OTF Proof of Concept:

CCSDS Mission Operations
Alert Services

Walt Reynolds
February 20, 2009

CCSDS MO Proof of Concept

Goals:

— Demonstrate use of CCSDS MO (Mission Operations) standards to
implement mission advisory services (alerts).

— Utilize CCSDS MO MAL (Message Abstraction Layer) messaging.

— Implement CCSDS AMS (Asynchronous Message Service) concepts for
transport and publish/subscribe service.

— Utilize the CCSDS MO Directory Service concept to register application
agents.

— Investigate CCSDS MO MAL data element definitions and usage

* Network Zones, Sessions, and Domains

Project Benefits

 Benefits

— Use of CCSDS standards encourages vendor investment and extends
accompanying product life cycles.

— Provides a growth path for new MCC applications.

« MO Directory Services for flexible and dynamic application
registration.

— Extend the scope and flexibility of existing console flight data stream
interfaces.

« AMS transport contains its own metadata management.

« Messaging reaches intra and inter control center applications.

Project Description

* Project Scope

Does not address a security architecture.

* No secure encodings or encryption systems.

» No authentication (in work) or authorization (future work).
Does not implement or test all of Common or Core Services.

Performance is not a current requirement but may not preclude an
efficient future implementation (some languages allow C/C++
extensions for efficient implementation: Python, Java).

Does not utilize OTF test flight data streams and interfaces (in progress
or planned).

Proof of Concept Components

/ Ground Zone A

SOAP/HTTP

CCSDS MO ‘
Directory Services ________________

SOAP/HTTP

-

AMS

=

Implementation

MO Alerts Listener

PyMAL SOAP/XML

MO Alert Generator

PyMAL SOAP/XML

Web Service

MO Directory
Services

Operational Message Flow

Directory JAMS Alerts
Services Broker Generator
| DS-Publish: | AMS-Register |
-

Service ID (alerts),
Zone, Session, Domain

data URI = ams://subject
-

AMS-Publish to:
ams://subject

A A A

Operational Message Flow

Alerts Directory JAMS Alerts
Listener Services Broker Generator
| DS-Lookup: | | |

Alert Service ID, Zone,
Session, Domain

L
DS-Lookup-Response:
data URI = ams://subject AMS-Subscribe for:
¢ ams://subject
>
AMS-Publish to:
AMS-Message (Notify): ams://subject
alert occurrence alert occurrence
- -
- ¢

Proof of Concept — Conclusions

« Conclusions:

— Use of multiple vendor frameworks within a component creates thread lock-ups
and fragility — conflicts over the control of the main thread.

» Avoid closed vendor messaging frameworks.

— The MAL layer does isolate the data elements from the messaging framework
but application work dispatch is heavily dominated by the framework chosen.

— API Language is a major factor in implementation.
+ Message APIs with timeouts seem unavoidable in some environments
(GUI).

« Language environment needs to support callbacks (or threads) from the
messaging framework to deal with pub/sub management messages and
status.

» Statusing of application communications demand a local broker agent per
physical system or else the use of the AMS-style registrar heartbeat.

