

Developing an Approach for Analyzing and Verifying System Communication

IEEE Aerospace Conference 2009

William C. Stratton (JHU/APL) Mikael Lindvall (FC-MD), Chris Ackermann (FC-MD), Deane E. Sibol (JHU/APL), Sally Godfrey (GSFC)

Johns Hopkins University/Applied Physics Laboratory Space Department Ground Applications Group (JHU/APL) Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD) Goddard Space Flight Center (GSFC)

NASA IV&V support through a Software Assurance Research Project (SARP)

Motivation

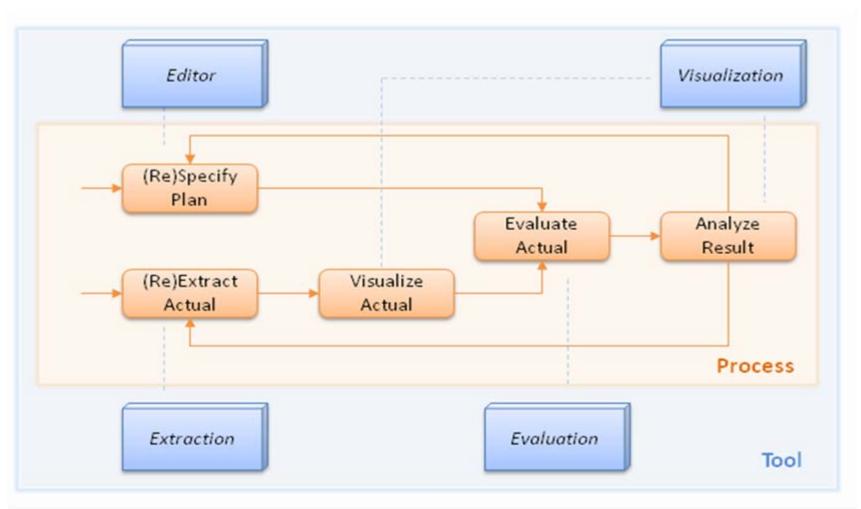
- Software systems in the aerospace domain...
 - are inherently complex,
 - operate under tight resource constraints,
 - exist in systems of systems that communicate with each other to fulfill larger tasks
- Reliable systems of systems require reliable communications, but ensuring reliable communications is difficult:
 - systems developed independently
 - ambiguities in the specification of expected communication behaviors
 - issues in communications are often subtle and can go undetected
- Communications problems can lead to waste of space link bandwidth and other precious mission resources

Organizational Approach

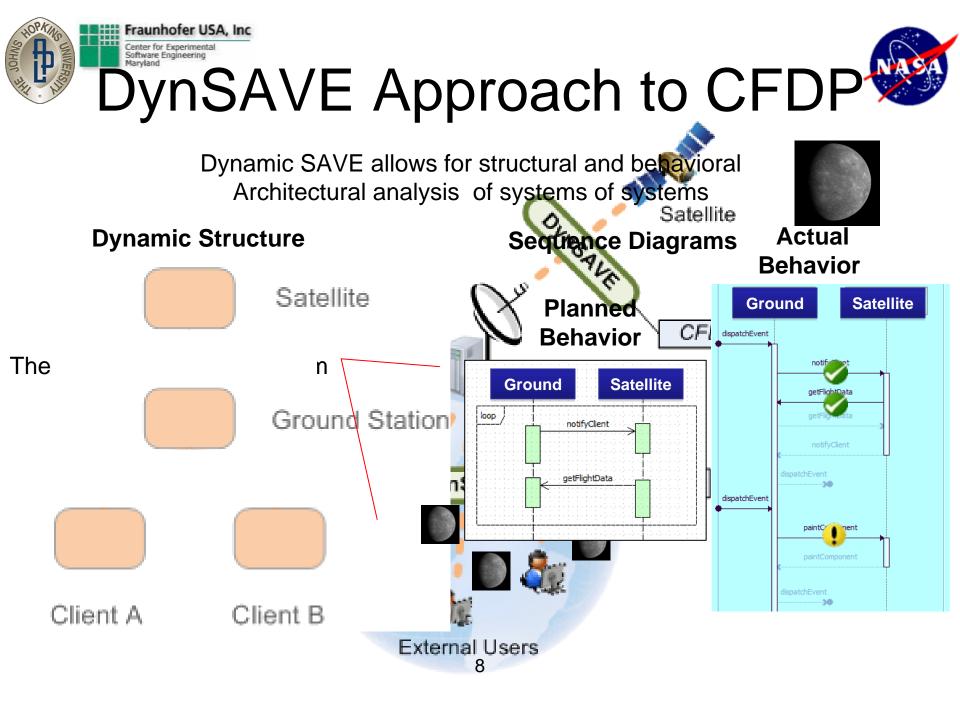
- NASA IV&V Software Assurance Research Program (SARP)
 - Supports development of software engineering processes and tools
 - Encourages collaboration between researchers and practitioners
- FC-MD researchers develop new processes and tools to address communications problems
- JHU/APL practitioners provide communications scenarios and test data for experimentation
- FC-MD and JHU/APL work as one team, using an iterative process...
 - Experiment with technology; apply to FC-MD testbed
 - Evaluate technology; apply it to APL's ground software systems
 - Improve technology based on feedback, results
 - Repeat
- Emerging processes and tools extend to NASA projects
 - e.g. through the SARP Research Infusion program

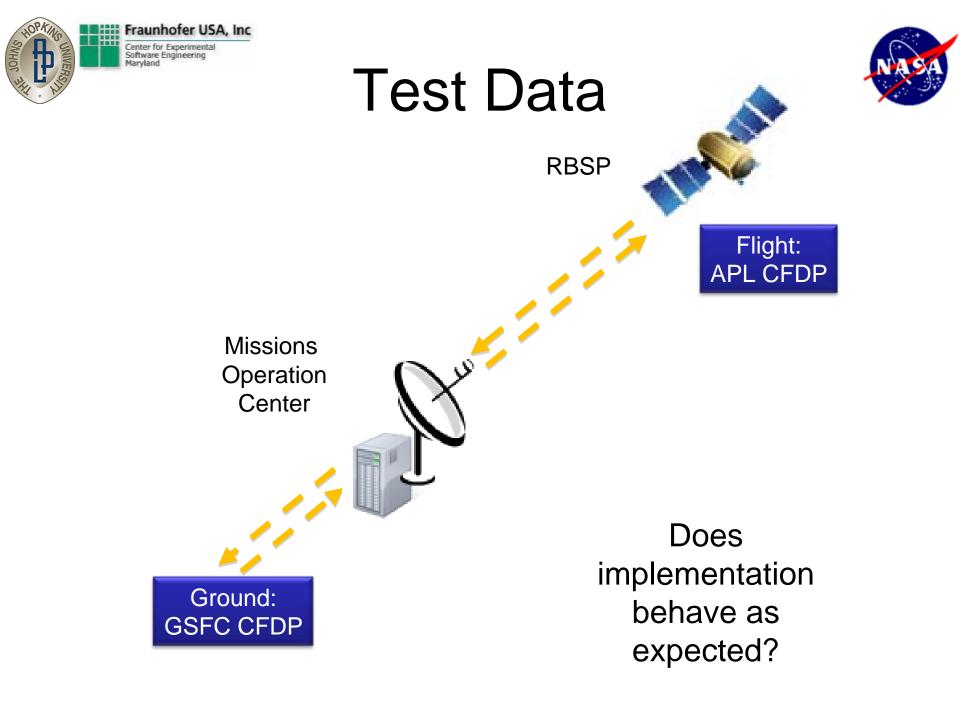
Technical Approach

- Develop DynSAVE to detect communications problems among systems by analyzing their communication behavior:
 - Build on Fraunhofer's proven Software Architecture Visualization and Evaluation (SAVE) tool and process for static analysis of source code
 - Enhance for dynamic analysis of run-time communication behavior
 => Dynamic SAVE (DynSAVE)
- The DynSAVE approach consists of three steps:
 - 1. Monitor and record low level network traffic
 - 2. Convert low level traffic into meaningful application messages
 - 3. Visualize messages such that issues can be detected


SAVE Tool and Process

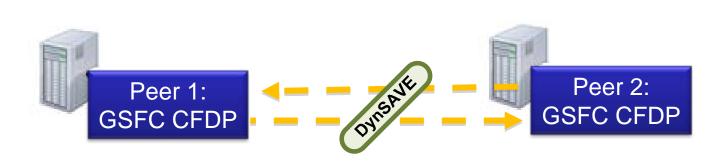
- SAVE supports static analysis:
 - software architect creates models of the planned relationships among abstract software components
 - SAVE tool parses source code and lifts the actual relationships among concrete software components
 - SAVE tool annotates the architect's models to show deviations from the plan
 - software architect uses the SAVE tool to explore the deviations, drilling down through the annotations to the source code
 - source code and/or model are updated to eliminate the deviations
- JHU/APL and FC-MD have infused SAVE into the ground software development process:
 - used to analyze changes to legacy Common Ground software
 - incorporated into new software development for next generation of JHU/APL ground software systems beginning with Radiation Belt Storm Probes (RBSP)

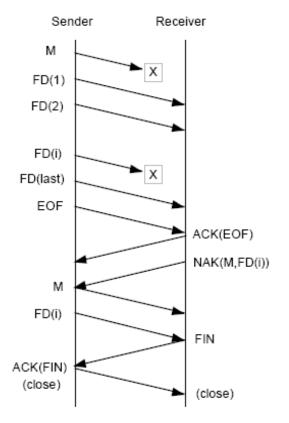




DynSAVE Tool and Process

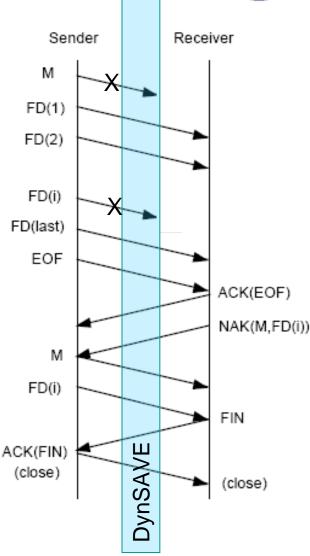
- DynSAVE extends SAVE to support dynamic analysis:
 - software architect creates models of the planned message sequences among abstract systems
 - actual messages are captured from network traces or low level communications archives
 - DynSAVE tool parses captured messages and lifts the actual message sequences among concrete systems
 - DynSAVE tool annotates the architect's models to show deviations from the plan
 - software architect uses the DynSAVE tool to explore the deviations, drilling down through the annotations to the messages
 - systems and/or model are updated to eliminate the deviations
- JHU/APL and FC-MD have applied DynSAVE to mission data systems:
 - used to analyze legacy Common Ground software client/server communications (Aerospace 2008)
 - currently analyzing CCSDS File Delivery Protocol (CFDP) communications behaviors in RBSP and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER)




Does implementation behave as expected?

CFDP – A Mission Data System Protocol

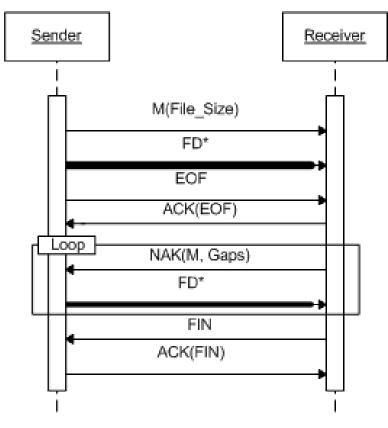
- CFDP software provides reliable downloads of recorded on-board data
 - The implementation is distributed across flight and ground systems
 - The protocol runs on top of unreliable CCSDS command and telemetry layer
- At APL, CFDP is mostly automated, but...
 - Operators turn off CFDP uplink during critical command load sequences
 - Operators freeze and thaw timers so that pending transactions don't time out between contacts
- Improper CFDP operation can lead to unnecessary retransmissions, wasting precious downlink bandwidth



DynSAVE monitoring of CFDP

- DynSAVE monitors macro-level behaviors of the CFDP protocol without affecting flight or ground software
- DynSAVE could detect behaviors that are indicative of improper CFDP operation, for example:
 - timers were not frozen and uplink was disabled on the ground for an extended period, causing multiple retransmissions when the uplink was finally enabled again
- DynSAVE could detect behaviors that are indicative of issues in CFDP implementation, for example:
 - sender continues to send file data after the transaction has been cancelled
- These types of behaviors can go undetected (file transfers still work) but are important to detect (they can result in data loss!)

04-15-2008



12

Planned CFDP Sequence

Rules:

Fraunhofer USA, Inc

1.Check that received FD are not NAKed *

2.Check for duplicate FDs *

3.Check that we have all FDs upon FIN *

4. Check that identical NAKs are not sent back-to-back unless timer went off

Actual CFDP Sequence

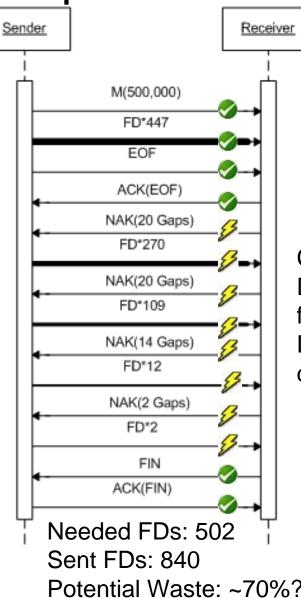
- Metadata: 0-499999
- FileData: 0-996
- FileData: 997-1993
- FileData: 1994-2990
- FileData: 2991-3987
- FileData: 3988-4984
- FileData: 4985-5981
- FileData: 5982-6978
- FileData: 6979-7975
- FileData: 7976-8972
- FileData: 8973-9969
- FileData: 9970-10966
- FileData: 10967-11963
- FileData: 11964-12960
- FileData: 12961-13957
- FileData: 13958-14954
- FileData: 14955-15951
- FileData: 15952-16948

Fil	eData: 4	82548-483544					
Fraunhofer USA, Inc Center for Experimental Software Engineering Maryland	eData: 4	83545-484541		6			
Center for Experimental FIL Software Engineering Maryland Fil	eData: 4	84542-485538		NA			
Fil Fil	eData: 4	85539-486535		×			
Fil	eData: 4	86536-487532					
Fil	eData: 4	87533-488529					
Fil	eData: 4	88530-489526					
Fil	eData: 4	89527-490523					
Fil	eData: 4	91521-492517					
Fil	eData: 4	92518-493514					
Fil	eData: 4	93515-494511					
Fil	eData: 4	94512-495508					
Fil	eData: 4	95509-496505					
Fil	eData: 4	98500-499496	-				
Fil	eData: 4	99497-499999					
EOF	EOF: Condition Code=No Error						
ACK	(EOF): C	ondition Cod	e=No Error				
NAK	: 19940-	20937;27916-	28913;36889	-37886;56829-			
				1-85742;101694-			
		64-112661;11					
		07-131604;13					
		38-154535;15					
	484;19/4	06-198403;20	3388-204385	;220337-498500			

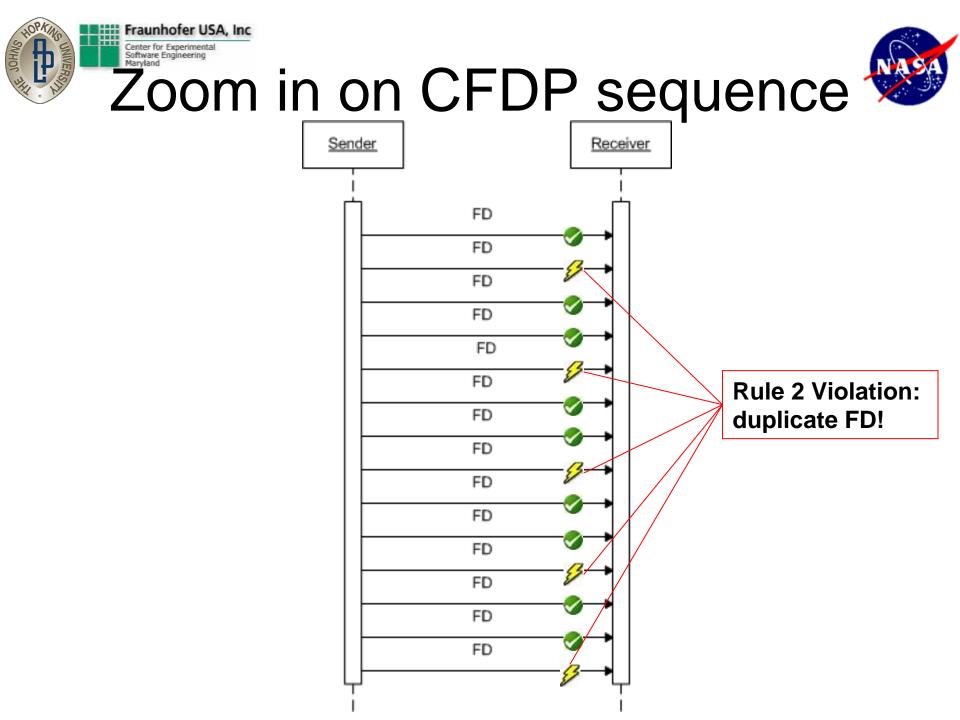
HOPA

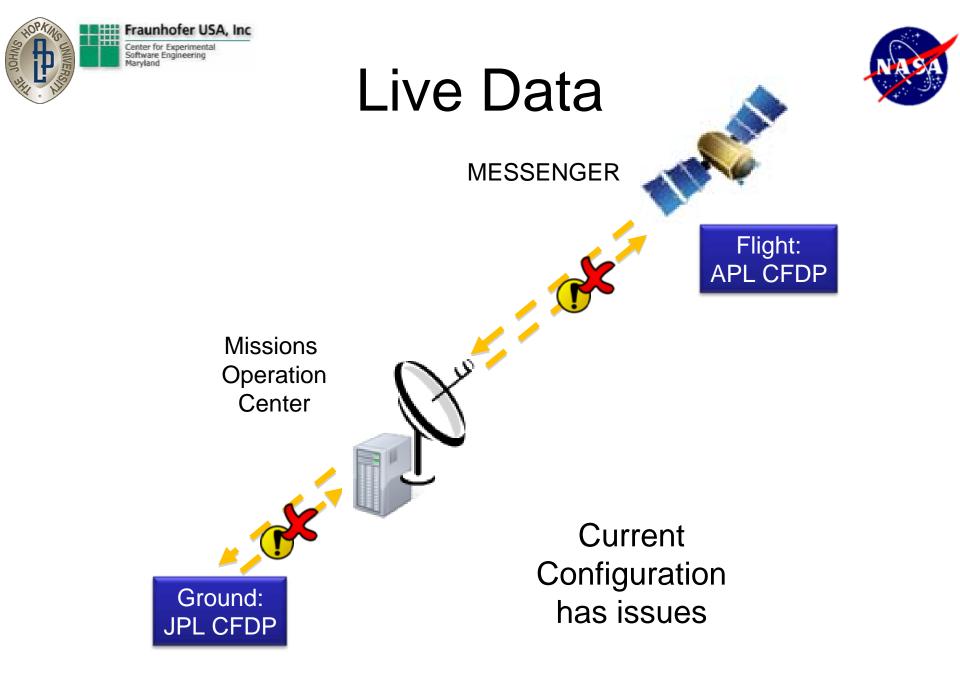
SUHOR 3

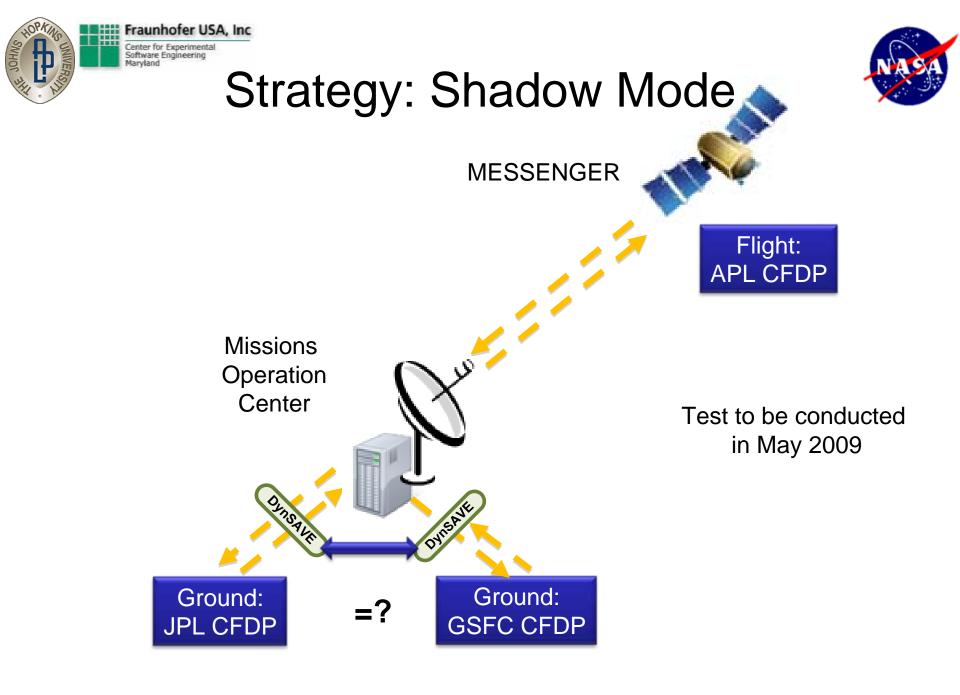
Mapping CFDP data


- The sniffed CFDP data is low level (packets)
- Concepts are often encoded
 - Few message names in clear text
 - Many are not: e.g. Cancel
 - If third bit in EOF control message then Cancel
- Parameters are always encoded
 - E.g. bit 4 16: Time stamp
- Communications are often interleaved
 E.g. Files sent and received concurrently
- Our parser maps low level data to high level messages and values, identifies & separates interleaved communications

Actual CFDP Sequence captured in test lab


Sample Rule: Never re-request a package that already was received




Conclusion:

Deviates from specification for certain configurations! Decision: Use, but with different configuration

Potential Waste: ~70%? – Further analysis needed.

Initial use of Dyn SAVE

System		Sub-System		System	
Architecture		Development		Integration and Test	
Specify a Commu	SAVE to and Test inication to ICD	Develop	SAVE to and Test on ICD	test	nSAVE to based ICD

Summary

- Analyze, Visualize, and Evaluate
 - structure and behavior using static and dynamic info of
 - individual systems as well as systems of systems
- Drive R&D by needs from JHU/APL NASA missions
 - Use open testbed for experimentation
 - Evaluate together with APL in their context
- Transfer technology when mature
- Future:
 - Add time information and constraints (current activity)
 - Add planned sequence diagrams to ICD
 - Use for analysis of Delay Tolerant Network Management