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Outline

• Background
– Apollo program
– Lunar dust info

• Activation and monitoring
• Dissolution
• Cellular toxicology
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Kennedy Moon Speech

• Joint Session of 
Congress: May 25, 1961

• “First, I believe that this 
nation should commit 
itself to achieving the 
goal, before this decade 
is out, of landing a man 
on the moon and 
returning him safely to the 
earth.”

• Only 20 days after first 
U.S. manned space flight!
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Before the Moon

• Apollo 7 – Command module tests in low 
Earth orbit

• Apollo 8 – Command module to lunar orbit
• Apollo 9 – Lunar module tests in low Earth 

orbit
• Apollo 10 – Lunar module test in lunar 

orbit (down to ~ 9 miles above surface)
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Apollo 17 Launch
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Apollo Landings
Mission 
Commander

Lunar 
Module Pilot

Command 
Module Pilot

Launch Landing 
Site

Apollo 11 Neil Armstrong Buzz Aldrin Michael Collins 07/16/69 Sea of 
Tranquility

Apollo 12 Pete Conrad Alan Bean Dick Gordon 11/14/69 Ocean of 
Storms

Apollo 13 Jim Lovell Fred Haise Jack Swigert 04/11/70 Fra Mauro*

Apollo 14 Al Shepard
(first lunar golfer)

Ed Mitchell Stu Roosa 01/31/71 Fra Mauro

Apollo 15 Dave Scott Jim Irwin Al Worden 07/26/71 Hadley-
Apennine

Apollo 16 John Young Charlie Duke Tom Mattingly 04/16/72 Descartes 
Highlands

Apollo 17 Gene Cernan Jack Schmitt Ron Evans 12/07/72 Taurus-
Littrow

*: Planned
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Vision for Space Exploration

“With the experience and knowledge gained 
on the moon, we will then be ready to take 
the next steps of space exploration: 
human missions to Mars and to worlds 
beyond.” 

- President George W. Bush
(January 14, 2004)
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Possible Outpost Site
Why the South Pole?

• Safe
• Thermally moderate

• Cost Effective
• High % of sunlight
• Allows the use of solar 
power

• Resources
• Enhanced hydrogen 
(possibly H2O)
• Potentially other volatiles
• Oxygen

• Flexibility
• Allows incremental 
buildup using solar power
• Enhanced surface 
daylight
• More opportunities to 
launch

• Exciting
• Not as well known as 
other areas
• Offer unique, cold, dark 
craters
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Words of Wisdom

“I think dust is probably 
one of our greatest 
inhibitors to a nominal 
operation on the Moon.  I 
think we can overcome 
other physiological or 
physical or mechanical 
problems except dust.”

Gene Cernan
Apollo 17 Technical 
Debrief



12

Lunar EVA Suits

Jack Schmitt
(Apollo 17)
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Dust Exposure Possibilities

Electrostatic 
Transport

Exhaust
Plumes

Rooster
Tails

Contact with
Surface

Entry to 
Airlock

J. Feighery
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Problems Caused by Dust
• Obscured vision

– Apollo 15: vision completely obscured below 60 ft when landing
• Clogged equipment

– Apollo 12: wrist and suit hose locks clogged with dust
• Coated surfaces

– Apollo 11: T.V. cable caused tripping after dust covering
• Inhalation

– Apollo 15: gunpowder smell
– Apollo 17: “hay fever” symptoms

• Degraded radiators
– Apollo 16: degraded instrument performance from overheating

• Fooled instruments
• Caused seal failure

– Apollo 14: measurable leaking of suits
• Abraded surfaces

– Apollo 16: gauge dials unreadable from scratching
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What is lunar dust?

• Lunar soil is defined as the loose fragmental 
material with a grain size smaller than 1 cm on 
and near the surface of the moon.  It is a subset 
of the lunar regolith which includes all size 
fragments including boulders.

• Lunar dust is the finest size fraction of lunar soil.  
A working definition of lunar dust is that it is all 
grains smaller than 20 µm.
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Lunar Dust
• Contains SiO2, other oxides, 

and trace metals
• Magnetic
• Particles are oddly shaped, 

with jagged edges, and do 
not pack together well

Dave McKay, JSC

100 µm
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Bulk Apollo 11 Soil

20 µm

Dave McKay, JSC
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Orange Soil

• From Taurus-Littrow (Apollo 17) 
• 25-45 µm
• Produced by volcanic eruption of pyroclastic ash
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Green Soil

• Apollo 15
• Formed from same 

type of process as 
Apollo 17 orange soil
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Lunar Dust Rims

50nm

100nm

Glassy rims produced by vapor/sputter deposition.  Also contain ~ 10 nm 
Fe nanoparticles

Sarah Noble, JSC
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Lunar Soil Formation

Larry Taylor, U. Tennessee

Lunar soil is formed by a combination of comminution (breaking down), 
agglutination (clumping together), and vapor deposition.
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Meteorite Impact on the Moon

• 25 cm diameter meteorite traveling at 85,000 mph
• Kinetic energy of impact: 17 billion joules (equivalent to 4 tons of TNT)
• New crater: 14 meters wide by 3 meters deep
• Flash only 0.4 seconds in real-time
http://science.nasa.gov/headlines/y2006/13jun_lunarsporadic.htm



23

Recent Impacts
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Further Info on Apollo
• http://www.hq.nasa.gov/alsj/main.html 

(Apollo Lunar Surface Journal)              
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Lunar Dust Simulant

• JSC-1A-vf
• Made from volcanic ash
• 50% silicon-containing minerals
• 42-45% other oxides (Al2O3, FeO, MgO, CaO)
• No trace metals
• Size distribution of particles similar to samples 

of lunar dust
• 90% smaller than 13 µm diameter

Only 842 lbs of material returned from the moon!
Simulant material needed for preliminary studies.
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Sample SiO2 Al2O3 TiO2 FeO MnO MgO CaO Na2O K2O P2O5

JSC-1A-vf,  
% oxides

48.77 15.65 1.49 8.88 
(+ 1.71% 
Fe2O3)

0.19 8.48 10.44 2.93 0.81 0.66

Apollo 16 
Soil 
(62241), % 
oxides

44.65 27 0.56 5.49 0.7 5.84 15.95 0.44 0.13 0.1

Min-U-Sil 
Quartz,
%

99.0-
99.9

< 0.8 < 0.1 < 0.1 
(Fe2O3)

0 0 0 0 0 0

D.S. McKay, et al., LPSC XXIV (1993) 963-964.
H.J. Rose, Jr., et al., Proc. 4th LSC 2 (1973) 1149-1158.

Materials Used
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Lunar Dust Activation

• Constant activation of lunar dust by meteorites, 
UV radiation, and elements of solar wind

• No passivating atmosphere
• Active dust could produce reactive species in the 

lungs
– Freshly fractured quartz

• Must determine methods of deactivation before 
new lunar missions

• First, must understand how to reactivate dust on 
Earth
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What Does “Activated” Mean?

• Presence of reactive sites on surface
– Free radicals

• Ability to produce reactive species in 
solution

J. Narayanasamy and J.D. Kubicki, J. Phys. Chem. B 109 (2005) 21796-21807
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Previous Studies of Quartz Activation
• Grinding quartz gives electron paramagnetic 

resonance (EPR) signal characteristic of Si· or 

Si-O· radicals

• Increased grinding time produces higher 

signal

• Decrease in Si-based radicals over time in air

• Half-life of ~30 hours, with 20% of signal 

detectable even after 4 weeks

V. Castranova, Environ. Health Perspect. 102 (1994) 65-68.
V. Vallyathan et al., Am. Rev. Respir. Dis. 138 (1998) 1213-1219

• Ground quartz in aqueous solution produces 

OH radicals

• Radical production decreases with exposure 

to air

• Half life of ~ 20 hours
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Activation Methods Tested

• Crushing/Grinding
• Mortar and pestle
• Ball Mill

• UV activation
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Fluorescence
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Hydroxyterephthalate as a Probe 
of Hydroxyl Radical Generation

Terephthalate
(non-fluorescent)

2-Hydroxyterephthalate
(fluorescent)

COO-

COO-

COO-

COO-

OH
HO
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• 10 minute grinding 
• 3.8 mg/mL JSC-1A-vf
• 10 mM Terephthalate
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Size Distribution and Surface Area 
after Grinding

A

B

A: Min-U-Sil 15- 8.436 m2/g
(unground- 3.7 m2/g)

B: JSC-1A-vf- 5.369 m2/g
(unground- 3.5 m2/g) 

C: 62241 (Apollo 16)- 8.404 m2/g
(unground- 1.6 m2/g) 
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Effect of Grinding Time

• Grinding time has a direct 

effect on amount of hydroxyl 

radicals produced upon addition 

of ground quartz to solution

• Grinding time also shown to 

produce higher number of 

silicon-based radicals in ESR 

spectra

• Increase in hydroxyl 

production also seen for lunar 

simulant with increased grinding

N.S. Dalal, X. Shi, and V. Vallyathan, Free Rad. Res. Comms. 9 (1990) 259-266.
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Deactivation after Grinding
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Deactivation of Freshly Ground Lunar 
Simulant (JSC-1A-vf)

• Activity of freshly 
ground simulant can be 
reduced by exposure to 
humid environment.

• Multiple sets of 
deactivation 
experiments show 
simulant half life to be ~ 
3 hours with activity 
approaching unground 
levels at ~ 24 hours.
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Deactivation of Freshly Ground Quartz
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Activation by UV Exposure 
and Heating
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UV Activation of Unground Lunar 
Simulant 

• 3.8 mg/mL JSC-1A-vf
• 10 mM Terephthalate
• 800 W UV (initial setting)
• ~ 5 X 10-4 Torr

Exposure of unground 
simulant to UV 
radiation under 

vacuum leads to the 
production of hydroxyl 

radicals by the 
simulant when placed 
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UV Reactivation of Ground, 
Deactivated Lunar Dust and Simulant
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Effects of Vacuum on UV 
Activation/Deactivation of Lunar Simulant
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EPR
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• Broad peaks: no determination 
of silicon- or oxygen-based 
radicals
• Change in g-values from 2.11 
(unground) to 2.09 (ground)
• Similar downward shifts and g-
values seen previously by 
Haneman and Miller*

*: D. Haneman and D.J. Miller, Proc. Second Lunar Sci. Conf. 3 (1971) 2529-2541.

EPR Spectra of Apollo 62241
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C N O +   ·X N O·C

XCH3

CH3

CH3

CH3

H3C H3C

MNP Spin-adduct Reaction
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***

** *
JSC-1A-vf
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62241

* : spin-adduct triplet

30 minute grinding

10 minute grinding

10 minute grinding

100 mM MNP/acetonitrile

Spin-trapping of Radicals

• Level of activity increases in the order: quartz < lunar dust simulant < lunar dust
• Peak-to-peak splitting corresponds to radical containing no hydrogen

• Activated species likely interacting with acetonitrile to produce radicals
• Future testing to include hydroxyl radical trap in water
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Solubility
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Technique

• Place 10 mg JSC-1A-vf in 20 mL of 
buffer solution in 50 mL centrifuge tube

• Rotate tubes for 72 hours under ambient 
conditions (23-25 oC, 30-50% RH)

• Flush syringes and 0.2 µm syringe filters 
with distilled water

• Filter solutions 
• Measure concentrations using ICP-MS
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pH Effects
Changes in pH with Time
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0
5000

10000
15000
20000
25000
30000
35000

Si (ug/L) Al (ug/L) Ti (ug/L) Fe (ug/L)

ug
/L

pH 5.3

0
5000

10000
15000
20000
25000
30000
35000

Si (ug/L) Al (ug/L) Ti (ug/L) Fe (ug/L)

ug
/m

L

pH 6.7

0
5000

10000
15000

20000
25000

30000
35000

Si (ug/L) Al (ug/L) Ti (ug/L) Fe (ug/L)

ug
/m

L

Effect of pH on Leaching

Blue: Unground
Maroon: Ground



51

Effect of pH on Leaching
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Lung Fluid Simulant

0

100

200

300

400

500

Si (ug/L) Al (ug/L) Ti (ug/L) Fe (ug/L)

ug
/m

L

pH 7.38
Lung Fluid Simulant

0

100

200

300

400

500

Si Al Ti Fe

ug
/m

L

pH 7.4 
(Phosphate Buffered Saline)
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*: G.M. Kanapilly et al., Health Physics 24 (1973) 497-507.
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Solubility Summary

• Grinding of lunar dust simulant leads to 
increased dissolution in buffers of different pH

• Decreases in pH lead to increased leaching from 
lunar simulant

• Use of lung fluid simulant does not lead to 
significant increase in leaching

• Where to go from here?
– Different time points?
– Lunar dust?

• Thanks to Mike Kuo for ICP-MS measurements
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Cell Culture
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Direct Toxicity of Quartz

V. Castranova, Environ. Health Perspect. 102 (1994) 65-68. 
N.S. Dalal, X. Shi, and V. Vallyathan, Free Rad. Res. Comms. 9 (1990) 259-266.

• Grinding of quartz also leads to direct toxicity in 

vitro

• Ability of ground silica to oxidize lipids is directly 

correlated to the number of radicals produced in 

solution and “freshness” of silica
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Techniques
• A549 alveolar epithelial cells or BEAS-2B bronchial 
epithelial cells grown 72 hours 
• Treatment media prepared by adding 10 mg of sample to 
10 mL media w/o FBS (A549: F12K, BEAS-2B: GTSF-2)

• Dilutions prepared (200, 100, and 50 µg/mL) from stock 
• Growth media removed from cells and 1 mL treatment 
media added 
• Cells incubated in treatment media for 6, 24, or 72 
hours

• Media removed and centrifuged (5 min, 6000 rpm) to 
remove dust or cellular debris
• Supernatants tested for inflammatory mediators (IL-8, IL-6, 
and TNF-α)
• MTT toxicity testing also performed (mitochondrial activity)

56
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A549 Viability
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• Only highest concentration of simulant shows toxic effects; could be due to 
blockage of light by the dust
• Quartz is more toxic at lower concentrations
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A549 Viability

59
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BEAS-2B Viability

60
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• Little toxicity seen for JSC-1A-vf
• Quartz shows relatively high toxicity even at low concentrations
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BEAS-2B Viability

61
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Cell Culture Conclusions

• Unground quartz causes an increase in IL-6 and IL-8 
levels in A549 cells
– Time dependence seen for IL-8 increase

• Unground JSC-1A-vf only causes noticeable IL-6 
increase at highest concentration tested

• Ground JSC-1A-vf also produces IL-6 and IL-8 in A549
• Unground quartz is toxic to both A549 and BEAS-2B 

cells
– Higher concentration required in A549

• Unground simulant only shows toxicity at highest 
concentration tested (1 mg/mL)

62
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