

Apollo Lunar Module Propulsion Systems Overview

Lesson Objectives

- Define the systems for LM propulsion and control
- List the times during the mission at which each system was used
- Describe the basic components and operation of the
 - Descent Propulsion system (DPS)
 - Ascent Propulsion System (APS)
 - Lunar Module Reaction Control System (LM RCS)

LM Propulsion System Usage Throughout the Mission

LM RCS initially fired for LM separation from the CSM

 Descent engine fired to inject the LM into a transfer orbit to the lunar surface

 LM RCS was used to maintain control in all axes during descent

> Descent engine used in the final descent trajectory as a retrorocket to control descent rate and hover

 LM RCS used for control and small translational maneuvers

If the SPS failed during translunar or pre-landing lunar orbit phases, the DPS could provide a contingency abort

LM Propulsion System Usage Throughout the Mission

Propulsion Systems Components

- All pressure fed systems
 - Helium for pressurization
- Hypergolic propellants
 - Fuel: Aerozine -50
 - Oxidizer: Nitrogen Tetroxide

LM Descent Propulsion System Overview

- All components located in descent stage of the LM
- Hypergolic propellants
 - 2 fuel and 2 oxidizer tanks
- Two methods for propellant pressurization

DPS Propellant Pressurization and Flow

DPS Propellant Pressurization and Flow

Helium Flow

- Pressure Regulators
- Check valves
- Burst Disks
- Relief Valves

DPS Propellant Pressurization and Flow

DPS Engine

- Max Thrust 46.7 kN (10,500 lbs)
- Throttles
 - 10:1 range
 - 1050 to 10,500 lbs thrust
- Gimbals
 - ±6 degrees in any direction
- Main components
 - Propellant control valves
 - Injector assembly
 - Combustion chamber

LM Ascent Propulsion System Overview

- •All components located in ascent stage of the LM
- Hypergolic propellants
 - •1 fuel and 1 oxidizer tank
- Helium for propellant pressurization

APS Engine Propellant Pressurization and Flow

APS Engine Propellant Pressurization and Flow

APS Engine Propellant Pressurization and Flow

APS Engine

- Nominal Thrust was 15.5 kN (3500 lbf)
- No Throttles
- No Gimbals
- Main components
 - Propellant control valves
 - Injector assembly
 - Combustion chamber

DPS and APS Operation

- Commands generated via the Primary Navigation and Guidance System (PNGS) or the Abort Guidance System (AGS)
 - Engine On/Off commands
 - Throttle commands for the DPS
- Backup manual control option
 - Throttling via the Thrust/Translation Controller Assemblies (TTCA's)
- Propellant settling via RCS prior to use of either APS or DPS

LM RCS Overview

- Two Redundant Systems, A and B
- Operated simultaneously, but either system could provide control
- All components contained within the ascent portion of the LM
- Each system supplied propellant for eight jets

LM RCS Overview

Each System Contained

- One Helium tank and associated helium components
- One oxidizer and one fuel tank
- Propellant distribution lines and components
- Each system supplied propellant for eight jets
- Interconnect and crossfeed capability

LM RCS Propellant Pressurization and Distribution

LM RCS Propellant Pressurization and Distribution

LM RCS Propellant Pressurization and Distribution Heliun IV Fuel Ox A XF System A System B Х Ox Fuel ŧ |||. Helium 11

LM RCS Thrusters

- 16 thrust chamber assemblies (TCA's)
- Each produced about 445 N (100 lbf) of thrust
- Pulse mode or steady state operation

LM RCS Operational Use

- Provided rotational and translational maneuvers
- Modes of control
 - Automatic
 - Semi-automatic
 - Manual
- Commands generated from
 - Primary Guidance and Navigation Subsystem (PGNS)
 - Abort guidance section (AGS) of the Stabilization and Control Subsystem (SCS)

Lunar Module Propulsion Summary

- Define the systems for LM Propulsion and control
- List the times during the mission at which each system was used
- Describe the basic components and operation of the
 - DPS
 - APS
 - LM RCS

Lunar Module Reaction Control System (LM RCS)

Ascent Propulsion System

(APS)

Descent Propulsion System (DPS)