

Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

<u>S. Buchner, MEI/NASA-GSFC</u> D. McMorrow, NRL M. Sibley, P. Eaton, D. Mavis, *Micro-RDC* L. Dusseau, N. J-H. Roche, M. Bernard, Univ. of Montpellier

Introduction

- Exposure of ICs to ionizing radiation changes electrical parameters.
- TID effect observed in both CMOS and bipolar circuits:
 - In bipolar circuits, transistors exhibit gain degradation
 - In CMOS circuits, transistors exhibit <u>threshold voltage shifts</u>
- Changes in electrical parameters can cause changes in SEU/SET rates. Depending on effect, rates may increase or decrease.
- Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure.

Introduction

TID concerns arise during proton testing of circuits with small SEU cross-sections

- At 60 MeV, a fluence of 7x10¹¹ p/cm² gives a TID of 100 krad(Si).
- For 10% statistics require 100 upsets or 3x10¹¹ p/cm².
- Assume 50% charge yield in presence of electric field.
- Equivalent TID(e⁻) = 20 krad.
- If part has a hardness of 50 krad, can measure 2 points before electrical parameters exceed manufacturer's specifications and part must be changed.
- Schwank et al have investigated proton-induced TID effects in SRAMs (2004)

N.J.Buchanan et al. MAPLD 2000

Introduction – Bipolar Transistors

TID causes charge buildup that distorts emitter/base junction field and degrades gain.

Schrimpf, NSREC 2001 Short Course

Introduction – MOS transistors

TID causes charge buildup that shifts threshold Voltage and increases leakage currents.

N-channel MOSFET

J. Schwank, NSREC Short Course 2002

LINEAR BIPOLAR CIRCUIT VOLTAGE COMPARATOR – LM139

Voltage Comparator – LM139

• LM139 - SETs become smaller with TID

LM139

LINEAR BIPOLAR CIRCUIT Operational Amplifier – LM124

Operational Amplifier – LM124

 Used focused pulsed laser to inject charge into Q9 and R.

LM124 – Slew Rate

DIGITAL CMOS CIRCUIT Test Circuit from Micro-RDC

Digital Test Circuit

Digital Test Circuit

$$\mathsf{R} = (\tau_{\mathsf{pw}} - \mathsf{T}_{\mathsf{s}-\mathsf{h}}) \bullet \mathsf{f}_{\mathsf{clk}} \bullet \mathsf{f}_{\mathsf{laser}}$$

Test Results

0 KRad, 300 MHz

Test Results

Explanation

Explanation

Summary

- Exposure of ICs to ionizing radiation alters their electrical parameters and therefore their SET shapes and sensitivities.
- The effect occurs in both CMOS and bipolar circuits.
- Depending on effect, rates may increase or decrease.
- Effect of TID on SET rates should be considered if SETs cannot be tolerated.
- This work is being extended to other ICs such as a phase locked loop and memories.