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Abstract

Although it is known that correct dynamical equations of motion for
a nonholonomic system cannot be obtained from a Lagrangean that has
been augmented with a sum of the nonholonomic constraint equations
weighted with multipliers, previous publications suggest otherwise. An
example has been proposed in support of augmentation and purportedly
demonstrates that an accepted method fails to produce correct equations
of motion whereas augmentation leads to correct equations; this paper
shows that in fact the opposite is true. The correct equations, previ-
ously discounted on the basis of a flawed application of the Newton-Euler
method, are verified by using Kane’s method and a new approach to de-
termining the directions of constraint forces. A correct application of the
Newton-Euler method reproduces valid equations.

Introduction

Dealing with nonholonomic constraint equations within the framework of varia-

tional methods is a controversial subject. For example, Ray [1] modifies Hamil-

ton’s principle and augments the Lagrangean by adjoining a sum of nonholo-

nomic constraint equations weighted with multipliers. Later, Ray [2] reverses

himself. In the erratum he compares the correct way of dealing with constraint

equations that are linear in the time derivatives of the generalized coordinates
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to the incorrect approach of augmenting the Lagrangean that gives the wrong

results, even when the constraint equations are linear. Saletan and Cromer [3]

follow Ray and show the augmented Lagrangean gives correct equations of mo-

tion when the constraint equations are holonomic. They conclude that no such

augmented Lagrangean exists in the nonholonomic case, in part because they

say that there is no way to determine initial conditions needed for the integration

of differential equations governing the multipliers. Rosenberg [4] presents the

same demonstration as Ray’s erratum and concludes that, although Hamilton’s

principle may be regarded as a variational principle for conservative holonomic

systems, it cannot be so regarded for nonholonomic systems. In an effort to elim-

inate constraint violations, Rosen and Edelstein [5] make a proposal similar to

that of Ray 30 years earlier; they account for nonlinear nonholonomic constraint

equations in the same way that they do holonomic constraint equations. Hage-

dorn [6] points out that although their approach is justified in the holonomic

case, it is incorrect for nonholonomic constraint equations, even when they are

linear. He demonstrates this with an example and gives the well-known result for

the correct way to handle linear equations, which does not come from modifying

the Lagrangean. According to Hagedorn the mistake has been repeated many

times over the past century and the pitfall has received attention in Refs. [7],

[8], and [9]. More recently, Flannery [10] examines the problems encountered

by Ray and others and, after in-depth analysis, concludes “General [nonlinear]

nonholonomic constraints are completely outside the scope of even the most

fundamental principle of D’Alembert. The generalization of any principle based

on [D’Alembert’s] to general nonholonomic constraints is without foundation.”

In an earlier paper, Polyakhov [11] reaches the same conclusion: “Thus, the

D’Alembert-Lagrange principle as well as the Lagrange ideality condition can

be derived from Newton’s equations only for holonomic constraints. Therefore,

the application of these results to nonholonomic systems is not justified.”

In their response to his comments, Rosen and Edelstein offer a counterex-
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ample purportedly showing that the approach advocated by Hagedorn leads

to incorrect results. Their conclusion is based on a flawed application of the

Newton-Euler method. The purpose of this paper is to demonstrate the validity

of the approach taken by the latter author and bring to light mistakes made by

the former authors in their development of the counterexample.

Problems With the Counterexample

The planar system featured in the counterexample is shown in Fig. 1. Two

perpendicular unit vectors n̂1 and n̂2 are fixed in an inertial reference frame

N . A smooth rod B whose axis is parallel to unit vector b̂1 is inclined at a

constant angle α to n̂1; B is permitted to translate along an axis parallel to

n̂2. A particle P of mass m moves along B, and the mass of B is negligible in

comparison to m. It is said that no forces are exerted on P other than those

necessary to prevent it from loosing contact with B.

Analysis is facilitated by working with two generalized coordinates q1 and

q2 shown in Fig. 1, where q1 is the displacement in a prismatic joint connecting

B to N , and where q2 is the displacement of P along the rod. Two generalized

speeds [12] are introduced simply as ur = q̇r (r = 1, 2). A motion constraint is

to be imposed upon the velocity of P in B, expressed by the relationship

ε Cαu2 − q1 = 0 (1)

where ε is a positive constant and Cα denotes cos α. The equivalence of this

expression and the constraint equation in Ref. [6] is demonstrated presently.

Now, the velocity NvB in N of every point B fixed in B is given by NvB =

u1n̂2, and the velocity BvP of P in B is given by BvP = u2b̂1. Henceforth, B

is taken to be the point of B that is coincident with P , and the velocity of P in

N is simply NvP = NvB + BvP . The nonholonomic constraint equation (1)
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Figure 1: A Particle Moving on a Sliding Inclined Rod
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can thus be written in vector form as

( NvP − NvB) · b̂1 −
q1

ε Cα
= 0 (2)

There also exists a configuration constraint that prevents P from moving in B

in the direction of b̂2; at the velocity level, the holonomic constraint equation

is expressed as

( NvP − NvB) · b̂2 = 0 (3)

On the basis of physical reasoning it is clear that a force normal to the rod, in

other words a force of unknown magnitude and parallel to b̂2, must be applied

to P in order to satisfy Eq. (3) and keep P from losing contact with the rod. In

view of the law of action and reaction, a force of equal magnitude and opposite

direction is thus applied to B at B. These conclusions can be reached also by a

close examination of the form of Eq. (3), which is now undertaken so that the

results may be used with Eq. (2) and another constraint equation to follow.

The vector form of Eq. (3) can be used to determine directions and points

of application of forces necessary to impose the constraint. Upon differentiation

with respect to time in N , one obtains

( N aP − N aB) · b̂2 = 0 (4)

where N aP and N aB are, respectively, the accelerations of P and B in N .

(The time derivative of b̂2 in N vanishes because B has no angular velocity

in N .) Each acceleration is related by Newton’s second law to the resultant of

all applied contact and distance forces. Let fP and f B̄ denote the respective

resultants of all contact and distance forces applied to P and B when their

motion is not restricted by the constraint expressed in Eq. (4). In addition,

let CP and CB̄ represent constraint forces that must be applied to P and B

respectively in order to impose the constraint. By virtue of Newton’s second

law, Eq. (4) can be rewritten as

fP + CP

m
· b̂2 +

f B̄ + CB̄

mB̄

· (−b̂2) = 0 (5)
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where mB̄ is the mass of the particle at B. Any component of CP that is

perpendicular to b̂2 will not play a part in Eq. (5); therefore, all that is necessary

is for the constraint force CP to be parallel to b̂2. Likewise, CB̄ need only be

parallel to −b̂2. The first condition is expressed with the relationship

C2 = µ2b̂2 (6)

where C2 is the constraint force applied to P and associated with the second

of two constraint equations [Eq. (3)], and where µ2 is an as yet unknown scalar

multiplier. Furthermore, the constraint force applied to B is µ2(−b̂2) = −C2.

One may simply inspect Eq. (3) to make such determinations; because NvP

appears in a dot product with b̂2, it can be said that the constraint force parallel

to b̂2, C2 = µ2b̂2, must be applied to P . Likewise, because NvB appears in a

dot product with −b̂2, it can be said that the constraint force −C2 = −µ2b̂2

must be applied to B at B. As has been said, these results are in line with

physical reasoning. In Ref. [6] the magnitude of the reaction force C2 normal

to b̂1 is denoted by N rather than µ2.

Using the same reasoning, one may inspect Eq. (2) and conclude that P

must be subject to a constraint force C1 that is parallel to b̂1,

C1 = µ1b̂1 (7)

whereas a force −C1 is applied to B at B. In this case the subscript of C1 and

µ1 indicates they are associated with the first of two constraint equations. In

practice the set of forces C1 and −C1 could be applied with a motorized gear

attached to P moving on a track of gear teeth fixed in B; evidently the rod

cannot be perfectly smooth as hypothesized in the problem statement, if the

nonholonomic constraint equation (1) is to be satisfied.

After forming the acceleration of P in N as N aP = u̇1n̂2 + u̇2b̂1, one is

in a position to use Kane’s method [12] and form two equations of motion for

the system S composed of P and B, Fr + F ?
r = 0 (r = 1, 2). The holonomic
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generalized active forces are given by

Fr = NvP
r · (C1 + C2) + NvB

r · (−C1 −C2) (r = 1, 2) (8)

and the holonomic generalized inertia forces F ?
r are constructed according to

F ?
r = −NvP

r · m N aP (r = 1, 2) (9)

The required holonomic partial velocities are

NvP
1 = n̂2,

NvP
2 = b̂1,

NvB
1 = n̂2,

NvB
2 = 0 (10)

so that the dynamical equations of motion for S in N are found to be

m(u̇1 + Sαu̇2) = 0 (11)

m(Sαu̇1 + u̇2) = µ1 (12)

where Sα denotes sinα. The nonholonomic constraint force C1 contributes to

the holonomic generalized active forces, whereas the holonomic constraint force

C2 does not. A third equation is needed to solve for the three unknowns u̇1, u̇2,

and µ1; it is provided by the nonholonomic constraint equation (1) expressed

at the acceleration level,

u̇2 −
u1

ε Cα
= 0 (13)

An analytical solution is then available,

u̇1 = − tanα

ε
u1 (14)

u̇2 =
u1

ε Cα
(15)

µ1 =
mCα

ε
u1 (16)

It is worth noting that Eqs. (7), (15), and (16) together contradict the statement

in Ref. [6] preceding Eq. (16) therein. The acceleration of P along the path (the

rod) is in general nonzero if the proposed nonholonomic constraint equation is

to be satisfied; it vanishes only in the special case when the rod is stationary

(u1 = 0).
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The differential equation (14) yields a closed form solution

u1 = K1e
−ρt (17)

where ρ
4
= (tanα)/ε as defined in Ref. [6], and the constant of integration K1 is

the value of u1 at t = 0. This solution in turn facilitates integration of Eq. (15),

yielding

u2 = −K1

Sα
e−ρt + K2 (18)

where K2 is determined once the value of u2 at t = 0 is specified. Integration of

the two kinematical differential equations q̇r = ur (r = 1, 2) produces solutions

for the generalized coordinates.

q1 = −K1

ρ
e−ρt + K3, q2 =

K1

ρSα
e−ρt + K2t + K4 (19)

where the constants of integration K3 and K4 can be evaluated on the basis of

the initial conditions of q1 and q2. It must be noted that the initial values of u2

and q1 have to satisfy Eq. (1); a similar recognition appears in Ref. [6].

One is now in a position to show that Eqs. (17)–(19) verify the results

attributed in Ref. [6] to Hagedorn’s approach. First, relationships between the

Cartesian coordinates x and y and the generalized coordinates q1 and q2 are

established.

x = Cαq2, ẋ = Cαu2, ẍ = Cαu̇2 (20)

y = q1 + Sαq2, ẏ = u1 + Sαu2, ÿ = u̇1 + Sαu̇2 (21)

Appropriate substitution from these relationships shows that the original form

of the nonholonomic constraint equation given in Ref. [6], y − x tanα− εẋ = 0,

gives way to Eq. (1). Furthermore, Eqs. (12) and (14a) in Sec. 3 of Ref. [6] are

recovered from Eqs. (19) here.

x = Cαq2 =
K1

ρ tanα
e−ρt + K2Cα t + K4Cα

4
= D3e

−ρt + D4 t + D5 (22)

y = q1 + Sαq2 = −K1

ρ
e−ρt + K3 +

K1

ρ
e−ρt + K2Sα t + K4Sα

4
= D1 t + D2 (23)
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It is clear that because of the constraint described by Eq. (1), only three of the

constants of integration K1, K2, K3, and K4 are independent, and only three

of the five constants D1, . . . , D5 used in Ref. [6] are independent.

The second order differential equations (11a) and (11b) in Sec. 3 of Ref. [6]

can also be recovered from Eqs. (14) – (16) here. Dealing with the differential

equation for y is straightforward,

ÿ = u̇1 + Sαu̇2 = − tanα

ε
u1 + Sα

u1

ε Cα
= 0 (24)

The differential equation for x can be rewritten as

ẍ = Cαu̇2 = Cα
u1

ε Cα
=

µ1

mCα
(25)

A relationship between the multiplier µ1 used here and the multiplier λ used in

Ref. [6] is required, and can be obtained by rewriting the original nonholonomic

constraint equation as

− εẋ + y − x tanα = NvP · (−εn̂1) + y − x tanα = 0 (26)

Inspection of this equation indicates that a constraint force parallel to the vector

−εn̂1 must be applied to P . Consequently,

C′
1 = −λεn̂1 (27)

The projection of C′
1 onto b̂1 must be the same as that of C1; therefore,

C1 · b̂1 = C′
1 · b̂1 = µ1 = −λεCα (28)

Hence, Eq. (25) is rewritten

ẍ +
λε

m
= 0 (29)

in agreement with Eq. (11a) of Ref. [6] when m is taken as unity.

Rosen and Edelstein reject the preceding differential equations for x and y,

and the closed form solutions, on the basis of their results obtained with the

Newton-Euler method. With the analysis already performed here it is evident
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that their application of the method is flawed, and the point in their development

where the mistake was made can be identified immediately. In what follows, a

correct application of the Newton-Euler approach is shown to yield the foregoing

results.

In their Eqs. (2a) and (2b), Rosen and Edelstein do not account for the con-

straint force C′
1 needed to ensure satisfaction of their nonholonomic constraint

equation; they only consider C2 required to bring about the configuration con-

straint. Upon writing C′
1 + C2 = m N aP , it is seen that Eqs. (2) should be

stated

mẍ = −NSα − λε, mÿ = NCα (30)

or

mCαu̇2 = −NSα + µ1/Cα, m(u̇1 + Sαu̇2) = NCα (31)

Application of Newton’s second law to P must be accompanied by its application

to B. In addition to the reaction forces −C′
1 and −C2 acting at B, a reaction

force µ3n̂1 is applied at the prismatic joint, therefore we write µ3n̂1 − C′
1 −

C2 = mB
N aB ; however, the mass of B is neglected in comparison to m so

µ3n̂1 −C′
1 −C2 = 0. That is,

µ3 + λε + NSα = 0, −NCα = 0 (32)

The first of these can be used if µ3 is of interest but the relationship is not

important in what remains to be done. The second of these reveals that N = 0

(so µ2 = 0) and, as an immediate consequence, ÿ = 0, in agreement with

what has been previously shown. Equations (31) can now be simplified, and the

nonholonomic constraint equation (13) at the acceleration level is again brought

to bear so that

mCαu̇2 −
µ1

Cα
= 0, u̇1 + Sαu̇2 = 0, u̇2 −

u1

εCα
= 0 (33)

constitute three equations in three unknowns, u̇1, u̇2, and µ1. They lead imme-

diately to Eqs. (14)–(16).

December 7, 2006 10 Roithmayr



An Argument Against Augmenting the Lagrangean for Nonholonomic Systems

Conclusion

A straightforward application of Kane’s method for simple nonholonomic sys-

tems, together with identification of the constraint forces needed to impose

a motion constraint and a configuration constraint, are used to verify results

obtained with what is called the regular variational approach, brought to the

reader’s attention by Hagedorn in Ref. [6]. Further, a correct application of the

Newton-Euler method reproduces those results. The conclusion by Hagedorn,

Ray, Flannery, and others is thus affirmed; namely, the Lagrangean cannot be

augmented by the sum of nonholonomic constraint equations weighted with

multipliers, regardless of whether or not such equations are linear in the time

derivatives of the generalized coordinates.
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