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We analyze the effect of a highly dispersive element placed inside a modulated optical 

cavity on the frequency and amplitude of the output modulation to determine the 

conditions for enhanced gyroscopic sensitivities.  The element is treated as both a phase 

and amplitude filter, and the time-dependence of the cavity field is considered.  Both 

atomic gases (two-level and multi-level) and optical resonators (single and coupled) are 

considered and compared as dispersive elements.  We find that it is possible to 

simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by 

using an element with anomalous dispersion that has greater loss at the carrier frequency 

than at the side-band frequencies, i.e., an element that simultaneously pushes and 

intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled 
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optical resonator.  The sensitivity enhancement is inversely proportional to the effective 

group index, becoming infinite at a group index of zero.  However, the number of round 

trips required to reach a steady-state also becomes infinite when the group index is zero 

(or two).  For even larger dispersions a steady-state cannot be achieved, and nonlinear 

dynamic effects such as bistability and periodic oscillations are predicted in the gyro 

response.  

PACS Numbers: 42.50.Gy, 42.60.Da, 42.81.Pa 

 

I. INTRODUCTION 

The additional phase-shift acquired by an electromagnetic wave as a result of the 

motion of a medium, known as the Sagnac effect [1], can be measured directly by 

monitoring the amplitude of interferometer fringes, i.e., an interferometric optical 

gyroscope.  Alternatively, the Sagnac phase-shift can be transformed into a frequency 

shift by using an optical cavity, i.e., a laser gyroscope (Fig. 1).  The Doppler shift owing 

to the rotation of a ring laser, for example, is determined from the beat-frequency of two 

counter-propagating modes that are made to interfere at a location outside the cavity.  In a 

laser gyroscope then, the rate of rotation is determined, not by direct measurement of the 

Sagnac phase-shift, but by measurement of the frequency shift associated with this phase-

shift. 

In recent years there has been interest in the development of highly dispersive 

materials whose resonant features can speed up, slow down, stop, store, or reverse the 

propagation of pulses of light [2-9] as a result of their substantially modified group 

velocities.  The use of these modified group velocities for the enhancement of optical 
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gyroscopes has been discussed by a variety of authors. [10-13]  Leonhardt and Piwnitski 

have predicted an enhancement in the Fresnel drag coefficient for an interferometric gyro 

containing a slow-light medium.  Shahriar et al. [14] point out that this enhancement 

applies only to relative rotation measurements, not to measurements of absolute rotation 

where the source and gyroscope are co-rotating and the Sagnac effect is independent of 

refractive index.  As we have noted, the Sagnac effect is, however, often associated with 

a frequency shift, which in turn is highly sensitive to dispersion.  Inside an optical cavity, 

the Sagnac phase shift accumulates each round trip and is transformed into a Doppler 

shift, and so it is possible to achieve a dispersion-related enhancement for the 

measurement of absolute motion in this case.   

We are therefore obliged to consider the effect of such a highly dispersive element on 

the performance of a laser gyroscope in greater detail.  This objective necessitates a time-

dependent analysis of the field inside the cavity because dispersion contributes a 

nonlinear feedback mechanism to the gyro response.  Moreover, the absorptive part of the 

medium response cannot be neglected because it is related to the contrast of the beat-note 

with respect to backscattered frequencies which tend to reduce gyro sensitivities or even 

injection lock the modulation resulting in a dead band.  In fact we will show that the 

absorptive part of the material response can be designed to mitigate such backscattering, 

suppressing the gyro dead band, while at the same time the dispersive part enhances the 

phase shift due to rotation.  The rotation of the gyroscope is considered to be a strong 

modulation, and the theory of modulation spectroscopy is used to develop a time-

dependent analysis of the field in the cavity.  Hence, we demonstrate that the dispersive 

element acts as an amplitude and phase nonlinear filter, shifting and demodulating the 
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frequency components of the modulation, and we derive the conditions under which this 

modulation is enhanced.  Our analysis agrees with previous mode pulling and intracavity 

spectroscopy experiments [15-20]. 

The geometry that we will consider is shown in Fig. 1, where a dispersive element, 

e.g., an atomic gas or optical micro-resonator, is incorporated inside the cavity of a ring 

laser gyroscope.  All contributions to the dispersion within the cavity are lumped into a 

single “black box”, that introduces a positive (or negative) feedback [21] in the form of 

an additional phase-shift � , that is dependent on the original Sagnac phase-shift � , 

thereby increasing (or decreasing) the Doppler shift between the counter-propagating 

modes, and resulting in a modified beat-frequency.  

 

II. SAGNAC EFFECT AS A MODULATION 

Consider an arbitrary modulation of carrier frequency =0 0ck�  and modulation 

frequency =m mck� .  Assume that any FM component of the signal is sufficiently weak 

that there are not more than two sidebands in the frequency spectrum, i.e., that the FM 

component is purely imaginary.  The heterodyne beat-frequency and relative modulation 

amplitude of the interfering side-bands are known from the theory of modulation 

spectroscopy [22, 23] to be  

 + −− = −   

( , ) ( , )
( , )

2b m
z t z tz t t t � �

� � , (1) 

and 
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− + =

1/ 22 2
+

0

( , ) ( , )
( , )

2 ( , )

E z t E z t
M z t

E z t
, (2) 

respectively, where ± ±= ± =0 m ck� � �  are the side-band frequencies, the quantities 

( , )E z t�  and ( , )z t��  are slowly-varying amplitudes and phases, and frequency 

components are denoted by the subscript � , where = +0,�  or − .  The modulation can be 

described by a parametric plot of the complex electric field amplitude as a function of 

time that traces out, at the frequency ( , )b z t� , an ellipse whose size is determined by the 

slowly-varying quantity ( , )M z t  [23].   

The relative modulation ellipse evolves with propagation through a dispersive 

medium.  This evolution is already implicit in Eqs. (1) and (2), because the quantities 

( , )b z t�  and ( , )M z t  are slowly-varying in z and t, but can be explicitly taken into 

account by the use of a complex transfer function =�( ) ( )exp[ ( )]i� � � � �� , where ( )��  

is the effective phase shift, ( )� �  is the transmittance, and capital Greek letters are used to 

distinguish effective quantities.  Hence, the medium acts as both an amplitude and phase 

filter.  The phase filter influences the beat-frequency, whereas the amplitude filter affects 

the relative modulation.  For p passes across the filter, the transfer function is 

 
==

   
=    

  
∑∏� ( ) ( ) ( )

11

( ) ( ) exp ( )
p p

p j j

jj

i� � � � �� , (3) 

where superscripts indicate the pass index.  Equivalently, we make the substitutions 

=
= +∑(0) ( )

1
( , )

p j
j

z t� � �� � �  and 
=

= ∏(0) ( )

1
( , )

p j
j

E z t E� � �� , where (0)E�  and (0)
��  are the initial 

amplitudes and phases, respectively, prior to interaction with the filter.  Note that because 
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the frequency components shift, their phase and amplitude change non-uniformly with 

each pass, until a steady-state is reached.  

For a laser cavity containing a single dispersive element, = cp t �  is simply the 

number of round trips completed within time t.  Applying Eq. (3) and differentiating Eq. 

(1) over 0p  round trips, we obtain the average effective beat-frequency and relative 

modulation amplitude 

 + −
= − +

 = − − ∑
0

( ) ( ) ( )

10

1

2

p
p j j

b m
j p pc p

�
�

� � � , (4) 

and 

 + + − −

= =

    
 = +   
     

∏ ∏

1
2 2 2(0) ( ) (0) ( )

( )
(0) ( ) (0) ( )

1 10 0 0 0

1

2

j jp p
p

j j
j j

E EM
E E

� �

� �
, (5) 

respectively, where c�  is the cavity round trip time, and the = 0p  term utilizes non-

effective quantities, i.e., ( )+ −= − −(0) (0) (0) 2b m c� � � � �  is the beat-frequency prior to 

interacting with the dispersive element.  The single-pass or “instantaneous” beat-

frequency is obtained by setting =0 1p , i.e., 

 + −−
= −

( ) ( )
( )

2

p p
p

b m
c

�
�

� �
� . (6) 

The actual beat frequency measurement averages over a number of round trips, 0p , 

determined by the detector bandwidth compared to the cavity free spectral range.  The 

first term on the RHS of Eq. (4) is the Doppler shift due to the Sagnac effect itself, 
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whereas the second term on the RHS of Eq. (4) and the products in Eq. (5) represent 

contributions from the dispersive medium.  The dispersive contributions are determined 

by the effective phase difference and relative transmittance of the side-bands per round 

trip, respectively.  Importantly, note that there is no influence of the dispersion on m� , 

i.e., the Sagnac effect itself is intrinsically independent of refractive index.  The 

dispersive contribution is strictly a consequence of the associated Doppler shift (it goes to 

zero when + −=( ) ( )j j� � ). 

As a consequence of the dispersion, these formulas are iterative: the effective phase 

shift and transmittance of any particular component are evaluated at the frequency of the 

previous pass, i.e., ( )−=( ) ( 1)j j� � �  and −=( ) ( 1)( )j j� � � .  They therefore depend on the 

history of beat-frequencies (back to when the side-bands first approach a material 

resonance).  This is emphasized by the corresponding recursion relations  

 ( ) ( )− −= +( ) ( ) ( 1) ( ) ( ) ( 1),j j j j j j
b m b m d b� �� � � � , (7) 

and 

 ( )− − −+=
( )

( ) ( 1) ( 1) ( 1)
( )
0

,
j

j j j j
b jM M M�

�
� , (8) 

where ( )− −
+ − = − − = 

( ) ( 1) ( ) ( ) ( ) ( 1)2j j j j j j
d b c bG�� � � � �  and ( )j

m�  are again the dispersive 

and Sagnac contributions to the instantaneous beat-frequency, respectively, ( )jG  is the 

feedback gain [14], and we allow the Sagnac contribution to change on a time scale 

comparable to that of the dispersive propagation, i.e., → ( )j
m m� � , e.g., due to a changing 

rotation rate.  Furthermore, in writing Eq. (8) we have assumed that the dispersive 
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element is resonant with the unperturbed cavity such that + −=( ) ( )j j� �  and + −=E E .  Note 

that the dispersion term ( )−( ) ( 1)j j
d b� �  provides both the nonlinearity and feedback 

necessary for nonlinear dynamic behavior, such as bistability. 

We model the counter-propagating modes of the rotating gyro by the two strong side-

bands at ±� , such that ( )p
b�  represents the laser gyro beat-frequency, measured at some 

location outside the cavity.  Residual backscattering contributes a variety of central 

frequency components that fall between the side-bands.  It is well-known that if the back-

scattering is sufficiently strong these central frequencies (which we model heuristically 

by the inclusion of a single weak carrier frequency) can injection lock the side bands 

resulting in a dead band in the gyro response (see Appendix A) [24].  The relative 

modulation ( )pM  indicates the strength of these central frequencies, and thus the size of 

the dead band.  Therefore, to enhance the performance of a laser gyroscope, a dispersive 

element should be designed to increase both the beat-frequency (via the phase filter) and 

relative modulation (via the amplitude filter), i.e., it should increase both the rotation 

speed and size of the relative modulation ellipse, respectively. 

 

III. ENHANCEMENT OF GYRO SENSITIVITY 

It is clear from Eq. (7) that dispersion alters the gyro beat-frequency.  Intuitively, this 

is not difficult to understand:  In the absence of a dispersive medium, the red-shifted 

component of a rotating gyro accumulates more phase than the blue-shifted component, 

due its longer path length.  But dispersion introduces an additional phase shift, whose size 

and sign is dependent on the original (Sagnac) phase-shift, and therefore can either 

enhance or compensate the measured beat-note, in a manner analogous to regenerative 
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and degenerative feedback in electronic amplifiers [21].  When + −<( ) ( )j j� � , the Sagnac 

phase shift is augmented due to the positive feedback ( )>( ) 0jG , and the beat-frequency 

increases (the rotation of the modulation ellipse accelerates until it reaches some higher 

steady-state speed).  Note that this condition requires the presence of anomalous 

dispersion, but the frequencies ±�  may fall outside the region of anomalous dispersion.  

On the other hand, when + −>( ) ( )j j� � , the Sagnac phase shift is compensated by the 

negative feedback ( )<( ) 0jG  associated with the normal dispersion, thereby decreasing 

the beat-frequency.   

An increase in the beat-frequency does not by itself, however, ensure an increase in 

gyro sensitivity.  Rather, the gyro scale factor sensitivity is proportional to the derivative 

of Eq. (7), 

 
−

= +
( ) ( 1)

( )
( ) ( )

1
p p

pb b
p p

m m

d dS
d d� �

� �
, (9)  

where  

 
( ) ( )+ − + −

− −

− +
≡ = − = −

( ) ( ) ( ) ( )( )
( )

( 1) ( 1)

1 1

2 2

p p p pp
p d

p p
b c b c

d ddS
d d d� � �

� � � ��

� �
 (10) 

is the sensitivity gain.  Now, let us define an effective group index of refraction g N  for 

the gyro cavity.  First, we must define an effective propagation constant 

( ) ( )= +cK n c L� � �� , where cn  is the index of refraction of the cavity medium, and 

L  is the size of the cavity, equivalent to the distance between dispersive elements.  Then, 
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ignoring all material dispersion except that of the element under consideration, the 

effective group index is 

 ( ) ( ) ( ) 
= = + 

 

1
1g

c
c

dK d
N c n

d d
� �

�
� � �

�
, (11) 

where =c cn L c� , and d d��  corresponds to the delay time of a long monochromatic 

pulse.  Incorporating Eq. (11) into Eq. (10) yields  

 −= − = +
( ) ( )

( ) ( ) ( )
( 1)

1
g p p

avgp p p
b p

c b

N dGS G
n d

�
�

, (12) 

where ( )+ −= +( ) ( ) ( ) 2g p g p g p
avgN N N  is the average group index of the side-bands.  Note that 

in general the sensitivity and feedback gain are not equal, i.e., ( )pS  is always negative in 

regions of normal dispersion (because −( ) ( 1)p p
bdG d�  is negative), but ( )pG  can be 

positive.  When the dispersive element is resonant with the unperturbed cavity, the group 

index is symmetric about 0� , i.e., + −=( ) ( )g p g pN N .  In this case + −= =( ) ( ) ( )g p g p g p
avgN N N .  

Substitution of Eq. (12) into Eq. (9) yields, 

 
−−  − − = →

( ) ( 1) ( )( 1)

( ) ( )

1 1
p p pp

b b mb
p g p gsteady state

m avg c avg c

d dd
d N n N n

�

�

� ��
. (13) 

Eq. (13) provides the evolution of the gyro scale factor with round trip as a function of 

the input modulation frequency ( )p
m� , given an element with group index ( )g p

avgN .  In the 

steady-state, the beat-frequency and its sensitivity become independent of round trip, and 

= g
b m c avgd d n N�� , in agreement with Shahriar et al. [14].  The same result is 

obtained even when the beat-frequency is changing, provided the group index remains 
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constant, i.e., in linear dispersion spectral regions where ( )��  varies approximately 

linearly with � , e.g., when the side-band frequencies never stray very far from 

resonance.  In this near-resonance case, ≈( ) ( )p pS G , and ≈( ) ( ) ( ) ( )p p p p
b m b md d� �� � , i.e., 

an enhancement in beat-frequency corresponds to an enhancement in sensitivity.  Note 

also that because the dispersion is typically largest on-resonance (an exception would be 

a Fano resonance), ≤( ) ( ) ( )
0

p p g p
b m cd d n N��  represents an upper bound on the gyro 

sensitivity. 

Such a steady-state is only achieved for group indices within the range 

< <( )0 2g p
avg cN n , i.e., for >( ) 1pS  nonlinear dynamic effects become evident.  For 

<( ) 0g p
avg cN n  bistability occurs due to strong positive feedback ( )>( ) 1pS , whereas for 

≥( ) 2g p
avg cN n  continuous periodic oscillations arise in the beat-frequency as a result of 

strong negative feedback ( )< −( ) 1pS .  Note that at =( ) 0g p
avgN , Eq. (13) predicts a critical 

anomalous dispersion (CAD) where the gyro sensitivity becomes infinite.  In practice, 

however, the gyro enhancement is limited by group-velocity dispersion [14], and because 

the number of round trips required to reach a steady-state increases with the dispersion, 

becoming infinite when =( ) 0g p
avgN  (or =( ) 2g p

avg cN n ).  Thus, even within the range 

< <( )0 2g p
avg cN n , a steady-state might not be attainable within a reasonable number of 

round trips, i.e., before a measurement is required.  In this case, the sensitivity would be 

reduced slightly, by the factor ( )−− −( ) ( 1) ( )1 p p p
b b md d�� � .  

Generally, according to Eq. (9), an enhancement in sensitivity, >( ) ( ) 1p p
b bd d�� , 

occurs when the sensitivity gain, scale-factor product satisfies either 

 
−

>
( 1)

( )
( )

0
p

p b
p

m

dS
d�

�
, (14) 
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or 

 
−

< −
( 1)

( )
( )

2
p

p b
p

m

dS
d�

�
, (15) 

i.e., for either normal or anomalous dispersion.  However, when restricted to the steady-

state, i.e., < <( )0 2g p
avg cN n , Eq. (15) cannot be satisfied, and Eq. (14) is only satisfied 

when < <( )0 1g p
avg cN n , i.e., for anomalous dispersion that is sufficiently weak.  When the 

side-band frequencies ±
( )p�  do fall within a region of anomalous dispersion, satisfying 

Eq. (14), both the beat-frequency and its sensitivity are enhanced, but it is only when they 

are close to the resonance frequency of the dispersive element, r� , i.e., in the central 

linear-dispersion region of the resonance, that the approximation 

≈( ) ( ) ( ) ( )p p p p
b m b md d� �� �  is valid.  In this region the enhancement in beat-frequency and 

its sensitivity are equal.  But farther away from resonance, in regions of normal 

dispersion, the beat-note frequency is increased, but its sensitivity to rotation is reduced.  

Hence, it is possible to have enhanced beat frequencies as a result of positive feedback 

( )>( ) 0jG , but reduced scale-factor sensitivies ( )<( ) 0jS  as a result of normal 

dispersion. 

The change in beat-frequency may be understood simply as due to mode pulling or 

pushing by the dispersion.  It is well known that the cold cavity modes of a laser are 

pulled towards the gain line (or pushed away from an absorbing line) by an amount that is 

proportional to their detuning (provided the detuning is small compared to the linewidth) 

and dependent on the strength of the dispersion [15-19].  In our case, the mode pulling 

effect is in addition to the frequency shift associated with the Sagnac effect, i.e., it 



 13

modifies the perturbed cavity mode frequencies rather than the cold cavity modes.  (In 

fact, the Doppler shift due to the Sagnac effect itself can also be thought of as due to 

mode pushing, where the phase-shift per round trip results from rotation rather than 

dispersion.)  The phase-shift condition ( )± ± ±+ + =, , , 2q c q q q� � �� � �  yields the steady-

state frequencies of the pulled modes, 

 
( )± ±

± ± ±

  
= − ≈ −      

∓, ,
, , , 1 1

g
q q

q q q
c c

N
n

� �
�

� �
� , (16) 

where q is an integer mode number, ( )±,q� �  is the effective phase shift evaluated at the 

pulled frequencies, and ± ±= −, ,q q q c� � � �  are the un-pulled mode frequencies of the 

perturbed cavity, Doppler-shifted from the cold cavity mode frequencies = 2q cq� � �  

by the Sagnac phase-shift per round trip, ±,q� .  For detunings small compared to the 

linewidth, the modes are pulled towards the resonance frequency r�  for ± >, 1g
qN  (e.g. 

an inverted two-level gain medium) and pushed away from r�  for ± <, 1g
qN  (e.g. a two-

level absorber).  For larger detunings, the modes can be pushed away from the resonance 

even when ± >, 1g
qN , though the sensitivity will not be enhanced. 

For any one of the q mode numbers, the pulled beat frequency, ( )+ −= − 2b� � � , is 

then given by 

 
( )   

= − ≈ − −      
1 1

2

g
avgb b

b b b
c c b

N
n

� �
� �

	� � �
�  (17) 

where ( ) ( ) ( )+ −= −b	� � � � � �  is the effective phase difference of the pulled modes, 

and ( )+ −= − 2b� � �  is the un-pulled beat-frequency.  Taking the derivative of Eq. (17)
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yields = ≈1 g
b b avg b bd d N� �� � , in agreement with Eq. (13).  The approximations 

shown are valid for mode frequencies within the central linear-dispersion region, i.e., 

close to the resonance frequency r� .  The derivation is a steady-state one, i.e., it does not 

keep track of the round trip p.  But clearly the mode pulling or pushing is time-dependent.  

For larger dispersions, the steady-state analysis is no longer sufficient, and the nonlinear 

dynamics of the problem become evident.  Notably, such nonlinear effects have been 

observed in high-gain lasers [18, 19]. 

 

IV. COMPARISON OF ATOMS AND RESONATORS 

These derivations are general and apply both to atomic media, and to optical 

resonators when the Sagnac effect in the resonator itself can be neglected, e.g., in the 

limit where the size of the resonator is zero, or the resonator is planar.  We do not 

consider the Sagnac effect inside the micro-resonator itself, as this has been treated 

previously [11].  As we have seen, to properly understand the effect on the beat-note, 

such an element must be treated as both a phase and amplitude filter.  The amplitude and 

filters can work in concert, or against one another.  For non-inverted two-level atoms or 

under-coupled optical resonators, the absorption is higher on-resonance, which attenuates 

the carrier frequency more than the sidebands, increasing the relative modulation, while 

at the same time the anomalous dispersion increases the magnitude of the beat frequency.  

The opposite occurs if the two-level atom is inverted or the resonator is amplifying, i.e., 

the amplification is higher on-resonance, decreasing the relative modulation, and the 

dispersion is normal, which decreases the modulation frequency.  Hence, in all of these 

cases the amplitude and phase filters work together.  However, a particular distinction of 
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optical resonators is that they can be non-amplifying and possess normal dispersion 

provided they are over-coupled (whereas two-level atoms must be inverted to possess 

normal dispersion on resonance), thereby increasing the relative modulation but 

decreasing the beat-frequency.  In this case the amplitude and phase filters work against 

one another. 

Similar considerations hold when the dispersion is modified via coherent coupling 

schemes, e.g. for multi-level atoms and coupled optical resonators.  Consider three 

prototypical atomic coherence schemes: electromagnetically-induced absorption (EIA) 

[25], electromagnetically-induced transparency (EIT) [26], and gain-assisted 

superluminality (GAS) [27, 28] from a double-gain line.  The cases of EIA and GAS are 

similar to an absorbing two-level atom, i.e., greater carrier frequency absorption increases 

the relative modulation, while the associated anomalous dispersion increases the 

magnitude of the beat frequency.  For the case of EIT, on the other hand, the transparency 

and normal dispersion on-resonance result in both decreased relative modulation and beat 

frequency, similar to an inverted two-level atom.  In all these atomic coherence schemes 

the amplitude and phase filters work together.  Again, to find cases where the amplitude 

and phase filters oppose one another, one must turn to the analogous coherence effects in 

coupled resonators [7-9]. 

 

V. RESULTS 

For the dispersive element, we utilize optical resonators, because both anomalous and 

normal dispersion can be readily examined without the need for gain, simply by changing 

from under-coupled (anomalous dispersion) to over-coupled (normal dispersion), and 
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because resonators offer all of the coherence effects available in atomic media, but in a 

more robust all-solid-state configuration.  We assume a carrier frequency of 

= 14
0 2 10 Hz� � , a cavity with a free spectral range of =1 100c MHz� , and that the 

resonator is resonant with the unperturbed cavity, i.e., = 0r� � .   

We investigate four regimes of group indices: a) weak anomalous dispersion, 

< <( )0 1g p
avg cN n ,   b) weak normal dispersion, < <( )1 2g p

avg cN n , c) strong anomalous 

dispersion <( ) 0g p
avg cN n , and d) strong normal dispersion >( ) 2g p

avg cN n .  The free 

spectral range of the resonator is held fixed at =1 100r GHz� , and the group index is 

varied by changing the coupling and loss of the resonator, while leaving the cavity 

parameters fixed.  In Fig. 2 and 3 the resonator quality factor is (a) = × 64 10Q  and (b) 

= 610Q , respectively, whereas in Figs. 4 and 5, the quality factor is = 610Q  for each of 

the four cases, corresponding to a 100MHz  FWHM resonance linewidth.  The maximum 

group indices are a) =( )
0 0.2g p

cN n , b) =( )
0 1.8g p

cN n , c) = −( )
0 1.0g p

cN n , and d) 

=( )
0 3g p

cN n , respectively, such that the magnitude of the sensitivity gain is =( ) 0.8pS  

for cases (a) and (b) and =( ) 2pS  for cases (c) and (d).  In Figs. 2 and 3 we plot only the 

cases of weak dispersion, i.e., we only consider dispersions that result in a steady-state in 

the beat-frequency, whereas in Figs. 4 and 5 all four cases are plotted.   

In Figs. 2 and 3, the initial modulation frequency is set to =(0) 2 100m KHz� �  and the 

beat-frequency is allowed to evolve over 50,000  round trips to a steady-state, whereas in 

Figs. 4 and 5, the modulation frequency is changed in increments of =2 100m KHz� �	  

every = 50p	  round trips, beginning at a frequency far from resonance, 

= −(0) 2 100m MHz� � , increasing to =(100000) 2 100m MHz� � , and then decreasing again 

back to the initial frequency, = −(200000) 2 100m MHz� �  to form a complete loop after a 
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total of 200,000 round trips.  So, over the course of this loop, there is always more than 

one effective phase-shift per modulation cycle. 

In Fig. 2, the counter-propagating modes are plotted in the frequency domain, after 

they have reached the steady-state, with and without the resonators present in the cavity.  

A weak carrier frequency is included as a heuristic, to account for backscattering 

frequencies.  A time-domain graph of the beat-frequency and relative modulation is 

presented in Fig. 3.  These figures show how the modulation side-bands are pushed 

(pulled) by the anomalous (normal) dispersion, eventually reaching their steady-state 

values of ∞
± ≈( ) (0) ( )

0
g p

m cn N�� , after no more than a few 10’s of round trips.  In Fig. 3b, 

oscillations occur as a result of some over-pulling, prior to reaching the steady-state.  The 

number and amplitude of these oscillations increase with the group index.  Unlike the 

beat-frequency, the relative modulation does not reach a steady-state, but continues 

increasing to infinity.  This suppression of the central frequencies in comparison to the 

side-band frequencies, strengthens the beat-note contrast and suppresses the gyro dead 

band.   

In Fig. 4, the effective beat frequency is plotted every 50 round trips (which we know 

from Fig. 3 is a sufficient number of round trips to reach a steady-state, if one can be 

achieved), as the initial modulation frequency is varied for the four regimes of dispersion.  

The slope of these curves at any point is determined by Eq. (9).  In (a) and (b) the gyro 

scale factor is modified by the factor ( )
0

g p
cn N  at resonance.  In (c) and (d) the strong 

dispersion leads to bistability and continuous periodic oscillations, respectively.   

Fig. 5 is simply a zoomed-in version of Fig. 4 near zero beat-frequency, i.e., for side-

band frequencies close to the resonance frequency r� .  The plot resolution is 1 round trip 
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rather than 50, so that time-dependent effects can be more readily resolved.  Note that the 

dispersion causes deviations from perfectly sharp steps of ( )+ − =( ) ( )p p p
b b m�	� � 	 .  

Closer to resonance, these deviations becomes more pronounced, and the beat-frequency 

takes more round trips to reach a steady-state (the relative modulation also takes more 

round trips to increase).  In (a) and (b) the dispersion is still sufficiently weak that the 

beat-frequency reaches steady-state values given by ( )+ − ≈( ) ( ) ( )
0

p p p g p
b b m cn N�	� � 	 .  

In (c) and (d), on the other hand, the nonlinear effects associated with the dispersion are 

so large that a steady-state cannot be reached.  In Fig 5c, the zero in beat-frequency is 

pushed to a larger value of p as a result of hysteresis, where a jump is observed, which 

results in bistability.  In Fig. 5d, the dispersion is strong enough to drive continuous 

oscillations, whose amplitude is given by ( )+ −( ) ( ) ( ) 2p p p g p
b b avg cN n	� � .    

 

VI. SUMMARY AND CONCLUSION 

In summary, we find that for two-level atoms or under-coupled optical resonators 

incorporated into a laser gyro cavity, the amplitude and phase filters work together to 

enhance the modulation, simultaneously enhancing the gyro scale factor via the 

anomalous dispersion and suppressing the dead band via the absorption.  In fact, we 

could have used a single complex phase shift ( )� ��  to describe the filter, that when 

incorporated into the cavity gives rise to a complex effective group index ( )�g N �  and 

feedback ( )�G � , which in turn modify the complex beat-frequency � b� , which consists of 

the real-valued beat frequency and its contrast.  Anomalous (normal) dispersion and 

absorption (gain) provides a positive (negative) complex feedback.  The scale-factor 

sensitivity is inversely proportional to the effective group index, becoming infinite at a 
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group index of zero, yet requiring an infinite number of round trips to reach steady-state 

at this point.  In fact, the time-dependency is more likely to limit the achievable 

performance of a dispersion-enhanced gyro than higher-order dispersion.  Steady-state 

results are only obtained for < <( )0 2g p
avg cN n .  For <( ) 0g p

avgN  and >( ) 2g p
avgN  bistability 

and continuous oscillations are predicted, respectively.  The enhancement of gyro 

sensitivity should be easier to observe for Doppler-broadened atomic gases than for 

micro-resonators, owing to the velocity distribution.   

Furthermore, our analysis shows that not only can a dispersive element enhance 

desirable phase shifts (e.g. due to rotation), but it can also compensate deleterious phase 

shifts (e.g., due to a cavity instability), as shown in Fig. 4b.  The resonances of inverted 

two-level atoms or amplifying micro-resonators should, therefore, be useful for laser self-

stabilization, simultaneously reducing frequency and amplitude fluctuations, without the 

need for extra-cavity feedback.  In fact, mode-pulling has long been demonstrated as a 

means for laser self-stabilization [29], but the development of highly dispersive media, 

employed separate from the gain medium, make these ideas more promising.  Indeed, 

efficient noise or dead band suppression depends upon materials with stable high-Q 

resonances.   

The introduction of such a dispersive element into the cavity will increase 

spontaneous emission noise.  To minimize the increase in pumping and avoid group 

indices where nonlinear dynamics occur, narrow yet shallow resonances (away from 

critical coupling) should be employed.  Note that Eq. (7) can readily be separated into 

signal and noise contributions.  We have examined the effect of dispersion on the 

bandwidth of a white noise input and have found that the noise bandwidth increases at a 
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rate considerably slower than the inverse of the group index.  The reason for this is that 

for a noisy input that changes each round trip, a steady-state is never reached.  Away 

from the steady-state, the beat-frequency depends on the history of beat-frequencies, i.e., 

is path dependent.  Therefore, the enhancement of a white noise input is different (in fact, 

substantially lower) than that of a monotonic signal.  Hence, the dispersive medium 

filters out high frequency noise in comparison to the signal.  Another way to look at this 

is that the noise adds a finite bandwidth to the beat-note, and this bandwidth is increased 

by the dispersion, but slower than the inverse of the group index.  A similar result is 

found in the calculations of Appendix A, where it is shown that the regenerative gain 

linewidth remains finite even for a group index of zero. 

We note, finally, the analogy between dispersive and nonlinear optical elements:  Just 

as the saturation of a laser gain medium compensates intensity variations, a dispersive 

element can compensate phase variations.  Fast-light media increase phase variations and 

are therefore analogous to saturable absorbers, which increase the amplitude noise of a 

laser.  Slow light media, on the other hand, decrease phase noise, and are analogous to 

two-photon absorbers, which decrease amplitude noise.  For both nonlinear optical and 

dispersive elements, when the system is driven beyond its ability to assume a steady-

state, nonlinear dynamic effects such as bistability can occur.   
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APPENDIX A: GYRO LOCK-IN CONDITIONS 

Let us treat the laser cavity as a regenerative amplifier below threshold, having only 

one port for input and output.  The complex transfer function for the electric-field is 

 ( ) ( ) ( )
( ) ( )

( )
( ) ( )( )

− −
= = ≈

−  − + + 

�� ��
� � �

exp

1 exp 1 1
out

in

R g i R gE
E Rg i Rg i

� � � � �
�

� � � � � � ��
G , (18) 

where ( )= − 0 c� � � �  is the single-pass phase-shift, g  is the round trip gain, 

( )=� exp RR R i�  is the complex port reflectivity, and ( )Rg� �  is the net gain per round 

trip.  We have assumed the port reflectivity is real ( )= 0R� , small detunings 

( )( )+ ≈ 0� ��  from resonance, and that there is some strong frequency-dependence 

near the resonance frequency 0� , e.g., due to some high-Q filter or hole burning in the 

gain line, such that we must include the complex filter function 

( ) ( ) ( ) =  � exp i� � � � �� .   

Now, the net gain at the free-running oscillation frequency 0�  is clamped at the 

threshold value ( ) =0 1Rg� � .  Hence, the gain at some other, injected, frequency is 

( ) ( ) ( ) ( )= =0Rg Rg x x� � � � � � , where ( ) ( ) ( ) ( ) ≡ = − 0 exp 2d cx � � � � � 
 � �  is 

the transmittance ratio, and ( ) ( ) ( )≡ − 0d
 � 
 � 
 �  is the loss coefficient difference at 

the two frequencies.  For small detunings the spectrum is approximately linear, so that the 

feedback and sensitivity gains are equal, i.e., 

( ) ( ) ( ) ( ) = − ≈ = − G d d S� � � � � � � �� � .  Hence, ( )+ ≈ g N� � �� , where the 
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group index g N  is approximately independent of frequency.  Within this constant group-

index approximation, the intensity amplification is then 

 ( )
( )

( ) ( )
 − ≈

  − +   

�
22

2

22
1 g

x R

x x N

�
�

� � �
G . (19) 

The condition for lock-in of the free-running oscillation at frequency 0�  and intensity 

0I , by an external injected signal at frequency 1�  and intensity 1I , is that the output 

intensity ( )� 2

1 1I�G  exceeds 0I , i.e., 

 [ ] ( )
( )

( )
( )

   − −
≤ −   
      

2 22
2 1 11

1
1 0 1

1
g g

x R xI
Nx R I Nx
� �

�
� �

. (20) 

Without the dispersive filter, i.e., ( ) ( )= = =� 1 1 1gx N� � � , we obtain the well-known 

formula for the injection lock-in frequency detuning, 

 
( )−

− ≤ ≈
2

1 1
1 0

0 0

1 1

c d

R R I I
I I

� �
� �

, (21) 

where d�  is the cavity lifetime.  The lock-in frequency range is then twice this detuning, 

i.e., = −1 02� � �	 .  The dispersive filter, however, alters the injection lock-in 

frequency, as a result of modification of the regenerative gain line.  A plot of Eq. (19) is 

shown in Fig. 6, for various values of g N .  For anomalous dispersions such that <1g N , 

the phase filter broadens the regenerative gain line, thereby increasing the lock-in 

condition.  The maximum linewidth and lock-in range occur for = 0g N .  On the other 
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hand, for stronger anomalous dispersions such that < −1g N , or for normal dispersions, 

i.e., >1g N , the phase filter narrows the gain line, decreasing the lock-in condition. 

Now, in a laser gyro a small portion of the internal intensity, ( )−0 1I R� , is scattered 

into the counter-propagating beam, where �  is the scattering coefficient per round trip.  

This internal injection corresponds to an external injection of ( )− =
2

0 11I R I� .  

Substituting into Eq. (20), we obtain the transcendental equation for the gyro lock-in 

range, i.e., the dead band, 

 [ ] ( )
( )

( ) ( )       − ≤ − − ≈ −          −         

222 22
2 1 1 1

1 2
1

11 1
1

1 2
d c

g g g
d

R x
N R R x N N

� � � 
 �� ��
�

� �
, (22) 

where ( ) ( ) ( ) ( ) = − = −  
2

1 1 12 1 lnd d c R x� � � 
 � � �  and ( )= = − 21 1 lnd d c R� � �  are 

frequency dependent and independent cavity loss rates, i.e., with and without the 

dispersive filter, respectively, and the approximation holds in the limit of small cavity 

couplings ( )≈ ≈01, 0R � , and differential losses ( )≈ ≈1, 0dx 
 .  Again, in the absence 

of the dispersive filter, we recover the well-known formula for the gyro dead band, 

 =
c

�
�

�
	 . (23) 

To determine how the dead band is altered by the amplitude and phase response of 

the dispersive medium, i.e., by x and g N , respectively, we must solve Eq. (22), which is 

transcendental.  In Fig. 7, the intersections of the right and left hand sides of Eq. (22) are 

plotted versus the phase detuning �  in dispersion-free dead band units, � .  Again, in 

comparison with the dispersion-free case, the dead band is decreased for >1g N , 
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corresponding to narrowing of the regenerative gain linewidth, and increased for <1g N .  

Now, provided the dead band detuning is smaller than a critical detuning, found from the 

solution of the transcendental equation, 

 
( )
( )

 
< 

  

1

12
d d

c

� 
 �
� �

� �
, (24) 

then differential absorption can be neglected, and the dead band can be approximated by 

 ≈ c
g N
� �

�	 . (25) 

Within this approximation of constant loss, any enhancement in beat-frequency is 

countered by a concomitant increase in the dead band, because they both scale as 1 g N .  

This is certainly the case for the lower curves of Fig. 7.  Here, the dead band is 

considerably smaller than the critical detuning (which marks the strong departure of the 

RHS of Eq. (22) from the straight line), so that we can neglect the effect of differential 

absorption.  Hence, in this case, the dead band is well approximated by Eq. (25).  In 

contrast, for the upper two curves of Fig. 7, the dead band is large enough that the 

approximation fails, and differential absorption results in considerable suppression of the 

dead band.  The suppression of the dead band near = 0g N  by differential absorption is 

emphasized in Fig. 8, where solutions of Eq. (22) are directly compared with the 

approximations of Eqs. (24) and (25), and is clearly related to the fact that the line-width 

of the regenerative gain increases (due to the phase response) but does not become 

infinite at = 0g N . 
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We have assumed in this discussion that the dead band is much smaller than the 

resonator spectrum such that the approximation of constant group index holds.  For dead 

bands comparable to the resonance linewidth, the reduction in dispersion in the wings of 

the resonance will tend to widen the dead band for normal dispersion and reduce it for 

anomalous dispersion. 
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FIGURES 

 

Figure 1.  (Color online) A dispersive element (represented by the box) inside a ring 

laser gyroscope introduces a feedback in the form of an additional phase-

shift � , that is dependent on the Sagnac phase-shift � , thereby modifying 

the Doppler shift between the counter-propagating modes, and resulting in a 

modified beat-frequency + −−( ) / 2� � .  In the absence of dispersion the 

beat frequency is simply + −−( ) / 2� � .   

 

Figure 2. Mode pushing (a) and mode pulling (b) of the counter-propagating laser 

gyro frequencies by weak (a) anomalous and (b) normal dispersion.  The 

modes are shown (i) without and (ii) with the resonator placed inside the 

cavity, after reaching their steady-state frequencies.  The effective phase 

shift and transmittance are also plotted for comparison.  In (a), the carrier 

frequency is significantly attenuated, indicating suppression of 

backscattering frequencies and the gyro dead band.    

 

Figure 3. Evolution of the beat frequency and relative modulation with cavity round 

trip for a cavity containing weak (a) anomalous and (b) normal dispersion.  

In (a) the beat-frequency increases due to mode pushing, whereas in (b) it 

undergoes oscillations and decreases as a result of mode pulling.  In both 

cases the relative modulation increases due to greater carrier frequency 
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absorption, but it increases sooner in (a) because the sidebands are pushed 

away from the carrier and because the Q is larger.   

 

Figure 4.  Four regimes of gyroscopic response for a laser gyro containing a dispersive 

element:  (a) increased scale factor sensitivity due to weak anomalous 

dispersion, (b) decreased scale factor sensitivity due to weak normal 

dispersion (c) bistability due to strong anomalous dispersion, and (d) 

bifurcation to periodic oscillations due to strong normal dispersion.  The 

dotted line is the gyro response in the absence of the dispersive element (and 

in the absence of lock-in).  The dashed line represents the upper limit on the 

sensitivity enhancement ( )
01 g pN . 

 

Figure 5. Evolution of the beat frequency with cavity round trip for (a) weak 

anomalous dispersion, (b) weak normal dispersion, (c) strong anomalous 

dispersion, and (d) strong normal dispersion.  The modulation frequency is 

changed in increments of =100m KHz�	  every = 50p	  round trips.  But 

the dispersion causes deviation from a perfectly sharp step of 

( )+ − =( ) ( )p p p
b b m�	� � 	 .  In (a)  ( )+ − >( ) ( )p p p

b b m�	� � 	  due to mode 

pushing, and in (b) ( )+ − <( ) ( )p p p
b b m�	� � 	  due to mode pulling.  The 

nonlinear effects are so large in (c) and (d), that a steady-state cannot be 

reached, resulting in bistability and continuous oscillations, respectively. 
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Figure 6.   (Color online) Regenerative gain line for = 0.95R , and no dispersion (solid 

curve), i.e., =1g N , normal dispersion (dashed curve), i.e., = 2g N , and 

anomalous dispersion (dashed curves), i.e., (a) = 0g N , (b) = 0.5g N , and 

(c) = −2g N .  At = 0g N  the line is broad (but not infinite), and narrows as 

g N  increases or decreases.  Note that the widths for = −2g N  and = 2g N  

are equal.  The gain deviates from unity for large detunings because of the 

small angle approximation.  

 

Figure 7.   (Color online) The dead band of a laser gryo with = 0.95R  and = 0.001� , 

shown as the intersections of the LHS. (two solid vertical curves) and RHS 

(solid curves) of Eq. (22).  (a) = ±0.02g N , (b) = ±0.1g N , (c) = ±0.5g N , 

and (d) = ±2g N .  The positive group index is the wider of the two curves in 

each case.  The dashed horizontal lines represent the constant-loss 

approximation of Eq. (25).  The dead band is well approximated in (c) and 

(d), but in (a) and (b) the dead band is smaller than the approximation as a 

result of differential absorption.  Increasing the scattering coefficient pushes 

the solid curves upward, thereby increasing the dead band. 

 

Figure 8.   Suppression of the dead band of a laser gyro with = 0.95R  and = 0.001�  

by differential absorption.  The open symbols are solutions of Eq. (22), and 

the crosses are solutions of Eq. (24).  For large group indices, the dead band 

is well approximated by the constant-loss approximation, indicated by the 

solid curve, but for smaller group indices near = 0g N , the dead band is 
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suppressed by differential absorption, and is better approximated by Eq. (24)

. 
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Figure 6 (color online)  38
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Figure 7 (color online)  39
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Figure 8  40
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