

Earth Parking Orbit and Translunar Injection

Apollo Mission Profile

□ Earth Parking Orbit (EPO)

- General Characteristics
- General Activities

> TLI Go / No-Go Decision

Overview

EARTH PARKING ORBIT

TRANSLUNAR

□ Translunar Injection (TLI)

- General Characteristics
- Free-Return vs. Hybrid Non-Free-Return
- Crew Monitoring
- > Abort Modes

Objectives

- Describe the general characteristics of the EPO & TLI
- List the general activities that occurred during EPO
- State what went into verifying a working S-IVB IU and a CSM GNC
- Differentiate between a Free-Return Trajectory vs. a Hybrid Non-Free-Return Trajectory
- Identify the crew monitoring task during the TLI Burn
- Identify the abort modes in the event of severe systems problems during the TLI timeframe

Earth Parking Orbit (EPO)

EPO: General Characteristics

Velocity:

25,500 ft/sec (7772 m/s)

100 nm (185 km)

EPO: General Characteristics

Velocity:

25,500 ft/sec (7772 m/s)

100 nm (185 km)

For Apollo 16 & 17:
90 nm (166 km)
Gained 700 lbs (317 kg) payload capacity

EPO: General Characteristics

Preparing for Translunar Injection (TLI)

 $\Box 1^{st} TLI Opportunity$ $\Rightarrow After 1\frac{1}{2} revolutions$

□ 2nd TLI Opportunity ⇒ After 3 revolutions

EPO: General Activities

Get the state vector from Manned Space Flight Network (MSFN) uplinked to the Command Module Computer

Perform checks of the following systems:

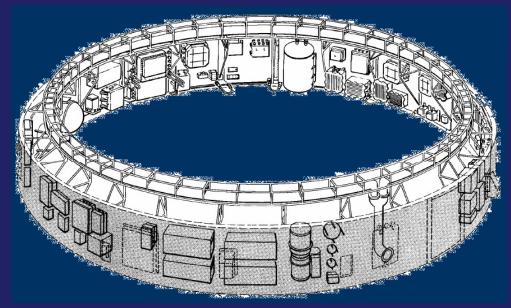
- Biomedical & safety equipment
- Environmental control system
- Comm & instrumentation system
- SM propulsion system (SPS)
- SM reaction control system (RCS)

- Electrical power system (EPS)
- Stabilization and control system (SCS)
- Crew equipment system
- Command Module Computer optics
- Entry monitoring system (EMS)

Align the CSM inertial measurement unit (IMU), when able

Two important ground rules:

□ A properly working S-IVB instrument unit (IU)


□ A properly operating CSM GNC system

Two important ground rules:

□ A properly working S-IVB instrument unit (IU)

□ A properly operating CSM GNC system

□ A properly working S-IVB instrument unit (IU)

 Mafasihate Sipa cetFriedesseniterruterified Tooth the guidanceoandatecheservestrof (the Selva practom failure)
 Crew could manually shut down burn (i.e. accelerometer failure)

Twoppopertant onking Srukes instrument unit (IU)

□ A properly working S-IVB instrument unit (IU)

□ A properly operating CSM GNC system

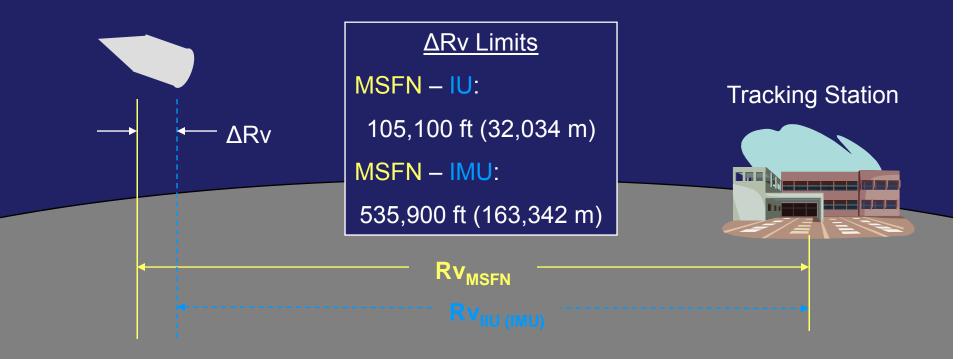
Two important ground rules:

□ A properly working S-IVB instrument unit (IU)

□ A properly operating CSM GNC system

□ A properly operating CSM GNC system

Mission Control Center (MCC) compared the ground state vector from the Manned Space Flight Network (MSFN) to the following conditions:


- 1. Orbital decision parameters in EPO
- 2. Launch phase velocity component differences
- 3. Gimbal angle differences in IMU & IU

A properly operating CSM GNC system

□ ΔR_V – Downrange position difference □ $1 \cdot \Delta Q^{r} b i t d e c i s i c a standard e c i s i c a standard$

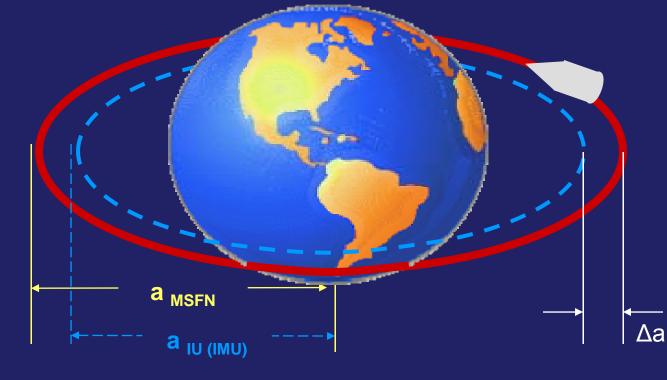
□ A properly operating CSM GNC system

- 1. Orbital decision parameters in EPO
 - $\Box \Delta R_v$ Downrange position difference

□ A properly operating CSM GNC system

1. Orbital decision parameters in EPO

a _{MSFN}


 \Box Δa – Semi-major axis difference

Earth Parking Orbit

□ A properly operating CSM GNC system

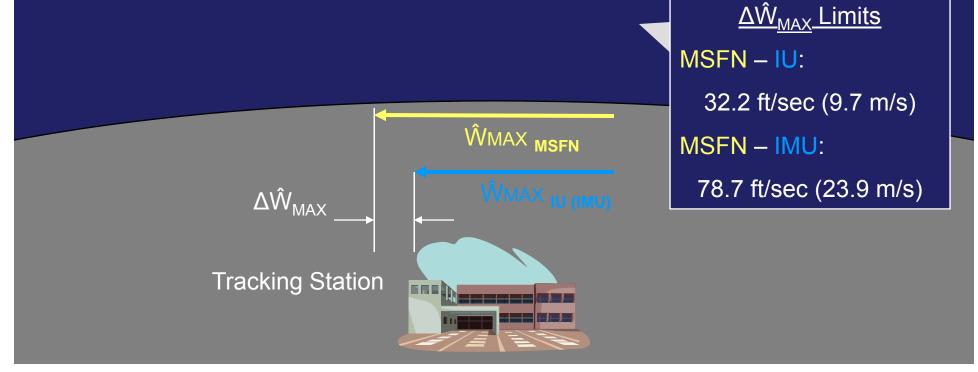
1. Orbital decision parameters in EPO

 \Box Δa – Semi-major axis difference

 $\Delta a \text{ Limits}$ MSFN – IU:

19900 ft (6065 m)

MSFN – IMU:


70655 ft (21535 m)

Earth Parking Orbit

□ A properly operating CSM GNC system

1. Orbital decision parameters in EPO

 $\Box \Delta \hat{W}_{MAX}$ – Max crossrange velocity difference

Earth Parking Orbit

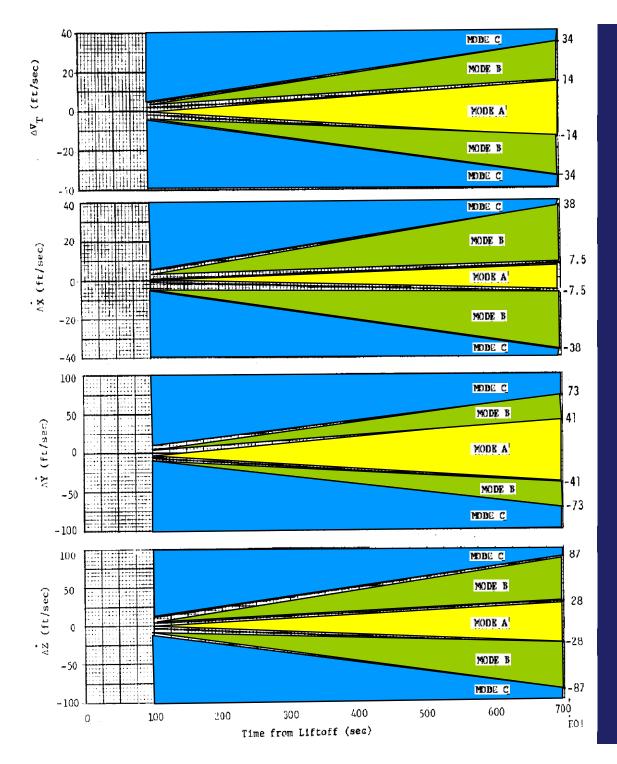
- □ A properly operating CSM GNC system
- 1. Orbital decision parameters in EPO

 $\Delta R_V - Downrange position difference$ $\Delta a - Semi-major axis difference$ $\Delta \hat{W}_{MAX} - Max$ crossrange velocity difference

□ A properly operating CSM GNC system

Mission Control Center (MCC) compared the ground state vector from the Manned Space Flight Network (MSFN) to the following conditions:

- 1. Orbital decision parameters in EPO
- 2. Launch phase velocity component differences
- 3. Gimbal angle differences in IMU & IU


□ A properly operating CSM GNC system

2. Launch phase velocity component differences

□ A properly operating CSM GNC system

2. Launch phase velocity component differences

The launch phase differences between the IU and IMU velocity vector were plotted against the four strip charts

 $□ \frac{3 \text{ Decision Modes}}{\text{Mode A} - }$ TLI was GO, unless ΔR_V bad

 Mode B –
 TLI was NO GO until orbital decision parameters were examined

Mode C – TLI was NO GO

□ A properly operating CSM GNC system

Mission Control Center (MCC) compared the ground state vector from the Manned Space Flight Network (MSFN) to the following conditions:

- 1. Orbital decision parameters in EPO
- 2. Launch phase velocity component differences
- 3. Gimbal angle differences in IMU & IU

□ A properly operating CSM GNC system

3. Gimbal angle differences in IMU & IU

□ A properly operating CSM GNC system

3. Gimbal angle differences in IMU & IU

- The total actual IMU & IU gimbal angle differences over time were used to detect gyro drifts
- A drift greater than ±0.6 deg/hr required an IMU realignment during EPO
- The required torquing angles were used to determine how much each platform was drifting

□ A properly operating CSM GNC system

3. Gimbal angle differences in IMU & IU

□ If the IMU drifted by more than ± 1.5 deg/hr: ⇒ TLI was NO GO

□ If the IU drifted by more than ±0.6 deg/hr: LV Guide Light ON \Rightarrow TLI was GO LV Guide Light OFF \Rightarrow TLI was NO GO

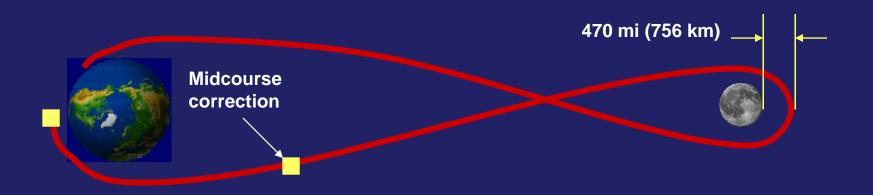
□ A properly operating CSM GNC system

Mission Control Center (MCC) compared the ground state vector from the Manned Space Flight Network (MSFN) to the following conditions:

- 1. Orbital decision parameters in EPO
- 2. Launch phase velocity component differences
- 3. Gimbal angle differences in IMU & IU

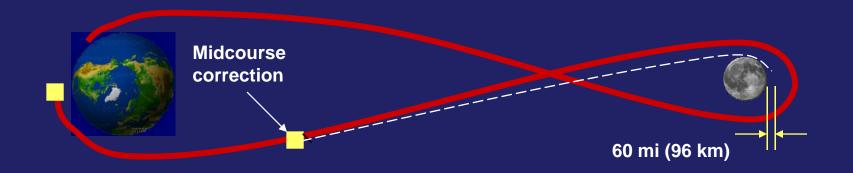
Twoppopertandpopertating roles GNC system

□ A properly working S-IVB instrument unit (IU)


GO FOR TLI !

Translunar Injection (TLI)

TLI: General Characteristics


When: Length of burn: Velocity change: Trajectory: Around Liftoff + 3 hrs Approx 5 min 35,500 ft/sec (10,820 m/s) Free-return Hybrid non-free-return

TLI: Free-Return Trajectory

- □ Employed by Apollo 8, 10, and 11
- If SPS failed to establish a lunar orbit, already on a trajectory that coasted around the Moon, and then continued on back to Earth
- Spacecraft limited to only within 5 deg of latitude of the Moon's equator

TLI: Hybrid Non-Free-Return

Employed by subsequent Apollo missions

- Also looped the spacecraft around the Moon, but did not send it directly back towards Earth
- Re-establishing the Earthbound trajectory required an additional burn (the so-called "flyby maneuver")

TLI: Crew Monitoring

 During TLI Burn, crew monitored the following:
 Attitude – Remain within 45 deg of norm
 Attitude rates – Pitch and yaw rates not to exceed 10 deg/sec Roll rates not to exceed 20 deg/sec
 Velocity –

Ensure S-IVB cutoff on time

Crew could either take manual control or stop burn

TLI: Abort Modes

For severe systems problems during TLI timeframe:

TLI + 90 min

- □ Initiated by the crew at TLI + 25 min
- □ CSM would immediately separate from the S-IVB
- □ SPS ignited at TLI + 90 min (fixed inertial attitude retro burn)
- □ Returned crew to a contingency landing area

Liftoff + 8 hrs

- Initiated by the crew following normal CSM / S-IVB separation (~ 4 hrs into the mission)
- Returned crew to a contingency landing area

NOTE: TLI + 10 min abort also designed; deleted after Apollo 10

Summary

- Described the general characteristics of the EPO & TLI
- Listed the general activities that occurred during EPO
- Stated what went into verifying a working S-IVB IU and a CSM GNC
- Differentiated between a Free-Return Trajectory vs. a Hybrid Non-Free-Return Trajectory
- Identified the crew monitoring task during the TLI Burn
- Identified the abort modes in the event of severe systems problems during the TLI timeframe

References

Apollo 11 Press Kit (Release No. 69-83K) Apollo 17 Press Kit (Release No. 72-220K)

Apollo 11 Flight Plan (Final), Jul. 1, 1969 Apollo 15 Flight Plan (Final), Jun. 21, 1971 Apollo 17 Flight Plan (Final), Oct. 28, 1972

 Apollo Mission Techniques: Earth Parking Orbit and Translunar Injection
 Mission H-2 and Subsequent (MSC-01518), Feb. 27, 1970
 Mission J-2 and Mission J-3 Update (MSC-05847), Jan. 24, 1972

Apollo Mission Techniques: Contingency Procedures Mission H-2 and Subsequent (MSC-01524), Feb. 27, 1970 "Apollo Spacecraft Familiarization" (SID 62-435/SM2A-02)

"Apollo Experience Report – Systems & Flight Procedures Development" (NASA TN D-7436)