

CSM RCS Design Considerations & Failure Modes

Lesson Objectives

- □ Define major Command and Service Module (CSM) design considerations
- □ List Command Module (CM) RCS failures and lessons learned
- □ List Service Module (SM) RCS failures and lessons learned

For more information about CSM RCS system please see

http://modspops.jsc.nasa.gov/mod/DA4/CxTraining/Apollo/Apollo%20Wiki/CSM%20Reaction%20Control%20System%20(RCS).aspx

CSM RCS Overview

CSM Design Considerations

CM Design Considerations

SM Design Considerations

Lesson Objectives

- Define major Command and Service Module (CSM) design considerations
- □ List Command Module (CM) RCS failures and lessons learned
- □ List Service Module (SM) RCS failures and lessons learned

CM Failures and Lessons Learned

- □ Apollo 7 damaged bellows
- Apollo 10 ruptured oxidizer burst diaphragm
- □ Apollo 12 damaged bellows
- □ Apollo 13 fuel valve coil miswiring

CM Propellant Isolation Valves

CM Propellant Isolation Valve Lessons Learned

- □ Proper procedures
- Caution notes and leak checks
- □ Resistance checks

Isolation Valve

CM Helium Manifold

□ Anomaly: Helium manifold pressure drop discovered before launch of Apollo 10; no measurable leak was found

 Conclusion: Fuel leg helium manifold was indeed leaking but at an acceptable rate for the mission

□ Solution: Pressurized system to 100psi 30 days prior to launch to insure detection of any leak

CM Automatic Coil

Terminal board schematic for minusyaw engine

- Anomaly: Faulty terminal board sending erratic firing signals through automatic coils
- Conclusion: Two loose pins causing intermittent continuity to coils
 - Found in all pre-November 1967 terminal boards
- Solution: No corrections made since terminal boards did not affect circuits that jeopardized crew

CM Propellant Dump

- Apollo 15 Deflated parachute due to CM RCS depletion firing
 - Correction:

 Procedures changed
 to allow propellant to
 remain onboard at
 landing
- □ Apollo 16 Small burn holes caused by yaw engine firings
 - Tests determined maximum pressure and planned for onthe-water operation of the system if required

Lesson Objectives

- Define major Command and Service Module (CSM) design considerations
- □ List Command Module (CM) RCS failures and lessons learned
- □ List Service Module (SM) RCS failures and lessons learned

SM RCS Failures and Lessons Learned

SM Isolation Valves

- □ Apollo 9 Valves shocked closed
- Apollo 11 Valves closed during CSM separation from S-IVB
- □ Apollo 13 Valves closed due to oxygen tank anomaly
- □ Apollo 15 Degaussed magnets due to reversed polarity

SM Isolation Valve Lessons Learned

- □ Apollo Operations Handbook changed to insure that the crew would check isolation valves after separation and reopen any that closed
- □ A test was performed on all post-Apollo 15
 flights to verify acceptable valve latching forces

SM Manifold

- □ Apollo 12: Helium manifold pressure transducer malfunction
- □ Apollo 14: Oxidizer manifold pressure out of nominal limits

Summary

- ✓ Define major Command and Service Module (CSM) design considerations
- ✓ List Command Module (CM) RCS failures and lessons learned
- ✓ List Service Module (SM) RCS failures and lessons learned

For more information about CSM RCS system please see

http://modspops.jsc.nasa.gov/mod/DA4/CxTraining/Apollo/Apollo%20Wiki/CSM%20Reaction%20Control%20System%20(RCS).aspx

References

- □ Apollo Mission Reports 6-17
- □ Apollo Experience Report Command and Service Module Reaction Control Systems

Use References link below for more information