lambda_{i}(A)|^{2}} z_{i} z_{i}^{H}, \tag{4.2}$$

and $\|\mathcal{L}_A^{-1}\|_{\infty} = \|\mathcal{L}_A^{-1}\|_1 = (1-|\lambda_1(A)|^2)^{-1}$. Using Lemma 2.2 gives $\|\mathcal{L}_A^{-1}\|_p \leq (1-|\lambda_1(A)|^2)^{-1}$ when A is normal, and therefore $\|\mathcal{L}_A^{-1}\|_p = (1-|\lambda_1(A)|^2)^{-1}$. \square When A is nonnormal, $\|\mathcal{L}_A^{-1}\|_p$ can be large without $\lambda_1(A)$ being near the unit circle.

When A is nonnormal, $\|\mathcal{L}_A^{-1}\|_p$ can be large without $\lambda_1(A)$ being near the unit circle. For instance, if $\sigma_1(A)$ is large or more generally if $\|A^k\|_{\infty}$ converges to zero slowly as a function of k, then $\|\mathcal{L}_A^{-1}\|_p$ is large. We show this fact first for $p=1,\infty$.

THEOREM 4.2. Let A be a stable matrix. For all $m \ge 1$,

$$\|\mathcal{L}_{A}^{-1}\|_{1} = \left\| \sum_{k=0}^{\infty} \left(A^{k} \right)^{\mathrm{T}} A^{k} \right\|_{1} \ge \left\| \sum_{k=0}^{m} \left(A^{k} \right)^{\mathrm{T}} A^{k} \right\|_{1} + \frac{\sigma_{n}^{2(m+1)}(A)}{1 - \sigma_{n}^{2}(A)}, \tag{4.3}$$

$$\|\mathcal{L}_{A}^{-1}\|_{\infty} = \left\| \sum_{k=0}^{\infty} A^{k} \left(A^{k} \right)^{\mathrm{T}} \right\|_{\infty} \ge \left\| \sum_{k=0}^{m} A^{k} \left(A^{k} \right)^{\mathrm{T}} \right\|_{\infty} + \frac{\sigma_{n}^{2(m+1)}(A)}{1 - \sigma_{n}^{2}(A)}. \tag{4.4}$$

In particular,

$$\|\mathcal{L}_A^{-1}\|_p \ge 1 + \sigma_1^2(A) + \frac{\sigma_n^4(A)}{1 - \sigma_n^2(A)}, \qquad p = 1, \infty.$$
 (4.5)

Proof. The operator \mathcal{L}_A^{-1} applied to $S \in \mathbb{R}^{n \times n}$ can be expressed as [18]

$$\mathcal{L}_{A}^{-1}S = \sum_{k=0}^{\infty} A^{k}S(A^{k})^{T}.$$
 (4.6)

Applying Lemma 2.4 gives $\|\mathcal{L}_A^{-1}\|_{\infty} = \|\mathcal{L}_A^{-1}I\|_{\infty}$, with the inequality in (4.4) being a consequence of

$$\left\| \sum_{k=0}^{\infty} A^{k} \left(A^{k} \right)^{\mathrm{T}} \right\|_{\infty} \ge \left\| \sum_{k=0}^{m} A^{k} \left(A^{k} \right)^{\mathrm{T}} \right\|_{\infty} + \lambda_{n} \left(\sum_{k=m+1}^{\infty} A^{k} \left(A^{T} \right)^{k} \right), \quad (4.7)$$

and

$$\lambda_{n} \left(\sum_{k=m+1}^{\infty} A^{k} \left(A^{T} \right)^{k} \right) \geq \sum_{k=m+1}^{\infty} \lambda_{n} \left(A^{k} \left(A^{T} \right)^{k} \right) \geq \sum_{k=m+1}^{\infty} \sigma_{n}^{2k} (A) = \frac{\sigma_{n}^{2(m+1)}(A)}{1 - \sigma_{n}^{2}(A)}, \tag{4.8}$$

where we have used the facts that for matrices $W, X, Y \in \mathbb{R}^{n \times n}$ with X, Y being symmetric positive semi-definite, $\lambda_i(X+Y) \geq \lambda_i(X) + \lambda_n(Y)$ and $\lambda_i(WXW^T) \geq \sigma_n^2(W)\lambda_i(X)$ [17]. Likewise the p=1 results follow from $\|\mathcal{L}_A^{-1}\|_1 = \|\mathcal{L}_{A^T}^{-1}I\|_{\infty}$.

Lower bounds for 1 follow trivially, e.g.,

$$\|\mathcal{L}_{A}^{-1}\|_{p} \ge \frac{\|\mathcal{L}_{A}^{-1}I\|_{p}}{\|I\|_{p}} = \frac{\|\mathcal{L}_{A}^{-1}I\|_{p}}{n^{1/p}} \ge n^{-1/p}\|\mathcal{L}_{A}^{-1}\|_{\infty}, \tag{4.9}$$

but give little information when n is large. A lower bound for $1 \le p \le \infty$ depending on $\sigma_1(A)$ and independent of n is given in Corollary 4.9.

We now relate $\|\mathcal{L}_A^{-1}\|_p$ to the distance from A to the set of unstable matrices as measured by its radius of stability [15].

DEFINITION 4.3. For any stable matrix $A \in \mathbb{R}^{n \times n}$ define the radius of stability r(A) by

$$r(A) \equiv \min_{0 \le \theta \le 2\pi} \| (e^{i\theta} I - A)^{-1} \|_{\infty}^{-1} = \min_{0 \le \theta \le 2\pi} \| R(e^{i\theta}, A) \|_{\infty}^{-1}, \tag{4.10}$$

where the resolvent of A is $R(\lambda, A) = (\lambda I - A)^{-1}$.

If A is normal and stable, then $r(A)=1-|\lambda_1(A)|$. However, if A is nonnormal and if its eigenvalues are *sensitive* to perturbations, then $r(A)\ll 1-|\lambda_1(A)|$. The sensitivity of the eigenvalues of A is most completely described by its *pseudospectrum* [21]. The radius of stability r(A) is the largest value of ϵ such that the ϵ -pseudospectrum of A lies inside the unit circle; r(A) being small indicates that the ϵ -pseudospectrum of A is close to the unit circle for small ϵ . The following theorem shows that when r(A) is small, $\|\mathcal{L}_A^{-1}\|_p$ must be large.

THEOREM 4.4 (Proven for $p = \infty$ in [7]). Let A be a stable matrix. Then

$$\|\mathcal{L}_A^{-1}\|_p \ge \frac{1}{2r(A) + r^2(A)}, \qquad 1 \le p \le \infty.$$
 (4.11)

Proof. There exists a matrix $E \in \mathbb{R}^{n \times n}$ with $|\lambda_1(A+E)| = 1$ and $||E||_{\infty} = r(A)$. Therefore there exists a vector x with $x^H x = 1$ such that $(A+E)x = e^{i\theta}x$ for some $0 \le \theta \le 2\pi$. Using $||xx^H||_p = 1$ and Lemma 2.1 gives

$$\|\mathcal{L}_{A}xx^{H}\|_{p} = \|-Exx^{H}E^{T} + e^{i\theta}xx^{H}E^{T} + e^{-i\theta}Exx^{H}\|$$

$$\leq \|Exx^{H}E^{T}\|_{p} + \|xx^{H}E^{T}\|_{p} + \|Exx^{H}\|_{p}$$

$$\leq \|E\|_{\infty}^{2} + 2\|E\|_{\infty} = r^{2}(A) + 2r(A),$$
(4.12)

and we have

$$\|\mathcal{L}_{A}^{-1}\|_{p} \ge \frac{\|\mathcal{L}_{A}^{-1}\mathcal{L}_{A}xx^{H}\|_{p}}{\|\mathcal{L}_{A}xx^{H}\|_{p}} = \frac{1}{\|\mathcal{L}_{A}xx^{H}\|_{p}} \ge \frac{1}{2r(A) + r^{2}(A)}. \quad \Box$$
 (4.13)

A consequence of Theorem 4.4 is the following lower bound for r(A) in terms of $\|\mathcal{L}_A^{-1}\|_p$. COROLLARY 4.5. Let A be a stable matrix. Then

$$r(A) \ge \frac{\|\mathcal{L}_A^{-1}\|_p^{-1}}{1 + \sqrt{1 + \|\mathcal{L}_A^{-1}\|_p^{-1}}}, \qquad 1 \le p \le \infty.$$
 (4.14)

Bounds for r(A) are useful in robust stability [12] and in the study of perturbations of the discrete algebraic Riccati equation (DARE) [19]. In [19, Lemma 2.2] the bound

$$r(A) \ge \frac{\|\mathcal{L}_A^{-1}\|_{\infty}^{-1}}{\sigma_1(A) + \sqrt{\sigma_1^2(A) + \|\mathcal{L}_A^{-1}\|_{\infty}^{-1}}},$$
(4.15)

was used to formulate conditions under which a perturbed DARE has a unique, symmetric, positive definite solution. Since the lower bound in (4.14) with $p = \infty$ is sharper than that in (4.15) when $\sigma_1(A) > 1$, it can be used to show existence of a unique, symmetric, positive definite solution of the perturbed DARE for a larger class of perturbations [19, Theorem 4.1].

We generalize to Schatten p-norms the conjecture of [7] proven in [20] for the Frobenius norm.

THEOREM 4.6. Let A be a stable matrix. Then

$$\|\mathcal{L}_A^{-1}\|_p \le \frac{1}{r^2(A)}, \quad 1 \le p \le \infty.$$
 (4.16)

Proof. $\mathcal{L}_A^{-1}I$ can be expressed as [20, 13],

$$\mathcal{L}_{A}^{-1}I = \frac{1}{2\pi} \int_{0}^{2\pi} R(e^{i\theta}, A)R(e^{i\theta}, A)^{H} d\theta.$$
 (4.17)

Therefore, from Lemma 2.4,

$$\|\mathcal{L}_{A}^{-1}\|_{\infty} = \|\mathcal{L}_{A}^{-1}I\|_{\infty} \le \frac{1}{2\pi} \int_{0}^{2\pi} \|R(e^{i\theta}, A)\|_{\infty}^{2} d\theta \le \frac{1}{r^{2}(A)}. \tag{4.18}$$

The inequality (4.16) for p=1 follows from $\|\mathcal{L}_A^{-1}\|_1 = \|\mathcal{L}_{A^T}^{-1}I\|_\infty$ and $r(A) = r(A^T)$. The theorem follows from Lemma 2.2.

As a consequence, any solution of the DALE can be used to obtain an upper bound for r(A).

COROLLARY 4.7. Let A be a stable matrix and let $\mathcal{L}_A P = Q$. Then

$$r^2(A) \le \frac{\|Q\|_p}{\|P\|_p}, \qquad 1 \le p \le \infty.$$
 (4.19)

Theorem 4.6 can be combined with any lower bound for $\|\mathcal{L}_A^{-1}\|_p$ to obtain an upper bound for r(A). For instance, from Theorem 4.2 we get the following upper bound.

COROLLARY 4.8. Let A be a stable matrix. Then

$$r^2(A) \le \frac{1}{1 + \sigma_1^2(A)}. (4.20)$$

Combining Corollary 4.8 and Theorem 4.4 gives a lower bound for $||\mathcal{L}_A^{-1}||_p$. COROLLARY 4.9. Let A be a stable matrix. Then

$$\|\mathcal{L}_A^{-1}\|_p \ge \frac{1 + \sigma_1^2(A)}{1 + 2\sqrt{1 + \sigma_1^2(A)}}, \qquad 1 \le p \le \infty.$$
 (4.21)

5. Examples. We present three examples that illustrate how ill-conditioning of \mathcal{L}_A leads to low-rank approximate solutions of the DALE.

EXAMPLE 1. Almost unit eigenvalues. Take $A=\lambda zz^T$ where λ and z are real, $0<\lambda<1$ and $z^Tz=1$. The matrix A is symmetric and \mathcal{L}_A is self-adjoint. The eigenvalues of A are $(\lambda,0,\ldots,0)$. The operator \mathcal{L}_A has singular values (and eigenvalues) $(1,\ldots,1,1-\lambda^2)$. Therefore $\|\mathcal{L}_A\|_2=1$ and $1\leq \|\mathcal{L}_A\|_p\leq 1+\lambda^2$ from Theorem 3.1. The norm of the inverse Lyapunov operator is

$$\|\mathcal{L}_A^{-1}\|_p = \frac{1}{1-\lambda^2}, \qquad 1 \le p \le \infty,$$
 (5.1)

according to Theorem 4.1. As the eigenvalue λ approaches the unit circle, \mathcal{L}_A is increasingly poorly conditioned. The solution of the DALE for this choice of A is:

$$P = \frac{\lambda^2}{1 - \lambda^2} \left(z^T Q z \right) z z^T + Q. \tag{5.2}$$

A "natural" rank-1 approximation \tilde{P} of P is $\tilde{P}=\lambda^2(1-\lambda^2)^{-1}(z^TQz)zz^T$. As the eigenvalue λ approaches the unit circle, if (z^TQz) is nonzero, P is increasingly well-approximated by \tilde{P} in the sense that $\|P-\tilde{P}\|_p/\|P\|_p$ approaches zero.

EXAMPLE 2. Large singular values. Take $A = \sigma y z^T$ where $\sigma > 0$ and y and z are real unit n-vectors. The matrix A has at most one nonzero eigenvalue, namely $\lambda = \sigma(y^T z)$, taken to be less than one in absolute value. The sensitivity s of the eigenvalue λ is the cosine of the angle between y and z, i.e., $s = \lambda/\sigma$ for $\lambda \neq 0$, indicating that λ is sensitive to perturbations to A when σ is large [8].

Theorem 3.1 gives that $1 + \sigma^2 \ge ||\mathcal{L}_A||_p \ge |1 - \sigma^2|$, showing that $||\mathcal{L}_A||_p$ is large when σ is large. From Lemmas 2.3 and 2.4,

$$\|\mathcal{L}_A^{-1}\|_1 = \|\mathcal{L}_A^{-1}\|_{\infty} = 1 + \frac{\sigma^2}{1 - \lambda^2},$$
 (5.3)

and it follows from Lemma 2.2 that $\|\mathcal{L}_A^{-1}\|_p \le 1 + \sigma^2/(1-\lambda^2)$. A lower bound for the p=2 norm is

$$\|\mathcal{L}_A^{-1}\|_2 \ge \|\mathcal{L}_A^{-1} z z^T\|_2 = \sqrt{1 + 2\frac{\lambda^2}{1 - \lambda^2} + \frac{\sigma^4}{(1 - \lambda^2)^2}}.$$
 (5.4)

The matrix A is near an unstable matrix when either $|\lambda|$ is near unity or when σ is large since

$$\left\| \left(e^{i\theta} I - \sigma y z^T \right)^{-1} \right\|_{\infty} = \left\| e^{-i\theta} I + \frac{\sigma e^{-2i\theta}}{1 - \lambda e^{-i\theta}} y z^T \right\|_{\infty} \ge 1 + \frac{2|\lambda|}{1 - |\lambda|} + \frac{\sigma^2}{(1 - |\lambda|)^2}.$$
(5.5)

Therefore $r(A) \leq (1-|\lambda|)/\sigma$ and a lower bound on $||\mathcal{L}_A^{-1}||_p$ follows from Theorem 4.4. When either $|\lambda|$ is close to unity or when σ is large, r(A) is small and $\kappa_p(\mathcal{L}_A)$ is large.

The solution of the DALE is

$$P = \frac{\sigma^2}{1 - \lambda^2} \left(z^T Q z \right) y y^T + Q. \tag{5.6}$$

When \mathcal{L}_A is ill-conditioned and $(z^TQz) \neq 0$, the rank-1 matrix $\tilde{P} = \sigma^2(1-\lambda^2)^{-1}(z^TQz)yy^T$ is a good approximation of P in the sense that $||P - \tilde{P}||_p/||P||_p$ is small.

EXAMPLE 3. Sensitive eigenvalues. Consider the dynamics arising from the one-dimensional advection equation, $w_t + w_x = 0$ for $0 \le x \le n$, with boundary condition w(0,t) = 0. The matrix A that advances the n-vector $w(x = 1, 2, ..., n, t = t_0)$ to $w(x = 1, 2, ..., n, t = t_0+1)$ is the $n \times n$ matrix with ones on the sub-diagonal and zero elsewhere, i.e., the transpose of an $n \times n$ Jordan block with zero eigenvalue. Adding stochastic forcing with covariance Q at unit time intervals leads to the DALE, $\mathcal{L}_A P = Q$, where P is the steady-state covariance of w

Since $\sigma_1(A)=1$, Theorem 3.1 yields $1\leq \|\mathcal{L}_A\|_p\leq 2$. Further, since $\|\mathcal{L}_A\|_1\geq \|\mathcal{L}_Ae_1e_1^T\|_1=\|e_1e_1^T-e_2e_2^T\|_1=2$, where e_j is the j-th column of the identity matrix, $\|\mathcal{L}_A\|_1=2$. A similar argument with \mathcal{L}_{A^T} gives $\|\mathcal{L}_A\|_{\infty}=2$. Calculating $\mathcal{L}_A^{-1}I$ and $\mathcal{L}_{A^T}^{-1}I$ gives $\|\mathcal{L}_A^{-1}\|_{\infty}=\|\mathcal{L}_A^{-1}\|_1=n$. Therefore, using Lemma 2.2, $\|\mathcal{L}_A^{-1}\|_p\leq n$. Also,

$$\|\mathcal{L}_A^{-1}\|_2 \ge \frac{\|\mathcal{L}_A^{-1}e_1e_1^T\|_2}{\|e_1e_1^T\|_2} = \sqrt{n}. \tag{5.7}$$

A direct calculation shows that

$$\|(e^{i\theta}I - A)^{-1}\|_{2}^{2} = \left\|\sum_{k=0}^{n-1} A^{k} e^{-i(k+1)\theta}\right\|_{2}^{2} = \frac{n(n+1)}{2},$$
 (5.8)

for any real θ . Since $\sqrt{n}||(e^{i\theta}I-A)^{-1}||_{\infty} \ge ||(e^{i\theta}I-A)^{-1}||_2$, we have $r^2(A) \le 2/(n+1)$. Theorem 4.4 then gives a lower bound for $||\mathcal{L}_A^{-1}||_p$, $1 \le p \le \infty$. Thus as n becomes large, that is, as the domain becomes large with respect to the advection length scale, \mathcal{L}_A is increasingly ill-conditioned.

The elements P_{ij} of the solution P of the DALE are

$$P_{ij} = e_i^T P e_j = \sum_{k=0}^{n-1} e_i^T A^k Q(A^T)^k e_j = \sum_{k=0}^{\min(i-1,j-1)} Q_{i-k,j-k}.$$
 (5.9)

Therefore if $Q = Q^T > 0$, a "natural" rank-m approximation of P is the matrix \tilde{P} defined by

$$\tilde{P}_{i,j} = \begin{cases} P_{i,j}, & n - m < i, j \le n \\ 0 & \text{otherwise.} \end{cases}$$
 (5.10)

When Q is diagonal, P is also diagonal and

$$P_{ii} = \sum_{k=1}^{i} Q_{kk} \,. \tag{5.11}$$

In this case, each $Q_{kk} > 0$ and \tilde{P} is the best rank-m approximation of P in the sense of minimizing $||P - \tilde{P}||_p$. We note that \tilde{P} is associated with the left-most part of the domain $0 \le x \le n$.

6. Concluding Remarks. Results about $\|\mathcal{L}_A^{-1}\|_p$ translate into bounds for solutions of the DALE. For instance, the solution P of the DALE for $Q = Q^T \geq 0$ satisfies

$$\operatorname{tr} P \le \|\mathcal{L}_A^{-1}\|_1 \operatorname{tr} Q, \tag{6.1}$$

and the upper bound is achieved for $Q=w_1w_1^T$, where w_1 is the leading eigenvector of $\mathcal{L}_{A^T}^{-1}I$. In the $p=\infty$ norm, \mathcal{L}_A^{-1} achieves its norm on the identity. In the p=2 norm, \mathcal{L}_A^{-1} does not in general achieve its norm on the identity, and the question arises whether it achieves its norm on any symmetric, positive semi-definite matrix. The forward operator \mathcal{L}_A does not in general assume its norm on a symmetric, positive semi-definite matrix. The following theorem states that \mathcal{L}_A^{-1} does achieve its p=2 norm on a symmetric, positive semi-definite matrix.

THEOREM 6.1. There exists a matrix $S = S^T \ge 0$ such that $\|\mathcal{L}_A^{-1}S\|_2/\|S\|_2 = \|\mathcal{L}_A^{-1}\|_2$.

Proof. Theorem 8 of [4] states that the inverse of the stable, continuous-time Lyapunov operator achieves its p=2 norm on a symmetric matrix. The proof is easily adapted to give that \mathcal{L}_A^{-1} achieves its p=2 norm on a symmetric matrix. We now show that if \mathcal{L}_A^{-1} achieves its p=2 norm on a symmetric matrix, it does so on a symmetric, positive semi-definite matrix. Suppose that $\|\mathcal{L}_A^{-1}S\|_2/\|S\|_2=\|\mathcal{L}_A^{-1}\|_2$ and S is symmetric with Schur decomposition $S=UDU^T$. Define the symmetric, positive semi-definite matrix $S^+=U|D|U^T$. Then $\|S\|_2=\|S^+\|_2$ and $-S^+\leq S\leq S^+$. The positiveness of the stable, discrete-time inverse Lyapunov operator mapping implies that $-\mathcal{L}_A^{-1}S^+\leq \mathcal{L}_A^{-1}S\leq \mathcal{L}_A^{-1}S^+$, which implies that $\|\mathcal{L}_A^{-1}S\|_2\leq \|\mathcal{L}_A^{-1}S^+\|_2$. Therefore

$$\frac{\|\mathcal{L}_A^{-1}S\|_2}{\|S\|_2} = \frac{\|\mathcal{L}_A^{-1}S\|_2}{\|S^+\|_2} \le \frac{\|\mathcal{L}_A^{-1}S^+\|_2}{\|S^+\|_2} \,. \qquad \Box$$
 (6.2)

Additional information about the leading singular vectors of \mathcal{L}_A^{-1} could be useful for determining low-rank approximations of P. The power method can be applied to $\mathcal{L}_{A^T}^{-1}\mathcal{L}_A^{-1}$ to calculate the leading right singular vector and singular value of \mathcal{L}_A^{-1} [7]. However, this approach requires solving two DALEs at each iteration, which may be impractical for large n. If it is practical to store P and to apply \mathcal{L}_A and \mathcal{L}_{A^T} , a Lanczos method could be used to compute the trailing eigenvectors of $\mathcal{L}_A \mathcal{L}_{A^T}$ while avoiding the cost of solving any DALEs.

Appendix. Proof of Theorem 1.1. By definition, $||P||_p \leq ||\mathcal{L}_A^{-1}||_p ||Q||_p$, and it remains to show that $||P^{-1}||_{\infty} \leq ||\mathcal{L}_A||_{\infty} ||Q^{-1}||_{\infty}$. Since $P = P^T > 0$, there is a nonzero $x \in \mathbb{R}^n$ such that

$$||P^{-1}||_{\infty} = \frac{1}{\lambda_n(P)} = \frac{x^T x}{x^T \left(\mathcal{L}_A^{-1} Q\right) x} = \frac{\operatorname{tr} x x^T}{\operatorname{tr} \left(\mathcal{L}_A^{-1} Q\right) x x^T} = \frac{\operatorname{tr} x x^T}{\operatorname{tr} \left(\left(\mathcal{L}_{A^T}\right)^{-1} x x^T\right) Q}.$$
 (A.1)

Let $B=\mathcal{L}_{A^T}^{-1}(xx^T)$ and note $B=B^T\geq 0$. Then using Lemma 2.3 and ${\rm tr}\,BQ\geq \lambda_n(Q)\,{\rm tr}\,B$ gives

$$||P^{-1}||_{\infty} = \frac{\operatorname{tr} \mathcal{L}_{A^T} B}{\operatorname{tr} B Q} \le \frac{\operatorname{tr} \mathcal{L}_{A^T} B}{\operatorname{tr} B} \frac{1}{\lambda_n(Q)} \le ||\mathcal{L}_{A^T}||_1 ||Q^{-1}||_{\infty} = ||\mathcal{L}_A||_{\infty} ||Q^{-1}||_{\infty}. \tag{A.2}$$

Theorem 1.1 holds for $1 \leq p \leq \infty$ given some restrictions on A. From [16], $\lambda_i(P) \geq \lambda_i(Q) + \sigma_n^2(A)\lambda_n(P)$, and it follows that $\|P^{-1}\|_p \leq \|Q^{-1}\|_p$ for $1 \leq p \leq \infty$. From Theorem 3.1, $\|\mathcal{L}_A\|_p \geq 1$ if either A is singular or $\sigma_1^2(A) \geq 2$. Therefore if either A is singular or $\sigma_1^2(A) \geq 2$,

$$||P^{-1}||_p \le ||\mathcal{L}_A||_p ||Q^{-1}||_p, \qquad 1 \le p \le \infty.$$
 (A.3)

Acknowledgments. The authors thank Greg Gaspari for valuable observations and notation suggestions and the reviewer for useful comments.

REFERENCES

- [1] R. BHATIA, Matrix Analysis, Springer-Verlag, New York, 1997.
- [2] -----, A Note on the Lyapunov Equation, Linear Algebra Appl., 259 (1997), pp. 71-76.
- [3] K. M. BUTLER AND B. F. FARRELL, Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, 4 (1992), pp. 1637-1650.
- [4] R. BYERS AND S. NASH, On the singular "vectors" of the Lyapunov operator, SIAM J. Alg. Disc. Math, 8 (1987), pp. 59-66.
- [5] S. E. COHN AND R. TODLING, Approximate Data Assimilation Schemes for Stable and Unstable Dynamics, J. Meteor. Soc. Japan, 74 (1996), pp. 63–75.
- [6] B. F. FARRELL AND P. J. IOANNOU, Generalized stability theory. Part 1: Autonomous operators, J. Atmos. Sci., 53 (1996), pp. 2025–2040.
- [7] P. M. GAHINET, A. J. LAUB, C. S. KENNEY, AND G. A. HEWER, Sensitivity of the stable discrete-time Lyapunov equation, IEEE Trans. Automat. Contr., 35 (1990), pp. 1209-1217.
- [8] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press, Baltimore, Third ed., 1996. 694 pp.
- [9] P. L. HOUTEKAMER AND H. L. MITCHELL, Data Assimilation Using an Ensemble Kalman Filter Technique, Mon. Wea. Rev., 126 (1998), pp. 796–811.
- [10] I. M. JAIMOUKHA AND E. M. KASENALLY, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227-251.
- [11] R. E. KALMAN AND J. E. BERTRAM, Control system analysis and design via the "second method" of Lyapunov. Il Discrete-time systems, Trans. ASME J. Basic Engineering, 82 (1960), pp. 394-400.
- [12] S. R. KOLLA, Improved stability robustness bounds for digital control systems in state-space models, Int. J. of Control, 64 (1996), pp. 991–994.

- [13] P. LANCASTER, Explicit solutions of linear matrix equations, SIAM Review, 12 (1970), pp. 544-566.
- [14] C. C. MACDUFFEE, The Theory of Matrices, Chelsea, New York, 1956.
- [15] T. MORI, On the relationship between the spectral radius and the stability radius of discrete systems, IEEE Trans. Automat. Contr., 35 (1990), p. 835.
- [16] T. MORI, N. FUKUMA, AND M. KUWAHARA, Upper and lower bounds for the solution to the discrete Lyapunov matrix equation, International Journal of Control, 36 (1982), pp. 889–892.
- [17] A. OSTROWSKI, A quantitative formulation of Sylvester's law of inertia, Proc. National Acadeny of Science, 45 (1959), pp. 740-744.
- [18] K. M. PRZYLUSKI, The Lyapunov Equation and the Problem of Stability for Linear Bounded Discrete-Time Systems in Hilbert Space, Appl. Math. Optim., 6 (1980), pp. 97-112.
- [19] J.-G. Sun, Perturbation Theory for Algebraic Riccati Equations, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 39-65.
- [20] M. K. TIPPETT AND D. MARCHESIN, Upper bounds for the solution of the discrete algebraic Lyapunov equation, Automatica, 35 (1999), pp. 1485-1489.
- [21] L. N. TREFETHEN, Pseudospectra of linear operators, SIAM Review, 39 (1997), pp. 383 406.
- [22] L. N. TREFETHEN, A. E. TREFETHEN, AND S. C. REDDY, Hydrodynamic stability without eigenvalues, Science, 261 (1993), pp. 578-584.
- [23] J. S. WHITAKER AND P. D. SARDESHMUKH, A Linear Theory of Extratropical Synoptic Eddy Statistics, J. Atmos. Sci., 55 (1998), pp. 237-258.