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A 0.5-nm-thick layer of Fe was de-
posited, then patterned into catalyst is-
lands for initiating growth of carbon nan-
otubes by means of photolithography and
liftoff. To grow the carbon nanotubes, the
workpiece as processed thus far was then
placed in a chemical-vapor-deposition fur-
nace, wherein it was exposed to an atmos-
phere of flowing CH4 and H2 at a temper-
ature of 850 °C for 10 minutes. Next, a
layer of Au/Ti was deposited and pat-
terned in a lift-off process to form the
source and drain electrodes in contact
with the ends of the nanotubes.
Tests have confirmed the expected ad-

vantages of these devices over the older

electrostatically actuated microelectro-
mechanical switches, which are character-
ized by response times of ≈1 µs and switch-
ing potentials between 60 and 70 V. The
present devices are not only smaller but
are characterized by response times of a
few nanoseconds and switching potentials
of a few volts. Hence, the present devices
are expected to be better suited for appli-
cations in which there are requirements
for highly miniaturized, high-speed elec-
tronic switches that can be operated from
low-voltage (e.g., battery) power sources.
This work was done by Anupama Kaul,

Eric Wong, and Larry Epp of Caltech for
NASA’s Jet Propulsion Laboratory.
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Fast Offset Laser Phase-Locking System
Phases can be locked within a microcycle; known phase noise can be added.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Figure 1 shows a simplified block dia-
gram of an improved optoelectronic sys-
tem for locking the phase of one laser to
that of another laser with an adjustable
offset frequency specified by the user. In
comparison with prior systems, this sys-
tem exhibits higher performance (in-

cluding higher stability) and is much
easier to use. The system is based on a
field-programmable gate array (FPGA)
and operates almost entirely digitally;
hence, it is easily adaptable to many dif-
ferent systems. The system achieves
phase stability of less than a microcycle.

It was developed to satisfy the phase-sta-
bility requirement for a planned space-
borne gravitational-wave-detecting het-
erodyne laser interferometer (LISA).
The system has potential terrestrial util-
ity in communications, lidar, and other
applications.

All-solid-state electrochemical power
cells have been fabricated and tested in
a continuing effort to develop batteries
for instruments for use in environments
as hot as 500 °C. Batteries of this type are
needed for exploration of Venus, and
could be used on Earth for such applica-
tions as measuring physical and chemi-
cal conditions in geothermal and oil
wells, processing furnaces, and combus-
tion engines.
In the state-of-the-art predecessors of

the present solid-state power cells, fully
packaged molten eutectic salts are used
as electrolytes. The molten-salt-based
cells can be susceptible to significant
amounts of self-discharge and corrosion
when used for extended times at ele-
vated temperatures. In contrast, all-solid-
state cells such as the present ones are
expected to be capable of operating for
many days at temperatures up to 500 °C,
without significant self-discharge.

The solid-state cell described here in-
cludes a cathode made of FeS2, an elec-
trolyte consisting of a crystalline solid solu-
tion of equimolar amounts of Li3PO4 and
Li4SiO4, and an anode made of an alloy of
Li and Si (see figure). The starting mate-
rial for making the solid electrolyte is a sto-
ichiometric mixture of Li3PO4, SiO2, and
Li3CO2. This mixture is ball-milled, then
calcined for two hours at a temperature of
1,100 °C, then placed in a die atop the
cathode material. Next, the layers in the
die are squeezed together at a pressure be-
tween 60 and 120 MPa for one hour at a
temperature of 600 °C to form a unitary
structure comprising the solid electrolyte
and cathode bonded together. Finally, the
lithium-alloy anode is pressure-bonded to
the solid electrolyte layer, using an inter-
mediate layer of pure lithium.
In one test of a cell of this type, a dis-

charge rate of about 1 mA per gram of
cathode material was sustained for 72

hours at a temperature of about 460 °C.
This is about three times the discharge
rate required to support some of the
longer duration Venus-exploration mis-
sion scenarios.
This work was done by Jay Whitacre and

William West of Caltech for NASA’s Jet Propul-
sion Laboratory. Further information is con-
tained in a TSP (see page 1). NPO-44396

Solid-State High-Temperature Power Cells
These cells can be used in batteries for high-temperature applications.
NASA’s Jet Propulsion Laboratory, Pasadena, California

This All-Solid-State Cell is capable of generating
electric power at a temperature up to 500 °C.
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